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Abstract

Independent component analysis (ICA) has proven useful for modeling brain and
electroencephalographic (EEG) data. Here, we present a new, generalized method to better capture
the dynamics of brain signals than previous ICA algorithms. We regard EEG sources as eliciting
spatio-temporal activity patterns, corresponding to, e.g. trajectories of activation propagating
across cortex. This leads to a model of convolutive signal superposition, in contrast with the
commonly used instantaneous mixing model. In the frequency-domain, convolutive mixing is
equivalent to multiplicative mixing of complex signal sources within distinct spectral bands. We
decompose the recorded spectral-domain signals into independent components by a complex
infomax ICA algorithm. First results from a visual attention EEG experiment exhibit: (1) sources
of spatio-temporal dynamics in the data, (2) links to subject behavior, (3) sources with a limited
spectral extent, and (4) a higher degree of independence compared to sources derived by standard
ICA.

Keywords

Complex independent component analysis; Frequency-domain; Convolutive mixing; Biomedical
signal analysis; Electroencephalogram; Event-related potential; Visual selective attention

1. Introduction

Independent component analysis (ICA) is effective in analyzing brain signals and in
particular electroencephalographic (EEG) data (e.g. Makeig, Bell, Jung, & Sejnowski, 1996;
Makeig et al., 2002), and ICA continues to be useful for building new models of
experimental data. However, ICA algorithms presently applied to brain data rely on several
idealized assumptions about the underlying processes that may not be fully applicable.
Although the results so far obtained with ICA are significant and justify its continued use, it
is nevertheless desirable to advance the ICA methodology by allowing more realistic
modeling of EEG dynamics.

One principal limitation imposed on ICA algorithms is the mixing process by which the
source signals are assumed to be superimposed to form the measured sensor signals.
Presently, ICA analysis of brain data is carried out assuming a linear and instantaneous

© 2003 Elsevier Ltd. All rights reserved
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mixing process that can be expressed mathematically as multiplication by a single mixing
matrix. The physics of electromagnetic wave propagation support instantaneous summation
at the electrode sensors since capacitive effects within the head are generally regarded as
negligible at EEG frequencies of interest (Lagerlund, 1999).

In the standard ICA model the component signal sources are thought of as neural activity
occurring in a perfectly synchronized manner within spatially fixed cortical domains. This
assumption might be too strong, as it does not take into account the possible spatio-temporal
dynamics of the underlying neural processes, e.g. propagation of neuronal activity, traveling
wave patterns of activity, or synchronization between different brain areas with a non-zero
phase lag (Arieli, Sterkin, Grinvald, & Aertsen, 1996; Freeman, 1975; Lopez da Silva &
Storm van Leeuwen, 1978; Stein, Chiang, & Kdnig, 2000). One way to allow the effective
sources to exhibit more complex dynamics is to assume a convolutive mixing model. In a
convolutive mixing process, a single impulse-like activation of an EEG component may
elicit a sequence of potential maps with varying spatial topography; such a model may
thereby allow for patterns of spatial propagation of EEG activity. Separation of
convolutively mixed sources into independent EEG components is not feasible under the
instantaneous mixing assumption, since the temporal autocorrelation of the EEG results in
statistical dependencies between the time-courses of consecutive potential maps. At best,
instantaneous ICA may separate moving sources into separate stationary components with
overlapping “frames' of activation (Makeig, Jung, Ghahremani, & Sejnowski, 2000).

A fundamentally different phenomenon, also neglected by the standard ICA model, is the
spectral quality of EEG signals. EEG researchers have long been familiar with the fact that
EEG activity has distinctive characteristics in different frequency bands (conventionally
delta, theta, alpha,beta, and gamma) which may be associated with different physiological
processes (Berger, 1929; Makeig & Inlow, 1993). It may therefore be more appropriate to
allow for the existence of different functionally independent sources in different frequency
bands by modeling the source superposition with a different mixing matrix for each
frequency band.

To overcome both shortcomings, we approach convolutive independent component analysis
of EEG signals through complex ICA applied to different spectral bands. Convolutive
mixing in the time-domain is equivalent to multiplicative mixing in the frequency-domain
with generally distinct complex-valued mixing coefficients in different frequency bands.
Therefore, by moving to the frequency-domain, both spatio-temporal source dynamics and
frequency-specific source processes may be modeled. Solutions obtained under the standard
ICA model with instantaneous mixing in the time-domain form a subset within the solution
space of complex frequency-domain ICA, corresponding to signal superposition with the
same real-valued mixing matrix in all frequency bands.

The method consists of two processing stages (cf. Fig.1). First, the measured EEG signals
are decomposed into different spectral bands by short-time Fourier transformation or
wavelet transformation, yielding a complex-valued spectro-temporal representation for each
electrode signal. Then,a separate independent component analysis is performed on the
complex frequency-domain data within each spectral band, producing, for each band, a set
of complex independent component activation time-courses and corresponding complex
scalp maps. We also investigate the case of a constrained complex ICA algorithm where the
independent component (IC) activations remain complex, but the I1C scalp maps are required
to be real-valued.

Within each spectral band, the proposed algorithms find a number of maximally independent
components equal to the number of employed data channels. Hence, across frequencies the
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method has the potential of identifying more independent processes than the number of
electrodes. But since EEG processes may not be narrowband, but may exhibit dynamics
within multiple contiguous or disconnected bands, independent components at different
frequencies might also originate from the same spatial EEG generator sources. This could,
e.g. be the case for murhythm activity (Niedermeyer and Lopes da Silva, 1999) which is
characterized by concurrent activity near 10 and 20 Hz. We present methods for evaluating
the similarity of independent components at different frequencies and for grouping together
those components arising from single physiological processes.

