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Abstract

Following injury or surgical resection, the liver has the remarkable ability to regenerate. Despite 

over 100 years of research, the trigger of the liver regeneration cascade has only recently been 

identified. Shear stress-induced nitric oxide (NO), released secondary to a hemodynamic event 

following partial hepatectomy (PHX), has been implicated as the trigger of the liver regeneration 

cascade. However, it is also known that prostaglandins (PGs) are released following PHX, and in 

response to shear stress. Therefore, it is hypothesized that PGs, released secondary to an increase 

in the blood flow-to-liver mass ratio following PHX, trigger the liver regeneration cascade, and 

that NO and PGs interact during the triggering event. An index of initiation of the liver 

regeneration cascade, c-fos mRNA expression 15 min after PHX, has been employed. As 

expected, c-fos mRNA expression increased 15 min after PHX and this increase was inhibited by 

the NO synthase antagonist, L-NAME. This inhibition was reversed by the NO donors, SIN-1 and 

SNAP, and by the PGs, PGE2 and PGI2. Also, the increase in c-fos mRNA expression was 

inhibited by indomethacin, a cyclooxygen-ase antagonist. This inhibition was also reversed by the 

NO donors, SIN-1 and SNAP, and by the PGs, PGE2 and PGI2. These results suggest that there is 

interaction between NO and PGs in triggering the liver regeneration cascade, and that in a 

situation where either NO or COX is inhibited, provision of excess exogenous NO or PGs can 

reverse the inhibition. This suggests that exogenous NO and/or PGs may play a role in potentiation 

of the liver regeneration cascade.
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The liver has remarkable ability to regenerate following surgical resection or chemical 

damage. Numerous growth factors, cytokines, and other mediators are released following 2/3 

partial hepatectomy (PHX), a common model used in the study of liver regeneration [1]. It 

has been previously hypothesized that numerous of these growth factors and cytokines are 

the trigger of the liver regeneration cascade, including hepatocyte growth factor (HGF) [2], 

epidermal growth factor (EGF) [3], and interleukin-6 (IL-6) [4]. However, the concentration 

of these putative triggering agents does not immediately increase after PHX. One event that 

is immediate following PHX is a hemodynamic change. The liver does not control inflowing 
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portal venous blood, but must accept the entire outflow from other splanchnic organs, such 

as the intestine, stomach, spleen, and pancreas. Removal of 2/3 of the liver (PHX) causes a 

threefold increase in the blood flow-to-liver mass in the remaining 1/3 [5,6]. It is 

hypothesized that this increase in the blood flow-to-liver mass ratio causes shear stress and 

release of nitric oxide (NO) and prostaglandins (PGs), which trigger the liver regeneration 

cascade.

It has been previously demonstrated that an increase in the blood flow-to-liver mass ratio 

causes an elevation in portal venous pressure (PVP) immediately following PHX [7,8]. This 

is important because it has been shown that PVP can be used as an index of the amount of 

shear stress in the liver [9]. Although shear stress has also been recognized by others as 

essential for liver regeneration to proceed normally [10,11], the mechanism of the triggering 

event was never determined.

Previous experiments have provided support for the hypothesis that shear stress-induced NO 

is involved in triggering the liver regeneration cascade [8,12,13]. Briefly, liver mass 

restoration 48 h after PHX is inhibited by administration of Nω-nitro-L-arginine methyl ester 

(L-NAME), a nonselective NO synthase antagonist [13,14]. Further, proliferative factors 

normally detected in the blood 4 h after PHX are inhibited by administration of L-NAME 

prior to PHX. This inhibition is reversed by administration of L-arginine, the substrate for 

NOS [13]. The complete inhibition of proliferative factors in response to antagonism of NO 

synthase implies the inhibition of all of the factors that are generated after PHX that can 

cause hepatocyte proliferation. For this reason, proliferative factor presence in blood is taken 

as a powerful tool to indicate whether the liver regeneration cascade has been activated.

Also, an index of initiation of the liver regeneration cascade closer to the actual triggering 

event was employed. This index is c-fos mRNA expression 15 min after PHX, and it was 

selected as an index because c-fos mRNA expression was shown to peak 15 min after PHX, 

and also to increase proportionate to the degree of PHX performed [15]. In addition, c-fos 

mRNA expression increases in response to shear stress [16], and in proportion to the shear 

stress applied [17]. NO also stimulates expression of c-fos mRNA [18–21]. Previous 

experiments have shown that blockade of NO synthase by L-NAME inhibits the increase in 

c-fos mRNA expression normally observed 15 min after PHX [8]. This inhibition is reversed 

by the NO donor 3-morpholinosydnonimine (SIN-1). This provided further support for the 

hypothesis that NO triggers the liver regeneration cascade.

