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Abstract
Aging is accompanied by a general dysregulation in immune system function, commonly referred
to as ‘immune senescence’. This progressive deterioration affects both innate and adaptive
immunity, although accumulating evidence indicates that the adaptive arm of the immune system
may exhibit more profound changes. Most of our current understanding of immune senescence
stems from clinical and rodent studies. More recently, the use of nonhuman primates (NHPs) to
investigate immune senescence and test interventions aimed at delaying/reversing age-related
changes in immune function has dramatically increased. These studies have been greatly
facilitated by several key advances in our understanding of the immune system of old-world
monkeys, specifically the rhesus macaques. In this review we describe the hallmarks of immune
senescence in this species and compare them to those described in humans. We also discuss the
impact of immune senescence on the response to vaccination and the efficacy of immuno-
restorative interventions investigated in this model system.

INTRODUCTION
Aged individuals suffer greater morbidity and mortality from infectious diseases than adults
(High, 2004). This increased susceptibility is believed to be due to age-related changes in
immune function, often referred to as immune senescence, a term first coined by Dr. Roy
Walford (Walford, 1969;Effros, 2005; McElhaney and Effros, 2009;). Although changes in
both the innate and the adaptive arms of the immune system have been described, most
studies to date suggest that innate immunity is better preserved than adaptive immunity
(Weiskopf et al., 2009). The innate immune arm includes mucosal barrier surfaces as well as
monocytes, dendritic cells (DCs), and natural killer (NK) cells. These cells serve as the first
line of defense against pathogens and play a critical role in the activation of the adaptive
immune response. Studies have suggested that aging is associated with increase permeability
of mucosal barriers, decreased phagocytic activity of macrophages and DCs, reduced NK
cell cytotoxcicty, and dys-regulated production of soluble mediators such as cytokines and
chemokines (Weiskopf et al., 2009). These alterations could lead to increased pathogen
invasion and poor activation of the adaptive immune response mediated by T and B-
lymphocytes.
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Immunosenescent changes in the adaptive immune arm include: (1) a loss of naïve T cells
and a shift towards memory phenotype T cells, especially highly differentiated memory CD8
T cells, (2) a decrease in CD4:CD8 T cell ratio, (3) a loss of T cell repertoire diversity, (4) a
reduction in B cell numbers in peripheral blood, and (5) a decreased diversity of the B cell
repertoire. Immune senescence is also accompanied by increased systemic inflammation
believed to contribute to the development and/or exacerbation of several age-related diseases
such as Alzheimer’s, atherosclerosis, sarcopenia, diabetes, osteoporosis, and rheumatoid
arthritis (De Martinis et al., 2005; Graham et al., 2009; Larbi et al., 2008; Vasto et al., 2007;
Wagner et al., 2004; Wikby et al., 2006). However the interplay between chronic disease
and increased inflammation is still unclear.

Immune senescence has been traditionally examined in mouse models, which offer the
distinct advantages of an extensive set of tools, the presence of genetically modified strains,
and a short life span that allows for longevity studies. More recently, nonhuman primates
(NHP) have emerged as a new leading translational model to study various aspects of human
aging. NHPs used in biomedical research can be classified into two broad groups: old world
monkeys (macaques) and new world monkeys, which include marmosets and squirrel
monkeys. Macaques represent the major NHP resource for biomedical research and have
served as invaluable models for human infectious diseases (Gardner and Luciw, 2008).

NHP models of human aging offer some distinct advantages over rodent models based on
their genetic and biologic similarity to humans. For instance, co-morbidity patterns in aging
monkeys closely mirror those seen in humans including the development of age-related
diseases such as diabetes, hypertension, pancreatic and neurologic amyloid deposition, and
atherosclerosis. These diseases only appear in rodents with genetic manipulation. On the
other hand, the appearance of these diseases in NHP is increased with age and with the
consumption of a western diet, as described for humans (Register, 2009; Shively and
Clarkson, 2009; Wagner et al., 2006). Another advantage of NHPs is their larger size, which
allows longitudinal and cross-sectional assessments of multiple organ systems. Furthermore,
NHPs are susceptible to either human pathogens or simian pathogens that bear significant
homology to human infectious agents (Gray, 2004; Kennedy et al., 1997). Consequently,
NHPs reproduce characteristics and functional sequelae of diseases seen in humans. Thus,
the use of aged NHP to both understand and test innovative solutions to promote health
during the aging process is increasing. For instance, studies have demonstrated that a
decrease in NK cell cytolytic activity correlates strongly with a shortened lifespan in rhesus
macaques, thereby serving as a useful biomarker for longevity (Coe and Ershler, 2001). In
this review, we will summarize the current understanding of immune senescence in NHPs
with a special emphasis on rhesus macaques and compare it to the hallmarks of human
immune senescence. Finally, we will discuss interventions aimed at delaying or reversing
immune senescence that have been recently tested in NHPs.