Convolutive mixing models have been used for blind source separation in other domains.
For example, in the case of speech signals the physics of wave propagation in air directly
leads to a convolutive mixing process (e.g. Anemiller, 2001). However, speech signals are
generally modeled as wide-band sources, emitting energy essentially over the entire spectral
range of interest. The same assumption cannot be made for brain signals, so that
corresponding convolutive ICA algorithms cannot be applied directly to the problem at
hand. On the other hand, narrow-band sources are also encountered in telecommunications
applications, leading to ICA algorithms similar to the one presented here (Torkkola, 1998).
However, a strict narrow-band assumption may not be completely justified for brain signal
sources, as mentioned above. The methods presented in this paper appear to be sufficiently
flexible to model signals in all the aforementioned scenarios.

The remainder of the paper is organized as follows: In Sections 2.1 and 2.2, we define the
spectral decomposition and mixing model. We derive a complex variant of the infomax ICA
algorithm (Bell & Sejnowski, 1995) in Section 2.3 from the maximum-likelihood principle,
and discuss a variant constrained to real scalp maps in Section 2.3.1. Visualization of
complex activations and maps is discussed in Section 2.3.2. Section 2.3.3 defines second
and fourth order measures for assessing the quality of the separation. In Section 2.4 we
present methods for measuring similarities between independent components in distinct
spectral bands. Section 2.5 presents methods for comparing real time-domain and complex
frequency-domain ICA results. Finally, we apply these methods to data from a visual
attention task EEG experiment in Section 3.

2. Methods

2.1. Spectral decomposition

Consider measured signals x{4), where 7=1,..., Mdenotes electrodes. Their spectral time-
frequency representations are computed as

x5(T,f)=) % (T+0bp (1),

where fdenotes center frequency, and 64t) the basis function which extracts the spectral
band Ffrom the time-domain signal. The basis function is centered at time 7. Hence, data of
size [channels 7 x times 4 is transformed into data of size [channels 7 x times 7 x
frequencies A.

In this paper, we consider the decomposition by means of the short-time Fourier
transformation, such that b4x) is given by

bf (T) —h (T) e—i27rf‘r/2K’ @)

A(T) being a windowing function (e.g. a hanning window) with finite support in the interval
t=-K,..., K- 1, and 2K denoting the window length. Correspondingly, the frequency
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index acquires values f=0,..., K. Since the product of time- and frequency-resolution is
bounded from below by 0.5, the chosen windowing function and window length give limited
frequency-domain resolution. Hence, variability across frequencies is limited and results
should be interpreted accordingly.

2.2. Mixing model

For each frequency band 7the signals x(7, A=[x(7, B, ..., XaA T, Hi] " are assumed to be
generated from independent sources (7, A = [s1(7, B, ..., S\ T, A]” by multiplication with
a frequency-specific mixing materix A(#,

x(T,)=A(f)s(T,f), @3

with rank(A (7)) = N. Noiseis assumed to be negligible. We restrict the presentation to
square-mixing, M= N, though our methods arealso applicable to the case M> N. The
estimates u( 7, 7) of the sources are obtained from the sensor signals by multiplication with
frequency-specific spearating matrices W (#),

w(T, H=W(HxT,f). @

2.3. Complex ICA

To derive the complex infomax ICA algorithm, we model the sources s{ 7, /) as complex
random variables with a circular symmetric, non-Gaussian probability density function P«3s).
Since the phase arg(s{ 7, f depends only on the relative position of the window centers 7
with respect to the time-domain signal s{#), the property of circular symmetry of the
distribution P(s) is a direct result of the window-centers being chosen independently of the
signal. Hence, P(s) depends only on the magnitude |4 of sand can be written as

Ps(s)=g(ls) (5

with the function & () :-R = R being a real-valued function of its real argument. Our
investigation of the statistics of frequency-domain EEG in Section 3.1 demonstrates the
data's positive kurtosis. Therefore, we choose P(s) as a super-Gaussian distribution. The
assumed two-dimensional distribution P{s) over the complex plane is illustrated in Fig. 2.
Its super-Gaussian nature is best seen by plotting the corresponding distripution P(|) of
the magnitude |9 versus the corresponding distribution (a Rayleigh distribution) for a two-
dimensional Gaussian distribution of the same variance, as illustrated in Fig. 3.

The separating matrix W1(7) is obtained by maximizing the log-likelihood L(W (7 of the
measured signals x(7, A given W(#), which in terms of the source distribution P is

LW(f)= (log P (x(T, /)W (/)),
= log det (W (f)) +(log P, (W ()X (T, f))),, ©

where {-) rdenotes expectation computed as the sample average over 7. We perform
maximization by complex gradient ascent on the likelihood-surface. The (/, j)-element 6w
of the gradient matrix VW (#) is defined as

9 +i 9
ORw;; () 03w (f)

owij (f) =( LW, 0

where 9/0%w;; (f) and 9/03w;; (f) denote differentiation with respect to the real and
imaginary parts of matrix element wj(# =[W (%], respectively. This results in the gradient

Neural Netw. Author manuscript; available in PMC 2010 August 23.
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YW (N =(1- (v pu o) )W (. @

however, faster convergence is achieved by using the complex extension of the natural

T
T gradient (Amari, Cichocki, & Yang, 1996)
<
> VW (f) =YW () W(HTW ()
= =(1- (v pur.pt) Jwip, ©
o
QZJ where v(7, # is a non-linear function of the source estimates u(7, #:
S
5 V(TN = (T ), (T AT, @0)
o)
z
. g (ui (T, )
yl’ T7 = i T7 —5 11
vi (T, f)=sign (u; (T, f)) 2 (T H)) (11)
sign(n=] 0 i z=0.
O i it z#0. @2
T
I
= Here, | denotes the identity matrix, g’ (-) is the first derivative of function g(-), A denotes
,12 complex conjugation and transposition. The gradient Eq. (9) was previously used in an
S algorithm for blind separation of speech signals (Anemiiller & Kollmeier, 2003).
o
= For the choice
% ’
c g l1-e
8 g(x) T e (13)
z

we obtain a complex generalization of the standard logistic infomax ICA learning rule (Bell
& Sejnowski, 1995). The algorithm may be adapted to different (e.g. sub-Gaussian) source
distributions by use of other appropriate non-linearities g'/g. In the case of purely real-
valued data, the learning rule for complex data reduces to the infomax ICA learning rule for
real signals.

