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Abstract

Background: In humans, ageing causes skeletal muscles to become atrophied, weak, and easily fatigued. In rodent studies,
ageing has been associated with significant muscle atrophy and changes in the contractile properties of the muscles.
However, it is not entirely clear whether these changes in contractile properties can occur before there is significant
atrophy, and whether males and females are affected differently.

Methods and Results: We investigated various contractile properties of whole isolated fast-twitch EDL muscles from adult
(2–6 months-old) and aged (12–22 months-old) male and female mice. Atrophy was not present in the aged mice.
Compared with adult mice, EDL muscles of aged mice had significantly lower specific force, longer tetanus relaxation times,
and lower fatiguability. In the properties of absolute force and muscle relaxation times, females were affected by ageing to a
greater extent than males. Additionally, EDL muscles from a separate group of male mice were subjected to eccentric
contractions of 15% strain, and larger force deficits were found in aged than in adult mice.

Conclusion: Our findings provide further insight into the muscle atrophy, weakness and fatiguability experienced by the
elderly. We have shown that even in the absence of muscle atrophy, there are definite alterations in the physiological
properties of whole fast-twitch muscle from ageing mice, and for some of these properties the alterations are more
pronounced in female mice than in male mice.
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Introduction

Ageing in humans is accompanied by diminished function of the

musculoskeletal system [1]. Between the ages of 40 and 80 years,

muscle mass declines by 30 to 50% in both men and women [2].

This is accompanied by a decrease in muscle strength [3–4], an

increase in fatiguability [5], and an increase in the susceptibility to

contraction-induced damage [2]. The resulting impairments in

mobility can lead to an increased risk of falls and declining quality

of life [6–7].

The mechanisms underlying age-related deterioration in motor

performance are complex and involve neural factors (both central

and peripheral) and muscle-related factors [8]. One advantage of

studying the effects of ageing in animals, rather than humans, is

the ability to more easily differentiate between neural and muscle-

related factors [9]. In vitro preparations of whole isolated muscle

remove the influence of neural factors, so that age-related changes

can be attributed to changes within the muscle tissue itself. They

also allow more accurate quantitation of parameters such as

muscle mass and cross-sectional area than can be achieved in

human studies.

As in humans, studies on rodents indicate a significant degree of

muscle atrophy with advancing age. A decline in the mass of

hindlimb muscles from aged rodents has been observed by various

investigators [10–15]. However, the onset of atrophy appears to be

at a rather advanced age. Brown & Hasser [11] observed that

significant falls in the mass of rat hindlimb muscles occurred only

after 28 months of age. In mice, significant decreases in muscle

mass have been reported at ages of 26–27 months [10] to 34–37

months [12]. Assuming an average lifespan of around 36 months

in rats [16] and 30 months in mice [17], these results suggest that

atrophy only becomes significant in the final 20% or so of the

rodent lifespan.

Along with muscle atrophy, muscles of rodents undergo various

changes in contractile characteristics with advancing age. There

are age-related declines in total force, force per unit cross-sectional

area, or both [10–16,18–19]. This appears to be a result of both

the loss of muscle mass and a loss in the intrinsic force-generating

capacity of the muscle. Ageing is also associated with a slowing of

muscle contraction and relaxation, with longer twitch contraction

times [11,18] and longer twitch half-relaxation times [10–11]. This

could be partly due to the shift in fibre type distribution from fast

(type II) to slow (type I) fibres that has been reported in the muscles

of ageing rodents [11,20–22]. Ageing muscle is also more

susceptible to contraction-induced injury. When ageing muscles

are subjected to eccentric contractions (contractions with stretch),

they experience greater damage than muscles from younger

animals [14–15,23].
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It is not entirely clear whether such changes in the contractile

properties of ageing muscle are a consequence of the muscle

atrophy, or whether they in fact occur before there is a significant

loss of skeletal muscle tissue. Our aim in this present study,

therefore, is to investigate the contractile function of whole isolated

muscles from aged mice before the onset of significant muscle

atrophy. We examine the following muscle parameters: mass,

cross-sectional area, force, twitch and tetanus relaxation, force-

frequency relationships, fatiguability, force loss following eccentric

contractions, and stiffness. In our study, the aged mice are 12–22

months old. Significant muscle atrophy most likely occurs at a later

age than this, as described above. By comparing the contractile

properties of our aged mice with those of adult mice (2–6 months

old), we aim to see whether there are any age-related changes in

these contractile properties and whether these changes occur

before muscle atrophy becomes established.