Previous research demonstrated that inhibition of cyclooxygenase (COX) using 

indomethacin resulted in blockade of proliferating factor production after PHX [22]. 

However, the PGs involved and the nature of the triggering role were not determined. 

Although the liver produces various types of PGs, the roles of PGE2 and PGI2 in the liver 

regeneration cascade were investigated. PGE2 is the most abundant PG produced by the liver 

[23], and both PGE2 and PGI2 have been shown to be cytoprotective to hepatocytes, and this 

cytoprotection is abolished by indomethacin [24]. PGE2 and PGI2 levels are increased after 

PHX [25,26]; and it was demonstrated that COX antagonists inhibit DNA synthesis and 

delay liver regeneration [27,28]. In addition, PGE2 and PGI2 are released in response to 

shear stress [29–32].
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Interaction between NO and PGs has also been demonstrated in other situations. For 

example, there is interaction between NO and PG in bone formation. McAllister et al. [33] 

found that shear stress stimulated NO, PGE2, and PGI2 production, within 1 h of stimulation 

of osteoclast precursor cells. In addition, shear stress stimulated mouse bone cells to produce 

NO and PGE2 [34,35]. The increase in NO [34,35] and PGE2 [34] production was inhibited 

by NOS antagonists, thus suggesting interaction between NO and PGs in stimulation of bone 

formation.

The goal of this paper was to test the hypothesis that PGs are also involved in triggering the 

liver regeneration cascade and to investigate the interaction between NO and PGs in this 

triggering role. The c-fos mRNA expression index is used as a tool to evaluate, in a 

screening manner, potential therapeutic approaches that may be directed to stimulate liver 

regeneration. Results indicate that inhibition of COX by indomethacin results in inhibition of 

c-fos mRNA expression 15 min after PHX. In addition, under conditions where either NO or 

PG production is blocked, the inhibition of c-fos mRNA expression can be reversed by either 

PGs or NO donors. This suggests that both NO and PGs are required for c-fos mRNA 

expression to increase after PHX, and that, in the absence of one, excess exogenous supply 

of the other can compensate. These findings also suggest that NO and PGs may be potential 

therapeutic targets for potentiation of the liver regeneration cascade.

Experimental procedures

Animals

Male Sprague–Dawley rats, 250 g, were fed standard laboratory chow ad libitum until the 

day before the experiment, when they were fasted for 8 h and fed for 2 h prior to 

experimentation. Animals were treated according to the guidelines of the Canadian Council 

on Animal Care and all protocols were approved by the Ethics Committee on Animal Care 

at The University of Manitoba.

Surgical preparation

Male Sprague–Dawley rats were anesthetized using sodium pentobarbital. Tracheotomy was 

performed, and cannulae were placed in the femoral artery, femoral vein, and portal vein for 

infusion of drugs and anesthetic. Laparotomy was performed and the animal was allowed to 

stabilize for 30 min. Drug or saline was then administered, and 2/3 PHX (resection of the 

left lateral and median lobes of the liver, as described by Higgins and Anderson [36]) or 

sham procedures were performed. The remnant liver was then removed after 15 min and 

immediately frozen on dry ice for RNA analysis.

In the first set of experiments, the NOS antagonist, L-NAME, was employed. Rats were 

divided into the following experimental groups: sham, PHX, sham + L-NAME, PHX +L-

NAME, sham+L-NAME + PGE2, PHX+ L-NAME+PGE2, sham+ L-NAME+PGI2, PHX 

+L-NAME+PGI2, sham+ L-NAME+SIN-1, PHX +L-NAME+SIN-1, sham+L-NAME+s-

nitroso-n-acetyl-penicillamine (SNAP), and PHX+L-NAME+SNAP. In addition, a second 

set of experiments, using the COX antagonist, indomethacin (INDO), included the groups: 

sham, PHX, sham+INDO, PHX+INDO, sham+ INDO + PGE2, PHX + INDO + PGE2, sham 
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+ INDO +PGI2, PHX + INDO+PGI2, sham+INDO+SIN-1, PHX+ INDO +SIN-1, sham + 

INDO + SNAP, and PHX +INDO+SNAP.