Due to the circular symmetry of 2, the log-likelihood L(W(#) is invariant with respect to
the multiplication of any row w{/# of W(# with an arbitrary unit-norm complex number
c{h, |c{H] = 1. This parallels the sign-ambiguity of real ICA algorithms using symmetric
non-linearities. However, since the circular symmetry allows for continuous invariance
transformations (in contrast to the discrete sign-flip operation), detection of convergence is

hindered. Therefore, we constrain the diagonal of VW () by projecting it to the real line,
thereby reducing the invariance to a sign-flip ambiguity.

The independent component decomposition based on Eq. (9) is performed separately for
each frequency band £, yielding in total MK + 1) complex independent component
activation time-courses ¢{ 7, ) and MK+ 1) complex scalp maps a{ /), where a7 denotes
the Jth column of the estimated mixing matrix A(A = W1,

L
L
=
>
=1
=y
S}
=
<)
>
=
(7]
Q
2

2.3.1. Complex ICA constrained to real scalp maps—The complex scalp maps af/)
can be interpreted in terms of amplitude- and phase-differences between different spatial
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positions on the scalp produced by the spatio-temporal dynamics of the underlying EEG
generators. However, it might also be of value to constrain the scalp maps to be real-valued
as in standard ICA. In this constrained model of the EEG, sources are assumed to be
frequency-specific (in contrast to the wide-band source model of standard ICA), but may not
elicit the spatio-temporal dynamics of the fully complex model. Together with a simpler
interpretation, this approach has the advantage of making it possible to further separate the
effects induced by wide-band versus band-limited data and by instantaneous (real) versus
convolutive (complex) mixing.1>

To constrain the algorithm's solution to real scalp maps, the initial estimate of W(#) is
chosen to be real (typically the identity matrix), and the gradient Eq. (9) is projected to the
real plane, resulting in the constrained gradient

VoW (=R (YW (), @

with R denoting the real part. While the corresponding scalp maps af# are real, the
separated IC activations u(7, 7 remain complex.

Eq. (14) differs from, e.g. applying standard infomax ICA to the real-parts of u( 7, /) in that
its underlying source model Eq. (5) is still based on a distribution over the complex plane.
As a result, the product v( 7, Au(7, A7 in the right hand side of Eq. (14) is evaluated using
complex multiplication. In principle, performing complex ICA to derive real-valued
component maps might be more accurate than performing real ICA on concatenated real and
imaginary parts of band-limited time-frequency transformations as proposed by (Zibulevsky,
Kisilev, Zeevi, & Pearlmutter, 2002) since the circular symmetric complex distribution
assumed by complex ICA should be more accurate than the assumption of mutual
independence between real and imaginary parts used in the real spectral ICA decomposition
method.

2.3.2. Visualizing complex IC activations and maps—Complex independent
component activations u{ 7, fj may be conveniently visualized by separately plotting their
power (squared amplitude) and phase. To simplify the visual impression of the phase data,
we compensate for the effect of phase-advances locked to the carrier frequency by complex
demodulation (e.g. Bloomfield, 2000), multiplying the IC activations with exp(=i2r 772 K).
This yields complex signals in the frequency band centered at 0 Hz, the phase angles of
which are plotted.

For multi-trial data, this results in two event-related potential (ERP) image plots (Jung et al.,
1999; Makeig et al., 1999a) showing event-related power and phase at each frequency 7. For
visual presentation, the trials are grayscale coded after sorting in order of ascending
response time, followed by smoothing with a 30-trial wide rectangular window.

Response time in each trial is plotted superimposed on the data. The time-courses of mean
event-related power and intertrial coherence (ITC, Makeig et al., 2002) may then be
computed from the multi-trial data by averaging data from identical event-related time-
windows across trials.

IMathematical ly, signal superposition by means of different real-valued mixing matrices in distinct frequency bands can also be
interpreted as convolutive mixing of wide-band sources, but with symmetric filters. However, this special case of convolutive mixing
may be too restricted to fully model the possible complexity of the underlying neuronal dynamics. Therefore, we adopt the more
plausible interpretation that real-valued mixing in different frequency bands reflects band-limited processes without spatio-temporal

dynamics.

Neural Netw. Author manuscript; available in PMC 2010 August 23.
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To visualize the complex component maps, the invariance of the source model (5) with
respect to rotation around the origin has to be taken into account. Therefore, for each
complex map af{#) = [ay(#), ..., ap(H] T any rotated version ¢(# an arbitrary unit-norm
complex number. For visualization we plot real-part, imaginary-part, magnitude and phase
values of the equivalent map a; (f) =c; () a; () for which the sum of the imaginary parts 3
vanishes and the sum of the real parts R is positive, i.e.

Zs(aj<f>)=s[cj<f>2aij<f>)o and > (@ (N)>0 )

i

2a; (f)
=ci(f)=—

T (16)
2aij (f )‘

A complex map a; (f) whose elements @;; () have negligible (near zero) imaginary part for
all /=1,..., Mindicates that the corresponding EEG process may represent activity of a
highly synchronized generator ensemble, without phase shifts across the spatial extent of the
source. A non-negligible imaginary part is equivalent to phase-differences between distinct
scalp electrode positions which may be elicited by spatio-temporal dynamics of the
corresponding EEG process, e.g. spatial propagation of EEG activity.