The muscle chosen for the study was the fast-twitch extensor

digitorum longus (EDL) muscle from the hindlimb. This muscle

was chosen because, as described above, there appears to be a shift

towards slower-twitch characteristics in ageing muscle. As the

EDL muscle is composed almost entirely of fast-twitch (type II)

fibres [24], one would expect that shifts towards slower-twitch

properties would be more apparent in this muscle. Additionally,

the EDL muscle is more prone to eccentric damage than muscles

containing a high proportion of slow-twitch fibres, such as the

soleus [25], possibly because the larger diameter of fast-twitch

fibres makes them more vulnerable to damage during contractile

activity [26]. Hence by choosing the EDL it may be easier to

detect differences in eccentric damage with age.

In this study we will examine muscles from both male and

female mice. Previous studies on the contractile properties of

ageing rodent whole muscle have examined only males [10–

14,16,18] or females [15,19]. To our knowledge, our present study

is the first to examine muscles of both male and female mice under

identical experimental conditions. It is important to compare

males and females as there is evidence that ageing affects the

muscles of male and female rodents differently, possibly because of

hormonal factors [19].

Methods

Ethics statement
Use of animals was approved by the Animal Care and Ethics

Committee of the University of New South Wales (Ethics approval

number ACEC 08/119A). All animals were anaesthetised with

halothane and sacrificed by cervical dislocation.

Animals used
To assess mass, cross-sectional area, force, twitch and tetanus

relaxation, force-frequency relationships, and fatiguability, we

used a set of male and female 129/ReJ mice divided into two age

groups: adult (2–6 months of age) and aged (20–22 months of age).

To assess eccentric contractions and muscle stiffness, we used a

separate group of male C57BL/10 mice divided into two age

groups: adult (2 months of age) and aged (12 months of age).

Muscle preparation
The extensor digitorum longus (EDL) muscle was dissected from

the hindlimb, then tied by its tendons to a force transducer (World

Precision Instruments, Fort 10; sensitivity 2200 mV/V/g, resonant

frequency 300 Hz) at one end and a fixed metal hook at the other,

using silk suture (Deknatel 6.0). It was placed in a bath

continuously superfused with Krebs solution, with composition

(mM): 4.75 KCl, 118 NaCl, 1.18 KH2PO4, 1.18 MgSO4, 24.8

NaHCO3, 2.5 CaCl2 and 10 glucose, with 0.1% fetal calf serum

and continuously bubbled with 95% O2–5% CO2 to maintain pH

at 7.4. The muscle was stimulated by delivering a supramaximal

current between two parallel platinum electrodes, using an

electrical stimulator (A-M Systems). At the start of the experiment,

the muscle was set to the optimum length L0 that produced

maximum twitch force. All experiments were conducted at room

temperature (,22uC to 24uC).

Twitch parameters
The muscle was stimulated with a supramaximal pulse of 1 ms

duration and the resulting twitch recorded. The twitch data was

smoothed by averaging the raw data over 2.5 ms intervals, and

from the resulting smoothed data the time-to-peak (time taken to

reach peak twitch force) and half-relaxation time (time taken to

relax to half of peak twitch force) were obtained.

Force-frequency curve
A force-frequency curve was obtained by delivering 500 ms

stimuli of different frequencies (2, 15, 25, 37.5, 50, 75, 100, 125

and 150 Hz), and measuring the force produced at each frequency

of stimulation. A 30 second rest was allowed between each

frequency. A curve relating the muscle force P to the stimulation

frequency f was fitted to these data. The curve had the following

equation [27]:

P~Pminz
Pmax{Pmin

1z
Kf

f

� �h

The values of r2 for the fitting procedure were never lower than

99.3%. From the fitted parameters of the curve, the following contrac-

tile properties were obtained: maximum force (Pmax), half-frequency

(Kf), Hill coefficient (h) and twitch-to-tetanus ratio (Pmin/Pmax).

Tetanus relaxation
Tetanus relaxation consists of a slow linear phase followed by a

fast exponential phase. The linear phase is the easier to interpret as

relaxation during this phase is homogeneous along the fibre,

whereas in the exponential phase some parts of the fibre are

lengthening and others are shortening [28]. In our measurements,

the start of the linear phase was defined to be the point at which

force began to fall following cessation of stimulation. Linear

regression was then performed between this point and all

subsequent points. The point at which the linear regression began

to yield an r2 of less than 98.5% was defined to be the end of the

linear phase. We used the duration of this linear phase and the rate

of force decline over this phase as measures of the rate of

relaxation following a tetanus. The tetanus analysed was the 125-

Hz tetanus from the force-frequency curve. Following the fatigue

protocol (described in ‘‘Fatigue’’ below), a second force-frequency

curve was obtained and the 125-Hz tetanus from this curve was

also analysed.