Drugs

L-NAME (Sigma) (5 mg/kg, i.v., 0.5 ml bolus infused over 2 min), a non-selective NOS 

antagonist, was dissolved in saline, and the rat was allowed to stabilize for 10 min following 

administration. The NO donors, SIN-1 (5 mg/kg) (Alexis Corp.) and SNAP (5 mg/kg) 

(Sigma), were also dissolved in saline, and a 0.2 ml bolus was infused intraportally over 2 

min. Indomethacin (INDO; 7.5 mg/kg) (Sigma) was dissolved in 5% sodium bicarbonate 

and a 0.2 ml bolus was infused intravenously over 2 min. PGE2 (10 μg/kg) (Sigma) and 

PGI2 (10 μg/kg) (Sigma) were dissolved in 95% ethanol in a stock solution, and diluted with 

the appropriate amount of saline to achieve the desired concentration. A 0.1 ml bolus of 

either PG was infused intraportally over 1 min. PHX or sham procedures were performed 

immediately following NO donor or PG administration.

RNA isolation and Northern blot analysis

RNA analysis has been previously described [8]. Briefly, total RNA was extracted using a 3 

M/6 M lithium chloride/urea solution, centrifuged at 25,000 rpm for 20 min at 4 °C, and 

total RNA was extracted using phenol/chloroform. The concentration of the RNA was then 

determined and 20 μg of total RNA was separated by gel electrophoresis under denaturing 

conditions, transferred to nylon membrane, and fixed by UV cross-linking. The membranes 

were prehybridized at 42 °C for 3 h in prehybridization buffer, and c-fos mRNA was 

detected using a 1.8 kb cDNA probe labeled by the random prime method, with α-dCTP 32P. 

The membranes were hybridized overnight at 42 °C, washed at 65 °C, exposed to film, and 

the density of the c-fos mRNA band was determined by densitometry. c-Fos mRNA 

expression is reported relative to 18S rRNA. Results were analyzed using ANOVA, with p < 

0.05 deemed significant.

Results

The interaction between NO and PGs in the liver regeneration cascade was investigated 

using the NOS antagonist, L-NAME, the COX antagonist, INDO, the NO donors, SIN-1 and 

SNAP, and the PGs, PGE2 and PGI2. The increase in c-fos mRNA expression after PHX 

(1.82 ± 0.16, n = 5, p < 0.01 vs. sham, n = 5, 0.53 ± 0.03) (Fig. 1) was inhibited by the NOS 

antagonist, L-NAME (0.62 ± 0.09, n = 5, NS from sham). The inhibition by L-NAME was 

reversed by the PGs, PGE2 (1.95 ± 0.32, n = 7, p < 0.001 vs. sham) and PGI2 (1.78 ± 0.24, n 
= 8, p < 0.01 vs. sham), and by the NO donors, SIN-1 (1.70 ± 0.17, p < 0.01 vs. sham, n = 9) 

and SNAP (1.64 ± 0.26, n = 7, p < 0.05 vs. sham). In addition, L-NAME had no effect on c-

fos mRNA expression in normal, non-PHX livers (0.47 ± 0.08, n = 6, NS from sham). 

Neither PGE2 (0.68 ± 0.04, n = 4), PGI2 (0.90 ± 0.06, n = 5), SIN-1 (0.98 ± 0.24, n = 4) nor 

SNAP (0.87 ± 0.05, n = 7) administered after L-NAME had any effect on c-fos mRNA 

expression compared to normal livers in sham rats. Therefore, the NOS antagonist, L-

NAME, inhibits c-fos mRNA expression after PHX, and PGE2, PGI2 or the NO donors, 

SIN-1 or SNAP, reversed the inhibition.
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c-Fos mRNA expression increased after PHX (2.12 ± 0.40, n = 5, p < 0.001 vs sham (0.65 

± 0.09)), which was inhibited by INDO, a COX antagonist (1.03 ± 0.07, n = 7, NS vs. sham) 

(Fig. 2). The inhibition tended to be reversed by PGE2 (1.52 ± 0.23, n = 6), although the 

trend was not significantly different from sham, and fully reversed by PGI2 (1.96 ± 0.18, n = 