2.3.3. Degree of separation—To quantify the degree of separation attained, we compute
second and fourth order measures of statistical dependency.

Second order correlations are taken into account by computing, for each frequency £, the
mean pfof the absolute values of correlation-coefficients p/f(# for all different component
pairs i £ J:

1
o(f) =m;ﬁj ), ()]

where the correlation-coefficients are defined as

(i (T Hu . )) =i (O ()
oi(f)o;(f) ’

pij ()= (18)

wi (f) =i (T, )} (19)

7i(f)= \/(w,- (T.H-m(HF) . @

p/f(# vanishes for uncorrelated signals and acquires its maximum (one) only when signals
uf T, f)and ufT, 1) are proportional. Since the measured signals x(7, #) are complex (except
at 0 Hz and the Nyquist frequecy), complete decorrelation may in general only be achieved
by the fully complex ICA algorithm (Eq. (9)), whereas the real-map constrained-complex
ICA algorithm (Eg. (14)) and time-domain ICA will generally exhibit non-zero values of

p(#).
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Second order decorrelation is not a sufficient condition for statistical independence.

Therefore, we (partially) evaluate higher order statistical dependencies by computing the
analog quantity p”(# of the time-courses of squared amplitudes |u{ 7, A|?:

/ 1 ,
o () :m;pi'i R (21)

where

(s (7.0 Pl (. NF) =45 Ds5 ()
7D,

’

Pij =

| > (22)

wi (D =(l: (T HP) . (23)

T

()= \/<(|ul- THE-K)) . e

Eqg. (22) measures statistical dependency of fourth order. It can be interpreted as a modified
and normalized variant of a fourth order cross-cumulant (Nikias & Petropulu, 1993). Its
value is zero for independent signals, non-zero for signals exhibiting correlated fluctuations
in signalpower, and maximum (one) only for signals with proportional squared-amplitude
time-courses (regardless of phase).

2.4. Corresponding components in distinct spectral bands

The complex spectral-domain ICA algorithm described above produces separate sets of
independent components for distinct and comparably narrow spectral bands. Activity in
some underlying EEG source domains might exhibit strictly narrow-band characteristics.
However, generator activity may also take place in a broader spectral range comprising
contiguous or disconnected spectral bands. Narrow-band ICA analysis does not take into
account such links between bands, but separates the data into independent components
ordered arbitrarily (e.g. by band-limited power) in each band. Therefore, components that
may account for activity within a single underlying EEG generator may be captured by
components in multiple bands (with possibly distinct component numbers). To obtain a full
picture of the underlying EEG processes, it is desirable to identify and group together those
components in different bands that likely represent activity of the same physiological source.

In this section, we present methods for identifying and clustering groups of similar
components across frequencies. The methods are based on appropriate measures of distance
between pairs of component maps or component activations, respectively. Matching
component pairs are then identified using a standard optimal-assignment procedure.

2.4.1. Distance between component maps—Our definition of the distance between
component maps is based on the Euclidian distance [a{#) — a{%)| of the complex vectors
a[f) and a( %) representing two maps. Since Euclidian distance is not invariant with respect
to arbitrary rescaling of the maps, it should be normalized. The multiplication of one map
with an arbitrary unit-norm complex number ¢, |d = 1, also alters the Euclidian distance,
although it results in an equivalent map. Therefore, we define the map distance dinap(/ £, J,

Neural Netw. Author manuscript; available in PMC 2010 August 23.
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£) of maps a{#) and af{%) as the rescaled minimal Euclidian distance between the
normalized maps,

Cai(fl) _a;(R)
la; (f)  la;j(f2)]

dmap (19 fl? j’ f2) = ’ |C|:1’ (25)

r .
—=min
\/E c

which is written equivalently in terms of their innner-product as

o R(cal! (f)a;(£) |
dmap(lvfla]’fZ)_ mcln\/l—(m)

_ laf (f)a;(f)

- 26)
- 1- (|ai(f] )||aj(f2)|) :

The map distance measure attains its maximum (one) for orthogonal maps and its minimum
(zero) only for equivalent maps.

2.4.2. Distance between component activations—We define the distance between
complex component activations based on the correlation of signal-power time-courses at
different frequencies.2 Between IC activations v( 7, ;) and (7, £,) at frequencies £ and 5%,
respectively, the component activation distance dq(/, 71, /, ) may be defined as

doct iy f1, o ) =1 = py; (fi, ), @D)

where (analogous to Eq. (22)), o; ; (fi, f2) denotes the correlation-coefficient of the squared-
amplitude time-courses |4 7, A)|? and |uf T, £)|?,

(s (T ) Pl (7. ) P = b (O 15 (f2)
o (fl)O';» (f2)

pi; (fi, o) = . (28)

with ,u;. (fHand 0';. (f) defined according to Egs. (23) and (24), respectively. By this measure,
independent signals have maximal distance (one), whereas signals with highly correlated
fluctuations in signal power have distance near minimum (zero). Related changes in signal
power in different frequency bands may be exhibited by EEG generators with activity in
both bands, since modulation of generator activity—induced, e.g. by experimental events or
common modulatory processes—may result in synchronous amplitude changes (in the same
or different direction) in the participating bands.

2.4.3. Assigning best-matching component pairs—Based on the distance measures
described in Sections 2.4.1 and 2.4.2, we define the set of pairs of best-matching
components to be that which minimizes the average distance between the pairs.