Fatigue
Muscles were given a one-second, 100-Hz tetanus every

2 seconds over a period of 30 seconds. The decline in 100-Hz

force was tracked over this time as an indication of muscle

fatiguability.

Mass and cross-sectional area
At the end of the experiment, the muscle was removed from the

bath. The tendons were trimmed and the muscle was lightly

Ageing in EDL Muscle
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blotted on filter paper and then weighed to obtain wet muscle

mass. An estimate of the cross-sectional area was obtained by

dividing the muscle’s wet mass by the product of its optimum

length and the density of mammalian muscle (1.06 mg/mm3) [29].

Eccentric contractions
In a separate group of mice, EDL muscles were subjected to an

eccentric contraction protocol. Muscles were prepared as

described in ‘‘Muscle preparation’’ above. The optimum length

L0 was 11.760.3 mm in muscles from adult mice and

13.060.0 mm in muscles from aged mice (P = 0.0189). Prior to

the eccentric contractions, a force-frequency curve was generated

as described in ‘‘Force-frequency curve’’ above. The eccentric

contraction protocol was then performed. At time = 0 ms, the

muscle was stimulated by supramaximal pulses of 1 ms duration

and 100 Hz frequency. At time = 750 ms, after it had attained its

maximum isometric force, the muscle was stretched at a speed of

1 mm/s until it was 15% longer than its optimum length, held at

this length for 2 seconds, then returned at the same speed to its

original position. The electrical stimulus was stopped at time =

5000 ms. This eccentric contraction was performed 3 times, at

intervals of 5 minutes. Twenty minutes after the final eccentric

contraction, the setting of the optimum length L0 was repeated. In

all muscles, L0 was the same before and after eccentric

contractions. A second force-frequency curve was then obtained,

and the force deficit was calculated as the percentage fall in Pmax

between the first and the second force-frequency curves.

Statistical analyses
Data are presented as Mean 6 S.E.M.. All statistical

comparisons between adult and aged mice were made using

two-tailed t-tests, with the exception of the eccentric contraction

and muscle stiffness data, where Mann-Whitney tests were used

due to smaller sample sizes. Statistical significance was defined as

P,0.05. All statistical tests and curve fitting were performed using

a standard statistical software package (GraphPad Prism Version 5

for Windows, GraphPad Software, San Diego California USA).

Results

Mass and cross-sectional area
Figure 1 shows the mass (A) and cross-sectional area (B) of

EDL muscles from adult and aged male and female mice. In

males, the muscles of aged mice had 27% greater mass (P,0.0001)

and 21% larger cross-sectional area (P,0.0001) than muscles from

adult mice. In females however, mass and cross-sectional area

were not significantly different between adult and aged mice.

Maximum forces
Figure 2 shows the maximum absolute force (A) and the

maximum specific force (B) generated by the EDL muscles of

adult and aged male and female mice. Absolute forces in males

were no different between adult and aged mice. In females,

muscles from aged mice showed a 7.2% lower absolute force

compared with adult mice (P = 0.0069). Muscles from aged

animals generated significantly lower specific force than muscles

from adult animals, in both males and females. The difference was

13% in males (P,0.0001) and 13% in females (P = 0.0016).

Twitch parameters
Figure 3 shows twitch time-to-peak (A) and half-relaxation

time (B) for EDL muscles from adult and aged male and female

mice. In males, time-to-peak was 1.9 ms longer in muscles from

aged animals compared with muscles from adult animals (P =

0.0003). No differences in half-relaxation time were observed

between adult and aged animals, for either males or females.

Tetanus relaxation
Figure 4 shows our analysis of relaxation following tetanic

stimulation in the EDL muscles of adult and aged male and female

mice. Relaxation following tetanic stimulation generally occurs in

two phases – an initial phase where force declines linearly,

followed by a faster phase where force declines exponentially [28].

The intial linear phase is easier to interpret in terms of muscle

relaxation [28] and hence this is the phase we have chosen to

analyse. (A) is a recording of tetanus relaxation in two EDL

muscles from our sample, showing muscle force in the final stages

of stimulation and the initial stages of relaxation. Regression lines

have been drawn to indicate the linear phase of relaxation. We

measured the duration and slope (rate of force decline) of this

linear phase, both before and after subjecting our sample of

muscles to a fatiguing stimulation protocol (see Methods for fatigue

protocol). The results for duration are shown in (B) and the results

for rate of force decline are shown in (C).