6, p < 0.001 vs. sham). The NO donors, SIN-1 and SNAP, also reversed the inhibition of c-

fos mRNA expression after INDO (2.20 ± 0.17, n = 5, p < 0.001 and 2.09 ± 0.28, n = 6, p < 

0.001, respectively). c-Fos mRNA expression in the normal, non-PHX liver was neither 

affected by INDO (0.58 ± 0.08, n = 5, NS from sham) nor by INDO followed by PGE2 (0.81 

± 0.15, n = 4), PGI2 (0.96 ± 0.06, n = 6), SIN-1 (0.44 ± 0.04, n = 6), or SNAP (0.66 ± 0.09, 

n = 6). The increase in c-fos mRNA expression was not affected by the ethanol-saline 

vehicle in which PGE2 and PGI2 were dissolved (data not shown). Thus, inhibition of PG 

production by COX inhibits c-fos mRNA expression, an index of the initiation of the liver 

regeneration cascade, and this inhibition can be reversed by administration of either PGI2 or 

a NO donor.

Discussion

Prostaglandins and the liver regeneration cascade

The inhibition of the increase in c-fos mRNA expression after PHX by L-NAME (a NOS 

antagonist) is reversed by PGE2, PGI2 or a NO donor (SIN-1 or SNAP). Also, the increase in 

c-fos mRNA expression is inhibited by INDO (a COX antagonist). This inhibition is 

reversed by PGI2 or the NO donors, SIN-1 or SNAP. Thus, under conditions where either 

NO or PG production is blocked, the inhibition of c-fos mRNA expression can be reversed 

by either PGs or NO donors. This suggests that both NO and PGs are required for c-fos 

mRNA expression to increase after PHX, and that, in the absence of one, excess exogenous 

supply of the other can compensate.

Previous experiments suggested an interaction between NO and PGs in triggering the liver 

regeneration cascade, using proliferative factor production after PHX as an index of 

initiation of the liver regeneration cascade. Briefly, proliferative factors include all the 

growth factors, cytokines, etc., produced after PHX that comprise the liver regeneration 

cascade. Proliferating factor production was found to increase, peaking 4 h after PHX [14]. 

This increase was inhibited by L-NAME and the inhibition was partially reversed by L-

arginine, the substrate for NOS [13]. Administration of indomethacin also inhibits 

proliferating factor production 4 h after PHX [22], suggesting that both NO and PGs play a 

role in triggering the liver regeneration cascade. In the case of both indices, c-fos mRNA 

expression and proliferating factor production, it appears that inhibition of NO or PG 

synthesis completely blocks the index, which indicates that NO and PG production appear to 

have an important role in the liver regeneration cascade.

An additional index of initiation of the liver regeneration cascade, liver weight restoration 

after PHX, was also investigated [13]. Inhibition of NOS caused a 30% reduction in liver 

weight restoration 48 h after PHX, and was also associated with a high mortality rate that 

was found not to be due to L-NAME itself [22]. Blockade of NOS prior to PHX was also 

shown to inhibit DNA synthesis in vivo [37]. Other studies have also implicated PGs in liver 

weight restoration [38]. Inhibition of COX by indomethacin causes a decrease in DNA 
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synthesis and delays liver regeneration after PHX [27,28]. Thus, both NO and PGs are an 

integral part of both the triggering and propagation mechanisms of the liver regeneration 

cascade.

Mechanism of NO and PG release in the liver regeneration cascade

As discussed above, the liver does not control inflowing blood from the intestine and must 

accept all the portal venous inflow. Removal of 2/3 of the liver tissue results in a threefold 

increase in the blood flow-to-liver mass ratio in the remaining 1/3 of the liver [5], and 

evidence is presented that this increase in blood flow causes shear stress (reflected as an 

immediate increase in PVP), and the release of NO, which thereby triggers the liver 

regeneration cascade.

It is also hypothesized that PG production is a result of the same shear stress-dependent 

mechanism that causes NO release. PGE2 and PGI2 are known to increase after PHX [25–

27], with PGI2 increasing threefold immediately after PHX [26]. NO and PGI2 are vaso-

active mediators, released in response to an increase in flow, and thereby shear stress, in 

blood vessels [30,39]. Also, NO, PGI2, and PGE2 are released in response to shear stress 

applied in vitro [29–32,40], and release of these mediators was shown to be proportionate to 

the amount of shear stress applied [30,39]. PVP, an index of shear stress in the liver, 

increases after PHX [8], indicating that shear stress is increased in the liver, along with the 

increase in the blood flow-to-liver mass ratio.