Consider a given pair of frequencies (£, %) and a chosen distance measure d(/, #, J, )
(either map distance amgp Or activation distance dicr). Assigning best-matching component
pairs is equivalent to finding the permutation rt(#), /=1, ..., A, that assigns component 7 at
frequency £ to component j= (/) at frequency % such that the mean distance across all
pairs, Z;d/, R, n(i), H)/N, is minimized:

2second order correlation drops off sharply with spectral difference because of the orthogonality of the Fourier basis and therefore is
not appropriate for computing distances across different spectral bands.
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7 () zargmin ) Jd G fim . f2): ()

b o AN
(fi. o) _%NZ G fm@). f). @)

Determining (/) given the matrix of distances d(/, #;, j, ) between all pairs (4, ) is known
as the “assignment problem'. A classic algorithm for solving this problem is the Hungarian
method (Kuhn, 1955) which we use here following the suggestion of (Enghoff, 1999).

The minimal mean distance (£, 5) is a global measure of the distance between the sets of
components at frequencies 7, and 5. For equal frequencies, # = A, D(f;, ) always attains
its minimum (zero), and the permutation becomes the identity, wt(s) = /. If the components at
frequency #; are identical to the components at frequency 5, but occur in a different order,
then D(A, %) is also zero and m(/) corresponds to the permutation of order. If some
components are identical at both frequencies, whereas the remaining components exhibit
maximum distance to all other components, then D(£, ) corresponds to the fraction of non-
identical components. For the realistic case of few components being reproduced exactly
across frequencies and many components matching similar but not identical components at
other frequencies, D(#;, %) attains values between zero and one, indicating the degree of
average similarity of the best-matching component pairs.

2.5. Time-domain ICA

3. Results

We analyze separation results from time-domain ICA using similar methods as those
presented in Sections 2.3.3 and 2.4 for the analysis of frequency-domain ICA. Time-domain
infomax ICA is applied to the time-domain signals x{#, resulting in a single separating
matrix W. The corresponding components maps are given by the columns a; of the mixing
matrix A = W1, We obtain frequency-specific unmixed signals by applying W to the
spectral transforms of the sources, yielding complex separated signals u( 7, = Wx(7, 7,
from which we compute the measures for the quality of separation (cf. Section 2.3.3).
Distances between time-domain and spectral-domain components are obtained based on the
methods presented in Section 2.4. The distance dmap(/ /i 7) between time-domain ICA maps
a,;and spectral-domain ICA maps a’/(f) is computed analogously to Eq. (25). Similarly, IC
activations obtained with time-domain and frequency-domain ICA are compared by
computing the distance dict(/ /, # in analogy to Eq. (27). We then assign best-matching
component pairs using the method presented in Section 2.4.3.

In this section, we present results from the analysis of a visual spatial selective attention
experiment where the subject attended one out of five indicated locations on a screen while
fixating a central cross, and was asked to respond by a button press as quickly as possible
each time a target stimulus appeared in the attended location. For details of the experiment,
see (Makeig et al., 1999b). Included in the analysis were 582 trials from target stimulus
epochs collected from one subject. Each epoch was 1 s long, beginning at 100 ms before
stimulus onset at £=0 ms.

The data were recorded from 31 EEG electrodes (each referred to the right mastoid) at a
sampling rate of 256 Hz and decomposed into 101 equidistantly spaced spectral bands with
center frequencies from 0.0 Hz (DC) to 50.0 Hz in 0.5-Hz steps. Decomposition was
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performed by short-timediscrete Fourier transformation with a hanning window of length 50
samples, corresponding to a spectral resolution of 5.12 Hz (defined as half-width at half-
maximum), and a window shift of one sample between successive analysis windows. This
yielded 207 short-time spectra for each trial derived from analysis windows centered at
times between 1.6 and 806.3 ms following stimulus presentations in 3.9 ms steps.

To decompose the data into independent components, the 582 trials were concatenated,
resulting for each spectral band, /=0, ..., 101, and channel, /=1, ..., 31, in frames 7=1,
..., 207 x 582 = 120, 474. No pre-training sphering of the data was performed. The
separating matrix W (#) was initialized with the identity matrix for all spectral bands. We
used the logistic non-linearity (Eq. (13)), computed the gradients (Eq. (9)) and (Eq. (14)),
respectively, at each iteration step from 10 randomly chosen data points, and lowered the
learning rate of the gradient ascent procedure successively. Optimization of W(# was halted
when the total weight-change induced by one sweep through the whole data was smaller
than 1076 relative to the Frobenius norm of the weight-matrix.

1dudsnueiy Joyiny [INHH

The dataset was decomposed using both the fully complex (Eg. (9)) and the real-map
constrained-complex (Eq. (14)) algorithms. For comparison, the same dataset was also
decomposed using time-domain infomax ICA applied to the time-domain data x{5; the
obtained single real separating matrix was then applied to the spectral-domain data x( 7, # as
described in Section 2.5.

3.1. Kurtosis

To test the assumption of super-Gaussian source distributions, we used kurtosis to assess
deviations from a Gaussian distribution. Kurtosis estimates were computed for spectral-
domain data as

2
kurt (2) = (21*) - 2((1e)) - Iy P 3D)
assuming a zero-mean, unit-variance complex random variable z (Hyvérinen, Karhunen, &

Oja, 2001). The Kurtosis kurt(2) vanishes for a Gaussian distribution and attains positive and
negative values for super- and sub-Gaussian distributions, respectively.

1dudsnuey Joyiny [INHH

Kurtosis of the spectral-domain electrode signals x{ 7, #) was computed individually for
each channel 7at every frequency 7, yielding 31 x 101 = 3131 kurtosis estimates, each based
on all 120,474 complex data frames. All of the 3131 channel-frequency kurtosis estimates
showed a super-Gaussian distribution with minimum 0.02, maximum 23.45 and median
0.43. A histogram of the kurtosis values is displayed in Fig. 4 (thin line).

Analogously, we computed the same number of kurtosis estimates for the IC activations
u{ T, 1 obtained with the fully complex ICA algorithm. The median kurtosis increased to
0.55 and only super-Gaussian distributions in the range [0.10, 386.79] were found. Their
histogram is shown in Fig. 4 (thick line).