In unfatigued muscles, there were no significant differences

between adult and aged animals in the duration of the linear

Figure 1. Mass and cross-sectional area. In males, EDL muscles of
aged animals had higher mass (A) and cross-sectional area (B) than
muscles from adult animals. In females, there were no significant
differences between adult and aged animals.
doi:10.1371/journal.pone.0012345.g001
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phase. However, in females, the rate of force decline was

significantly lower in aged than in adult mice (P = 0.0004). In

fatigued muscles, the duration of the linear phase was significantly

longer in aged than in adult animals, in both males (P = 0.0201)

and females (P = 0.0258). Also, in fatigued muscles of females, the

rate of force decline was significantly lower in aged than in adult

mice (P = 0.0015).

Force-frequency curve
Figure 5 shows the force-frequency curves for EDL muscles

from adult and aged mice, for males (A) and females (B). In males,

the force-frequency curve for aged mice is shifted upwards at low

frequencies compared with the curve for adult mice, reflecting a

higher twitch-to-tetanus ratio in aged mice (22.560.7% for aged,

19.360.4% for adult, P,0.0001). In females, the force-frequency

curve for aged mice is shifted leftwards compared with the curve

for adult mice, reflecting a lower half-frequency in aged mice

(49.760.9 Hz for aged, 53.661.4 Hz for adult, P = 0.0350).

Fatigue
Figure 6 shows the decline in 100-Hz force in EDL muscles

during a stimulation protocol consisting of a 1-second, 100-Hz

tetanus given every 2 seconds over a period of 30 seconds. In both

males (A) and females (B), force declines less rapidly in muscles

from aged animals than in muscles from adult animals, indicating

a greater fatigue resistance in muscles from aged animals. At the

end of the 30-second protocol, muscles of aged animals were able

to generate a significantly higher percentage of their pre-fatigue

force than muscles of adult animals (males – 54.261.3% for aged,

43.861.1% for adult, P,0.0001; females – 49.261.2% for aged,

43.560.7% for adult, P = 0.0009).

Eccentric contractions and muscle stiffness
In a separate group of mice, we examined the susceptibility of

EDL muscles to damage from a mild eccentric contraction

protocol of 15% strain. An example of an eccentric contraction is

shown in panel (A) of Figure 7. The muscle is first stimulated to

contract isometrically at its optimal length. While stimulation

continues, it is then stretched by 15% of its optimum length, and

held in this stretched position. Stimulation is then stopped and the

muscle returned to its original length. 3 such eccentric contractions

were performed for each muscle.

Figure 2. Maximum forces. In females, EDL muscles of aged animals
had lower absolute force (A) than muscles from adult animals. Specific
force (B) was lower in aged compared with adult animals, in both males
and females.
doi:10.1371/journal.pone.0012345.g002

Figure 3. Twitch parameters. Time-to-peak (A) was longer in EDL
muscles of aged male mice than in adult male mice. There were no
differences in twitch half-relaxation time (B) between aged and adult
mice, in either males or females.
doi:10.1371/journal.pone.0012345.g003

Ageing in EDL Muscle
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As an indicator of muscle damage, we measured the force deficit,

which is the percentage drop in force following the eccentric

contractions. The results are shown in (B). Muscles of adult animals

experienced virtually no drop in force following the eccentric

contractions. However, aged animals lost 3263.4% of their original

force, suggesting a greater susceptibility to eccentric contraction-

induced damage in aged compared with adult animals (P = 0.0159).

As an indicator of muscle stiffness, we measured the change in

force as the muscle was lengthened during the first eccentric

contraction. Force was expressed as a percentage of the isometric

force before stretching, and length was expressed as a percentage

of optimum length. The results are shown in (C). For every 1%

increase in length, there was a 3.860.2% increase in force in

muscles from adult animals, and a 4.760.2% increase in force in

muscles from aged animals. Hence muscles from aged animals had

greater stiffness than muscles from adult animals (P = 0.0317).