Interaction between NO and PGs

NO production causes an increase in cGMP, which stimulates c-fos mRNA expression in 

fibroblasts [18] and PC12 cells [41]. PG production causes an increase in cAMP, which 

thereby causes an increase in c-fos mRNA expression in macrophages [42] and osteocytes 

[43]. Thus, an increase in either cGMP or cAMP stimulates c-fos mRNA expression, and 

after PHX, both of these second messengers may be required to stimulate c-fos mRNA 

expression. However, in the absence of NO, and therefore cGMP, it is possible that 

administration of excess exogenous PGs caused an increase in the amount of cAMP, thereby 

stimulating c-fos mRNA expression. Similarly, in the case of COX inhibition, the provision 

of excess exogenous NO could cause an increase in cGMP, thereby stimulating c-fos mRNA 

expression after PHX. Thus, in this manner, excess amounts of NO or PGs could 

compensate for the absence of actions of the other in situations of either NOS or COX 

inhibition.

There are several examples of interaction between NO and PGs in other tissues. For 

example, under normal, non-shear stress conditions, NO stimulates PG production in 

endothelial cells in vitro. Endothelial NO production stimulates PGI2 production, possibly 

by directly activating COX, and inhibition of NOS and guanylate cyclase (GC) reduced 

levels of PGI2 [44]. However, under conditions of shear stress, inhibition of NOS or GC 

resulted in an increase in PGI2 production in endothelial and smooth muscle cells 

undergoing shear stress [45,46]. Thus, when NOS was inhibited, in vitro endothelial cell 

production of PGI2 increases and the excess amount of this PG could compensate for the 

absent effects of NO. In addition, shear conditions caused an increase in eNOS expression 
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and activity in endothelial cells, which was potentiated by the COX antagonist, 

indomethacin [47]. Gastric eNOS is also upregulated in conditions of decreased PGE2 

production and COX inhibition [48]. This suggests that in the absence of PGs, endothelial 

cell NO production increases and the excess amount of NO could compensate for the lack of 

effects of PGs. Thus, c-fos mRNA expression could be restimulated under conditions of 

NOS inhibition after PHX, by excess amounts of PGs, or under conditions of COX 

inhibition after PHX, by excess amounts of NO.

However, the results from these studies suggest that endogenous production of either NO or 

PGs cannot compensate for the loss of the other, although provision of excess exogenous 

NO or PGs does result in a compensatory effect. Reversal of the inhibition of c-fos mRNA 

expression in either case occurs only when adequate levels of exogenous NO or PGs are 

provided. It may be possible, however, that the compensatory mechanism takes some time to 

upregulate, and therefore c-fos mRNA expression is merely delayed after PHX. This seems 

unlikely, though, since c-fos mRNA expression after PHX is still inhibited by L-NAME at 

60 min after PHX [8]. Thus, NO and PGs seem not to compensate for the absence of the 

other endogenously, at least with regard to c-fos mRNA expression, and/or within the 

limited time frame examined after PHX. However, this situation would seem to provide an 

excellent therapeutic opportunity by administration of exogenous NO donors or the PGs, 

PGE2 or PGI2, to stimulate the liver regeneration cascade. As an initial screening tool the 

expression of c-fos is straightforward and can direct development of therapeutics which then 

must also be confirmed to not only activate the regeneration cascade but also result in the 

ultimate goal of stimulating the end target, liver mass restoration.
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Fig. 1. 
c-Fos mRNA expression after PHX and NOS inhibition. The inhibition of c-fos mRNA 

expression by L-NAME after PHX can be reversed by PGE2, PGI2 or the NO donors, SIN-1 

or SNAP (data shown as means ± SEM).
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Fig. 2. 
c-Fos mRNA expression after PHX and COX inhibition. c-Fos mRNA expression increases 

after PHX, and this increase is blocked by INDO, a COX antagonist. The inhibition is 

reversed by PGI2, or the NO donors, SIN-1 or SNAP. In addition, these results also provide 

evidence that there is interaction between NO and PGs in triggering the liver regeneration 

cascade (data shown as means ± SEM).
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