These results support our choice of source model, and indicate that only a small advantage
might be expected by allowing the source distributions to include sub-Gaussian sources.
Therefore, we did not consider the possibility of sub-Gaussian sources further.
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3.2. Degree of separation

To assess the degree of separation achieved by the different ICA algorithms, we computed
residual statistical dependencies using the second order (Eq. (17)) and fourth order (Eq.
(21)) statistics described in Section 2.3.3. Results are displayed in Fig. 5 for the recorded
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electrode signals and for the separations into sources obtained from real time-domain
infomax ICA, real-map constrained-complex and fully complex spectral-domain ICA. For
both measures and all frequencies, fully complex ICA achieved the lowest levels of residual
dependencies. Real-map constrained results exhibited comparably higher residuals, and
time-domain infomax ICA still higher levels.

The residual second order correlations exhibited by fully complex ICA were—with the
exception of very low frequencies—about one order of magnitude lower than those attained
by time-domain ICA, and below half of those achieved by real-map constrained-complex
ICA. This result may largely be explained by the higher number of degrees of freedom of
the complex ICA algorithms that model the superposition within each frequency band with a
different mixing matrix, whereas time-domain ICA uses a single matrix for all frequencies.
Fully complex ICA achieved the lowest levels of residual correlation since it is the only
algorithm that models superposition using a different complex matrix for every frequency,
which in general is necessary to decorrelate complex input signals. In the 0-Hz frequency
band, the frequency-domain electrode signals are real, which explains the similar
performance of the real-map constrained and fully complex algorithms at the lower end of
the spectral range.

The residual fourth order correlations showed a smaller difference between the real-map
constrained and fully complex ICA algorithms, the latter exhibiting slightly lower residual
dependencies for all but very low frequencies. Remarkably, there was almost no difference
in fourth order correlations between the three algorithms in the range from 0 Hz to
approximately 6 Hz, which may be due to high power of the signals in this range. Therefore,
time-domain ICA may be best capable of separating signals in this spectral region. Between
about 6 and 50 Hz, the residual fourth order correlations of time-domain ICA showed large
fluctuations—near 27 and 50 Hz component independence was close to that of the recorded
signals.

These findings indicate that additional degrees of freedom of the spectral-domain
convolutive mixing model (compared to the instantaneous mixing model) enable it to
produce components with a higher degree of signal separation. If the underlying EEG
processes had wide-band characteristics and no spatio-temporal dynamics, it would have
been expected that all three algorithms performed equally well. Therefore, the assumption of
a fully complex frequency-specific mixing model appears to be supported by the resulting
lower residual dependencies.

3.3. Distance between component maps

We further compared time-domain ICA and real-map constrained-complex ICA by
computing, for every frequency =1, ..., 101, the distance dnap(/, /; 7) between the th
component map of time-domain ICA and the jth component map of complex ICA at
frequency 7, see Section 2.5. Best-matching component maps were assigned for each fusing
the assignment method described in Section 2.4.3, yielding a minimal mean distance (7
(analogous to Eqg. (30)), which is shown in Fig. 6.

Across all frequencies, the distance between component maps obtained by time-domain ICA
and by constrained-complex spectral-domain ICA is at least 0.4. Largest distances are
exhibited at frequencies of 30 Hz or higher, while the maps show closest resemblance
around a minimum in the 5-10-Hz range. In conjunction with the results from Section 3.2,
this may serve as a further indication that separation of EEG data by time-domain ICA may
be dominated by low-frequency activity.
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3.4. Distance between component activations

Distances between component activation time-courses u{ 7, #,) and u{ 7, f;) were computed
for the fully complex ICA separation according to Eq. (27) for all possible combinations of
(7, R, J, B). Best-matching components were assigned for each pair of frequencies (7, &
using the method presented in Section 2.4.3, yielding one minimal mean distance D,.t(#, )
for every frequency pair. The distances between all frequency pairs are visualized in Fig. 7
(right panel). Note that the level of detail available in the visualized spectral features is in
principle limited by the spectral resolution (5.12 Hz) of the windowing function employed in
the time-frequency transformation.

The distance matrix is dominated by values on the diagonal as expected from the bandwidth
of the spectral decomposition. For larger spectral distances (away from the diagonal) several
nearly rectangular distance patterns emerge, that deviate from the diagonal structure as
expected in the absence of spectral clusters. Qualitatively, we may identify three spectral
blocks, extending roughly from 0 to 8 Hz (corresponding to delta and theta bands), from 8 to
30 Hz (alpha and beta bands), and from 30 Hz to at least 50 Hz (gamma band).

1dudsnueiy Joyiny [INHH

Although the exact borders and shapes of the spectral clusters cannot be identified in the
figure, the existence of spectral structure may reflect physiological processes that extend
over some spectral range and thereby induce independent components with similarities
across frequencies. Thus, the complex spectral-domain ICA method may serve as the
starting point for extracting components with physiological relevance from EEG data.
Whereas our present analysis of the clusters is based on the qualitative interpretation of the
average component distances across frequencies, further analysis may employ quantitative
clustering methods on individual (unaveraged) component distances and should thereby
produce a more detailed picture of component similarities across frequencies.

3.5. Examples of maps and activations

A large number of independent component maps and activations were obtained for different
frequency bands. Relevance of the components may be assessed based on the compatibility
of component maps and activations with known EEG physiology, experimental design and
subject behavior. We show here one set of components whose central-midline projections
are similar to EEG activity associated with orienting to novel stimuli (Courchesne, Hillyard,
& Galambos, 1975). The response of these components to stimulus presentation is most
marked in the 5-Hz band and shows a clear relation to subject behavior.