Analysis of ramp phase of eccentric contractions
The observed difference in whole muscle stiffness between adult

and aged animals could arise from differences in contractile

Figure 4. Tetanus relaxation. (A) shows force recordings of the tetanus for two EDL muscles in our sample. It shows the final stages of the period
of stimulation, and the initial stages of relaxation. It can be seen that force declines linearly in the initial stages of relaxation. In the muscle that relaxes
more slowly (dashed line), this linear phase has a longer duration and a reduced steepness of slope compared with the faster-relaxing muscle (full
line). We examined this linear phase both before and after subjecting the muscles to a fatiguing stimulation protocol. The duration of the linear phase
is shown in (B) and the steepness of the slope of this linear phase is shown in (C).
doi:10.1371/journal.pone.0012345.g004

Figure 5. Force-frequency curves. Force-frequency curves for EDL muscles from adult and aged animals are shown in (A) for males and (B) for
females. In males, the force-frequency curve in aged animals is shifted upwards at low frequencies, reflecting a significantly higher twitch-to-tetanus
ratio than in adult animals. In females, the force-frequency curve for aged mice is shifted leftwards, reflecting a significantly lower half-frequency than
in adult animals.
doi:10.1371/journal.pone.0012345.g005
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Figure 6. Fatigue. The time course of force decline during 30 seconds of fatiguing stimulation is shown in (A) for males and (B) for females. It can be
seen that in both males and females, EDL muscles from aged animals fatigued less rapidly than muscles from adult animals. At the end of the 30-
second fatigue protocol, muscles from aged animals were able to generate a significantly higher percentage of their pre-fatigue force than muscles
from adult animals. (Error bars are within thickness of symbols.)
doi:10.1371/journal.pone.0012345.g006

Figure 7. Eccentric contractions and stiffness. In a separate group of mice, EDL muscles were subjected to a mild eccentric contraction
protocol. (A) is an example of an eccentric contraction, showing the change in force and length as the muscle is stretched by 15% of its optimal
length L0, then returned to resting length. 3 such eccentric contractions were performed for each muscle. (B) shows the force deficits following these
eccentric contractions. Force deficits in aged mice were significantly higher than in adult mice. As an indicator of muscle stiffness, we also measured
the percentage change in force for every 1% change in length during the stretch phase of the eccentric contraction. The results are shown in (C). The
change in force was significantly higher in aged than in adult mice, indicative of greater stiffness in the muscles of aged mice.
doi:10.1371/journal.pone.0012345.g007
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proteins, or from differences in non-contractile components such

as titin or the extracellular matrix. To investigate whether the

contractile proteins contribute to the observed age-related change

in muscle stiffness, we analysed the ramp phase of the first

eccentric contraction in each muscle. This is the phase during

which the muscle is being stretched. The way in which the force

changes during this phase is a reflection of the crossbridge

interactions between the contractile proteins actin and myosin

[30–32].

Our analysis is shown in Figure 8. Panel (A) shows the ramp

phase of the first eccentric contraction in one muscle from our

sample. It shows changes in force (full line) and length (dotted line)

as the muscle is being stretched. The dashed line is the slope (first

derivative) of the force-time curve. The slope can be seen to

change over three stages: I, in which the slope declines; II, in

which the slope remains constant and in some cases increases; and

III, in which the slope declines again. Between each stage is a

transition point (T1 and T2).

The transition points identified here are qualitatively similar to

those described by other authors. An abrupt reduction in the slope

of the force-time curve, likely to correspond to T2 in Figure 8(A),

has been observed in rat flexor hallucis brevis (FHB) [31], frog

sartorius [30] and cat soleus [32]. It is thought that this transition

represents the point at which strained crossbridges are forcibly

detached. Up to this point, the tension rise is due to the

crossbridges being increasingly strained as the muscle is stretched;

past this point, the tension rise is due to non-crossbridge

components within the muscle [30,33]. Flitney & Hurst [30] and

Pinniger et al. [31] also identify a point of inflection in the force-

time curve prior to T2 being reached. It is likely that this

corresponds to T1 in Figure 8(A), and it is thought to arise from

myosin heads undergoing a reverse power stroke as the muscle is

stretched [33].

Hence differences in transition points between muscles could

indicate that there are differences in the nature of the crossbridge

interactions, such as the ability of the crossbridges to resist

Figure 8. Analysis of ramp phase of eccentric contractions. The diagram in (A) shows the change in force (full line) and length (dotted line) as
the muscle is stretched during an eccentric contraction. The dashed line is the slope (first derivative) of the force-time curve. The plot of slope exhibits
three distinct phases, and each phase is separated by a transition point (T1 and T2). For each muscle, we measured the force and length at T1 and T2.
The results are shown in the graphs on the right. There were no significant differences between adult and aged animals in either the force (B) or
length (C) at which the transition points occurred.
doi:10.1371/journal.pone.0012345.g008
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stretching. We therefore determined T1 and T2 in each muscle,

using the approach outlined in Figure 8(A), and recorded: (i) the

muscle length at which T1 and T2 occurred (as a percentage of

optimum length); and (ii) the muscle force at which T1 and T2

occurred (as a percentage of isometric force).