1dudsnuey Joyiny [INHH

Figs. 8-10 illustrate differences between the real infomax, real-map constrained-complex
infomax and fully complex infomax ICs. The real infomax IC (Fig. 8) shows a clear increase
in power near the median response time at about 300 ms, and a strong mean phase resetting
which is visible near 300 ms as a phase-wrap (from —r to 1) and as a peak in the ITC.

The corresponding component obtained from real-map constrained-complex ICA at 5 Hz is
displayed in Fig. 9. Its component map shares the spatial focus of maximum scalp projection
with the time-domain IC map (cf. Fig. 8), but the spatial extent of the projection appears
different. Comparing the complex activation time-courses, the real-map constrained-
complex IC shows a stronger response-locked power increase near 300 ms which is also
more closely linked to the response time (Fig. 9, center panel), and shows a more consistent
phase-resetting and higher ITC near 300 ms after stimulus presentation (Fig. 9, right panel).
This indicates that spectral-domain ICA may reflect subject behavior and underlying brain
processes more faithfully than time-domain ICA.
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The real part map obtained by decomposing the 5-Hz band with the fully complex ICA
algorithm (Fig. 10, left) appears similar to the real-constrained component map. The
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corresponding imaginary part map (Fig. 10, second from left) has a non-negligible
amplitude at the spatial focus of maximum scalp projection. This indicates the presence of
spatio-temporal dynamics in the data, and that these dynamics are modeled better with
complex maps than with static real maps. Here, the complex 1C magnitude and phase
activations (Fig. 10, right) do not appear qualitatively different from the activations obtained
with the real-map constrained-complex algorithm (Fig. 9, right), although (as we have
shown in Section 3.2) the fully complex ICA results in IC activations with a higher degree
of independence than those obtained with real-map constrained-complex ICA.

To illustrate the similarity of component maps over different spectral bands, Fig. 11 displays
those maps from the 10-Hz to 30-Hz decompositions that best match the illustrated 5-Hz
component. The maps in Fig. 11 were obtained using the fully complex ICA algorithm; only
the magnitude maps are shown. While the site of maximum scalp projection remains similar,
the maps exhibit differences in shape and spatial extent, further suggesting that the complex
spectral-domain ICA algorithm models aspects of the data that real ICA algorithms ignore.

Components not shown here are on the whole characterized by a single focus of activation in
the associated scalp maps, which may indicate that their generators are located in spatially
continuous (as opposed to disconnected) cortical regions. About half of the components
display a clearly non-zero imaginary part in their scalp maps, corresponding to processes
with spatio-temporal dynamics. However, we also find component maps with imaginary
parts that do not appear to deviate significantly from zero. Under the proposed model, these
components correspond to static sources with negligible spatio-temporal dynamics. This
demonstrates that the complex ICA algorithm does not necessarily produce complex
component maps, but also extracts the special case of real-valued mixing systems when
supported by the data.

4. Discussion and conclusion

We have presented a new method for the analysis of dynamic brain data and in particular
electroencephalographic signals. The method is based on spectral decomposition of the
sensor signals, and subsequent analysis within distinct spectral bands by means of a complex
infomax algorithm for independent component analysis.

Although the applicability of ICA to time-domain EEG data is well established, the results
obtained from the EEG dataset presented here—together with results from EEG data not
shown—strongly support the applicability of complex spectral-domain ICA to EEG
modeling and analysis.

Two different aspects of the method appear to offer improvements over previous ICA
algorithms for modeling dynamic brain data. First, signal superposition is modeled as a
convolution, permitting sources to exhibit spatio-temporal dynamics. Evidence for spatio-
temporally dynamic patterns has been found in invasive recordings in animal cortex and
includes spatial propagation of neural activity (Arieli et al., 1996), traveling waves
(Freeman, 1975; Lopez da Silva & Storm van Leeuwen, 1978), and phase shifted activity
between different regions (Stein et al., 2000). Second, signal superposition may be
frequency-dependent, allowing for distinct signal sources at different frequencies. This view
follows naturally from the conventional notion of different frequency bands in EEG that
appear to be related to different physiological functions.

The convolutive mixing assumption gained support from the decomposition results. The
fully complex spectral-domain ICA algorithm exhibited the lowest residual statistical
dependencies, and many complex component maps showed clear non-negligible imaginary
parts, indicating that complex ICA modeled spatio-temporal source dynamics in the data.
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These first steps in understanding the relation between complex independent components
and underlying brain processes may be a qualitative step forward in modeling EEG data
with ICA, a step that could potentially result in new insights into brain dynamics.

The assumption of frequency-dependent signal mixing was supported in three ways. First,
residual statistical dependencies after separation were lower with complex frequency-
dependent ICA than with real wide-band ICA. Second, component maps obtained with
complex ICA varied across frequencies. Third, results of complex ICA included distinct
spectral ranges exhibiting clusters of similar independent components, which might pertain
to physiological processes with activity over the corresponding spectral bands. Compared to
previous methods, our results indicate that improvements in analysis may be expected in the
spectral range above 8 Hz, with largest improvements possible above 20 Hz, where the
deviations between time-domain ICA and complex spectral-domain ICA results appear to be
strongest. However, the example data presented also indicated an advantage for complex
ICA in the 5-Hz (theta) band, where complex ICA produced a component whose activity
was more reliably related to subject task behavior than the corresponding real time-domain
ICA component.

We have presented methods for assigning best-matching complex component pairs in
different spectral bands to common sources. For these data, complex ICA produced
physiologically plausible component clusters. However, further methodological
improvements could be explored including other measures of component similarity,
assignment procedures and quantitative clustering methods.

Other recording techniques, like the magnetoencephalogram (MEG) or functional magnetic
resonance imaging (fMRI),and other electrical recordings from the human body such as
electromyographic (EMG) and electrocardiographic (ECG) recordings, might also benefit
from the presented methods. Should statistical and physiological analysis of those data
indicate the applicability of complex spectral-domain ICA, new directions for research
might be open for those fields.

Several open questions regarding aspects of the presented methods should be investigated in
further studies.

»  The present work focused on the frequency-domain related aspects of the
algorithm. For a better understanding of the obtained components, it will be
necessary to project them to the corresponding time-domain electrode voltages and
study the resulting time-varying spatial distributions with respect to experimental
design. It should be possible to validate the proposed method by performing
experiments for which a priori knowledge exists as to expected spatio-temporal
dynamics of the scalp maps.

e One benefit of the frequency-dependent mixing assumption is that it may enable
identification of a higher number of stable independent components. However,
each component obtained by the fully complex algorithm can model only a single
mode of spatio-temporal dynamics, corresponding to, e.g. a single direction of a
cortical activation trajectory. Sources with (nearly) identical foci of activation but
different spatio-temporal dynamics may therefore be decomposed by complex ICA
into distinct components. Due to this higher sensitivity, the fully complex algorithm
could benefit from a larger number of EEG sensors.

e The stability of components both within and across subjects is a related area for
further studies. Variability of components with respect to, e.g. number of
electrodes, recording-length, subject variability and variability across recording
sessions should be investigated.
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e The spectral basis employed in the present algorithms may appear as a natural
choice, and it has the advantage of allowing for the simultaneous analysis of
frequency-dependent and convolutive mixing using a single mathematical model.
However, other model choices may be possible and better adapted to the data than
the present spectral basis.

The experimental results presented here indicate that complex spectral-domain independent
components model aspects of spatio-temporal dynamics in the data that real-valued
independent components ignore. To support this possibility, we have shown one example
showing spatio-temporal dynamics and a tighter relation of complex components to subject
behavior. To confirm the relevance of the new method for understanding brain data, it is
important to further investigate the physiological plausibility of the decompositions and their
functional relation to behavior based on more extensive analysis across subjects and
experiments.
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spec clCA

Sd 5 e

Fig. 1.

Schematic representation of the processing stages of the complex spectral-domain ICA
algorithm. Left ("spec'): the recorded electrode signals are decomposed into different
spectral bands. Center ("clCA"): complex ICA decomposition is performed within each
spectral band. Right: iteration steps performed by complex ICA for estimation of each
separating matrix W (#).
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Fig. 2.
The circular symmetric super-Gaussian probability density function A(s) of the complex
SOUrces S.

1duasnuepy Joyiny [INHH

L
L
=
>
=
=3
Q
<
o
S
c
o
=
=

Neural Netw. Author manuscript; available in PMC 2010 August 23.



Anemdller et al. Page 20

0.04 T T T T T
RAGAN = circular super - Gaussian
% === circular Gaussian

I 0.03
I
=
Z _
= 2 0.02
o o
)
<
QD
=
wn 0.01
o
=,
©
S

0

Fig. 3.

The distribution Ag(|s) of super-Gaussian source magnitude (solid) versus the distribution
of the magnitude of a two-dimensional Gaussian process with the same variance (dashed).
The latter is the well-known Rayleigh distribution. The super-Gaussian source distribution is
characterized by its stronger peak at small magnitudes and its longer (high-magnitude) tails.
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Fig. 4.

Histograms for estimated kurtosis of complex spectral-domain electrode signals (thin line)
and independent component activations (thick line). Each histogram based on 3131 kurtosis
estimates (see text), 44 bins of width 0.05 in the interval from 0 to 3.
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Fig. 5.

Residual statistical dependencies evaluated using second order (left panel) and fourth order
(right panel) measures at frequency bands between 0 and 50 Hz. Residuals for the recorded
electrode signals (dotted), signal separation obtained from real time-domain infomax ICA
(dash-dotted), real-map constrained-complex spectral-domain ICA (dashed), and fully
complex spectral-domain ICA (solid).
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Fig. 6.

Mean distance between the component maps obtained by time-domain infomax ICA and
best-matching frequency-specific component maps of real-map constrained-complex ICA.
Abscissa: frequency of spectral-domain component. Ordinate: mean distance to time-domain
ICA map.
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Fig. 7.

Minimal mean distances D,(#, /) computed from component activation functions
obtained with the fully complex ICA algorithm in 101 frequency bands of width 5.12 Hz,
spaced equidistantly between 0 and 50 Hz in 0.5-Hz increments. Right: distances for all
best-matching component pairs of different frequencies. Left: enlarged view of the 0-20-Hz
range.
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Fig. 8.

Independent component at 5 Hz obtained from standard time-domain infomax ICA. Left:
scalp map. Middle: ERP-image of 5-Hz power. Right: ERP-image of complex-demodulated
5-Hz phase. Response times superimposed on data. Lower panels: mean time-courses of
event-related 5-Hz power (middle) and 5-Hz intertrial coherence (ITC, right).
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Fig. 9.

Independent component at 5 Hz obtained from real-map constrained-complex spectral-
domain ICA. Same dataset as Fig. 8. Left: scalp map. Middle: ERP-image of 5-Hz power.
Right: ERP-image of complex-demodulated 5-Hz phase. Response time and lower panels
analogous to Fig. 8.
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®

Independent component at 5 Hz obtained from fully complex spectral-domain ICA. Same
dataset as Figs. 8 and 9. From left to right: real and imaginary part of the complex scalp
map, respectively; ERP-images of 5-Hz power and complex-demodulated 5-Hz phase of the
complex IC activation time-courses, respectively. Response time and lower panels
analogous to Fig. 8.
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Fig. 11.
Magnitude maps of complex independent components obtained using the fully complex

spectral-domain ICA algorithm at five frequency bands, same dataset as Figs. 8-10.
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