The results are shown in panel (B) for muscle length and panel

(C) for muscle force. No significant differences were found

between the muscles of adult and aged animals in either the length

or the force at which their transition points occurred. This suggests

that crossbridge interactions between the contractile proteins was

not a contributor to the observed difference in whole muscle

stiffness between adult and aged mice.

Discussion

In humans, ageing causes skeletal muscles to become atrophied,

weak, fatiguable, and easily damaged by eccentric contractions [2].

In this study we have examined the contractile properties of

isolated fast-twitch EDL muscles to see whether such changes

occur in the muscles of aged male and female mice.

Muscle atrophy
Muscle atrophy was not present in our aged mice. In females,

muscle mass and cross-sectional area were no lower in aged mice

than in adult mice, while in males these parameters were actually

higher in aged mice than in adult mice (Figure 1). Our aged mice

were 19–22 months old. Hence it appears that at this age, muscle

atrophy has not yet become established. Indeed, it has been

reported that significant atrophy in rat hindlimb muscles does not

start until 28 months of age [11] (about the final 20% of the

average lifespan). Studies that have observed a lower EDL mass in

aged mice than in younger (3–6 month-old) mice have used mice

that were older than those in our study (26–27 months old in

Brooks & Faulkner [10]; 34–36 months old in Pagala et al. [12]).

The age of the mice in our study was thus appropriate for

investigating whether the contractile properties of EDL muscle

change before there is significant muscle atrophy.

Even though the muscles of our aged mice were not atrophied

compared with the muscles of adult mice, we still found age-

related changes in EDL contractile characteristics. We found a fall

in force-generating capacity, a shift towards slower-twitch

characteristics, and a reduction in fatiguability. These changes

occurred in the absence of any reduction in muscle mass or cross-

sectional area.

Fall in force-generating capacity
There was a decline in the force-generating capacity of EDL

muscle with age. Absolute force decreased with age in the muscles

of adult females (Figure 2A), while specific force (force per unit

cross-sectional area) decreased with age in both males and females

(Figure 2B). These results suggest that muscle weakness in the

elderly may not be due solely to atrophy, but there is an age-

related decline in the intrinsic force-generating capacity of the

muscle itself.

The decline in muscle specific force with age is a highly

consistent finding among studies on rodents [10–11,13–16]. The

loss of force per unit cross-sectional area may be partly due to an

increase in the amount of extracellular non-contractile tissue in

skeletal muscles with age [13]. However, the specific force of

individual fibres also declines with age [9,34–35], suggesting that

the loss of muscle force is also due to factors intrinsic to the muscle

fibres themselves. Possible factors include: structural alterations to

myosin [36], changes in actin-myosin crossbridge kinetics [35],

and impairments in excitation-contraction coupling [34,37–38].

Shift towards slower-twitch characteristics
We found changes in EDL muscle that suggest an age-related

shift towards slower-twitch characteristics. In males, the time-to-

peak of the twitch was longer in aged mice compared to adult mice

(Figure 3A). Relaxation following a tetanus was also slower in aged

mice than in adult mice. Our analysis of the linear phase of tetanus

relaxation (Figure 4) showed that this linear phase lasted longer in

aged mice than in adult mice (Figure 4B), and the rate of force

decline during this phase was lower in aged compared to adult

mice (Figure 4C), although this difference in decline rate was

found in females only. The force-frequency curve for EDL muscles

of females (Figure 5B) was also shifted to the left in aged mice,

which is a change characteristic of slower-twitch muscles. The

force-frequency curves of slow-twitch muscles are shifted to the left

of those for fast-twitch muscles since twitches in slow-twitch

muscles summate at lower frequencies [18]. Our twitch, tetanus

and force-frequency data thus present an overall picture of EDL

muscles becoming more slow-twitch in nature with increasing age.

Other studies have also reported a shift towards slower-twitch

characteristics with advancing age [11,18–19]. One possible

reason for the development of slower-twitch characteristics is the

reduction in the proportion of fast fibres, especially type IIb fibres,

and accompanying increase in the proportion of slow fibres that

has been reported to occur in ageing muscle [22]. This appears to

be due in part to the denervation of fast fibres and their

reinnervation by axonal sprouting from slow fibres [20–21].

Additionally, the slower relaxation of the aged muscles in our

study could also be due to a reduced rate of Ca2+ uptake by the

sarcoplasmic reticulum (SR) [39], and indeed SR Ca2+-ATPase

activity has recently been shown to be reduced in aged rat

diaphragm muscle [40]. Mechanically skinned fibres from aged

EDL mice also show impaired excitation-contraction coupling and

impaired Ca2+ release from the SR [41], which would lead to a

slower twitch response.

It is interesting that the age-related slowing of muscle contractile

properties in our study was more pronounced in the female mice

than in males. The age-related reduction in tetanus decline rate

(Figure 4C) and left-shifting of the force-frequency curve

(Figure 5B) were found only in females. The more pronounced

effects of ageing on our female mice compared to our male mice

may be due to falling levels of ovarian hormones. Ovarian failure

occurs at around 11 to 16 months of age in mice [42], and so the

aged female mice in our study were post-ovarian failure. Various

studies (reviewed in Lowe et al. [42]) have demonstrated that falling

ovarian hormone levels have a detrimental effect on muscle

strength in rodents, through mechanisms such as reducing the

fraction of strong-binding myosin during contraction [43–44], and

indeed in our study we observed a loss of absolute muscle force in

aged females but not in aged males (Figure 2A). It is possible that,

as well as affecting muscle strength, declining hormone levels also

have an impact on the twitch and tetanus characteristics of a

muscle.

Reduced fatiguability
In humans, ageing usually causes people to feel fatigued more

quickly when performing everyday tasks [2,5]. In rodents also,

ageing results in poorer endurance ability in activities such as

treadmill running and swimming [12]. It is interesting, therefore,

that in our study we found a reduced fatiguability of EDL muscles

with age. In both males and females, the rate of force decline

during a 30-second fatigue protocol was significantly less in

muscles of aged mice than in muscles of adult mice (Figure 6). In

reconciling these results with the experience of increased

fatiguability in aged humans and aged mice, a distinction must
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be made between central fatigue, which is due to decreased

activation from the central nervous system (CNS), and peripheral

fatigue, which is due to factors within the skeletal muscles

themselves [45]. There is evidence that much of the increased

fatiguability in elderly humans [46–48] and aged mice [12] is

actually due to an increase in central fatiguability with age. This

may involve reduced supraspinal drive [49] due to degradation

and reduced excitability of cortical motoneurons [50–51].

As our isolated muscle procedure removes any CNS effects, our

results clearly demonstrate that there is a reduction in the

peripheral fatiguability of the EDL muscle with age. These results

are in accord with those of Brown & Hasser [11] who also found

reduced fatiguability in aged EDL rodent muscle, and with human

studies which show that peripheral fatigue may develop more

slowly in the elderly [46–47].

The reduced peripheral fatiguability of ageing muscle may be

due to the loss of fast-twitch muscle fibres and their replacement

by slow-twitch muscle fibres which are more resistant to fatigue

[20–21]. Gonzalez & Delbono [52] found that the fatiguability of

individual fibres from mouse EDL muscle does not change

significantly with age, suggesting that the reduced fatiguability of

ageing whole muscle may be due to changes in fibre type

composition, rather than changes within the muscle fibres

themselves. Likewise, Brown & Hasser [11] found a reduced

fatiguability of rat EDL muscle with age and an accompanying

reduction in the proportion of the fibre area occupied by type IIb

fibres.

When whole isolated muscles are subjected to intense, repeated

stimulation, as they were in this study, K+ can accumulate within

the lumen of the t-tubules, leading to a rise in extracellular [K+]

and a reduction in membrane excitability [53]. Hence it is possible

that some of the force decline observed during our fatigue protocol

was caused by a loss of membrane excitability. Thus the smaller

force decline in our aged muscles could also reflect an age-related

increase in the densities of the Na+/K+ ATPase in the t-tubule

membrane. However, further studies would be needed to

determine if there are in fact any differences in t-tubular Na+/

K+ ATPase densities with age.

Eccentric contractions
In humans, ageing is associated with increased muscle damage

following eccentric contractions [2]. Incomplete recovery from

contraction-induced muscle injury is likely to be one contributor to

the loss of muscle mass and force with ageing [14–15]. In a

separate group of mice, we compared the loss of force in EDL

muscles of adult and aged mice immediately following a mild

eccentric contraction protocol of 15% strain (Figure 7). While this

protocol did not damage muscles of adult mice, it caused a force

deficit of about 30% in aged mice (Figure 7B). This indicates an

increased susceptibility of ageing muscle to eccentric contraction-

induced injury. Moreover, the aged mice in the eccentric

contraction experiments were 12 months old. This is well before

the onset of muscle atrophy (as discussed above), so the increased

susceptibility to contraction-induced damage occurs well before

there is a significant loss of muscle mass. Our results are consistent

with those of Brooks & Faulkner [23], who found that EDL

muscles from aged mice experienced higher force deficits than

muscles from younger mice for any given level of work input.

Single permeabilised fibres from EDL muscles of aged rats also

show higher force deficits than fibres from younger rats following

eccentric contractions [23,54].

To investigate whether differences in muscle stiffness might be

contributing to ageing muscle’s increased susceptibility to

contraction-induced damage, we estimated muscle stiffness by

the change in force occurring for a given length change during the

stretch phase of the eccentric contractions. We found that, for a

given change in length, muscles from aged mice experienced a

larger change in force than muscles from adult mice (Figure 7C),

indicating that ageing is associated with an increase in active

muscle stiffness. This may contribute to the age-related increase in

muscle damage as a stiffer muscle is less compliant and less capable

of absorbing mechanical strains during eccentric contractions.

All muscles were stretched at a velocity of 1 mm/s. Expressed in

terms of fibre lengths per second (Lf/s), this equates to a velocity of

0.2060.01 Lf/s in adult mice and 0.1760.00 Lf/s in aged mice,

assuming a fibre length to muscle length ratio of 0.44 [55].

Because the change in force during an eccentric contraction is

dependent on stretch velocity (in Lf/s) [55], it might be argued that

the different velocities of stretch in adult and aged mice may have

confounded our estimate of muscle stiffness. However, a higher

velocity (in Lf/s) actually leads to a larger change in force [55], so if

the muscles of aged mice had been stretched at the same velocity

(in Lf/s) as the muscles of adult mice, it is likely that we would have

observed an even greater change in force in the aged muscles.

Hence the difference in estimated muscle stiffness between adult

and aged mice may be even greater than what we have reported.

The greater stiffness of whole muscle in our aged mice could

arise from changes in actin-myosin crossbridge properties, or from

changes in non-contractile components such as titin or the

extracellular matrix. To investigate whether crossbridge interac-

tions during eccentric contractions were any different between

adult and aged mice, we analysed the stretch (ramp) phase of the

eccentric contractions (Figure 8). We identified two transition

points in the slope of the force-time relationship (Figure 8A). As

explained in the Results, these transition points are likely to reflect

the properties of actin-myosin crossbridges. There were no

differences between the muscles of adult and aged mice in either

the force or the length at which these transition points occurred

(Figure 8B), indicating that, during eccentric contractions, actin-

myosin crossbridge properties were similar in both adult and aged

mice. Hence the increased stiffness of the aged EDL muscles in our

study was probably due to an increased stiffness of non-contractile

components such as titin or the extracellular matrix.

Of the two transition points, the second point (referred to here

as T2) is the one more consistently observed in other studies [31].

In our muscles, T2 occurred when force had reached around

140% of isometric force, which is comparable to other studies [30–

31]. However, the length at which T2 occurred in our muscles

(about 110% of optimum length) was greater than the 101%–

102% observed by Pinniger et al. [31] in rat FHB and Flitney &

Hirst [30] in frog sartorius. We used a highly objective,

quantitative method to determine the transition points from our

force tracings (by taking the first derivative of the force-time

curve), as opposed to the other studies where the transition points

were determined by visual inspection, and by our method we did

not observe any transition points at 101%–102% of optimum

length. The discrepancy in this value between our study and other

studies is most likely due to different compliances of the muscles

tested and of the experimental setups.

Conclusion
Our study has shown that even in the absence of muscle

atrophy, there are definite alterations in the physiological

properties of whole fast-twitch muscle from ageing mice. In these

muscles, ageing is associated with a fall in force production per

unit cross-sectional area and a shift towards slower-twitch

properties, evidenced by a slowing of relaxation and reduced

fatiguability. For absolute force and muscle relaxation, age-related
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changes appeared to affect female mice to a greater extent than

male mice, possibly due to hormonal factors. Ageing was also

associated with an increased susceptibility to muscle damage

induced by eccentric contractions. These findings provide further

insight into the muscle atrophy, weakness and fatiguability

experienced by the elderly.
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