1. T CELL SENESCENCE IN RHESUS MACAQUES
a) Loss of naïve T cells

In both humans and NHP, CD4+ and CD8+ T cells can be broadly divided into three major
subsets: naïve (Na), central memory (CM), and effector memory (EM). These subsets have
been delineated in humans and NHP by the expression patterns of the cell surface markers
CD28 and CD95 (Hsu et al., 2006; Pitcher et al., 2002) as follows: naïve (CD28intCD95neg),
CM (CD28posCD95pos) and EM (CD28negCD95pos) (Fig. 1A). An additional marker, CCR7
can be used to identify a fourth subset within the CM population
(CD28posCD95posCCR7neg) believed to contain CM T cells in the process of differentiating
into EM (Picker et al., 2006). Several studies have shown that as individuals age, CD28neg T
cell populations accumulate, especially within the CD8 T cell subset, reaching significant

Haberthur et al. Page 2

Exp Gerontol. Author manuscript; available in PMC 2011 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



proportions in the aged (Sansoni et al., 2008; Vallejo, 2005). The preferential accumulation
of CD28neg cells within the CD8 subset may be due to the higher turnover rate of the CD8 T
cells compared to CD4 T cells (Vallejo, 2005). Several studies have shown that a significant
portion of these cells are specific for the persistent herpesvirus cytomegalovirus (CMV)
(Koch et al., 2007) and although some data suggest that they may play a role in controlling
CMV viral burden (Derhovanessian et al., 2009), high frequencies of CD28neg cells have
also been associated with the poor responses to influenza vaccines (Saurwein-Teissl et al.,
2002; Trzonkowski et al., 2003) and increased inflammation (Vallejo et al., 2004).

Several phenomena are believed to contribute to the loss of naïve T cells. Decreased
production of hematopoietic stem cells in the bone marrow leads to decreased migration of
early T cell progenitors to the thymus, which in turn leads to thymic atrophy and a decline in
naïve T cell production (Chen, 2004). Another factor that contributes to naïve T cell loss is
accelerated conversion of naïve T cells into memory T cells due to increased turnover
(dubbed homeostatic proliferation). Using expression of Ki67 (a nuclear protein up-
regulated with entry into cell cycle) to determine the frequency of cycling naïve and
memory CD4+ T cells, it was shown that homeostatic proliferation, dramatically increases
in individuals 70 years of age and older (Naylor et al., 2005). The increase in homeostatic
proliferation in both T cell subsets was inversely related to the amount of thymic output.
These data suggest that the progressive loss of naïve T cell production might trigger an
increase in naïve T cell turnover, which increases their conversion to memory T cells and
hastens loss of naïve T cells (Naylor et al., 2005). Further, a life-long exposure to chronic/
persistent herpesviruses, notably CMV leads, to a continuous conversion of naïve T cells to
antigen-experienced memory T cells (Nikolich-Zugich, 2008).

Similarly, aging in rhesus macaques is accompanied by a severe loss of naïve T cells and a
concomitant shift towards memory T cells, especially terminally differentiated EM CD28neg

CD8 T cells (Jankovic et al., 2003; Pitcher et al., 2002). As described for humans, aged
rhesus macaques (> 18 years of age) experience thymic involution and an increase in
homeostatic proliferation that is inversely linked to the frequency of naïve T cells (Cicin-
Sain et al., 2007). These studies utilized in vivo bromodeoxyuridine (BrdU) as well as the
expression of Ki67 to measure the kinetics of T cell proliferation. BrdU incorporation and
Ki67 expression were both elevated in peripheral aged naïve T cells compared to adult naïve
T cells, indicative of increased homeostatic proliferation (Cicin-Sain et al., 2007). As
previously described for aged humans, the rate of proliferation was inversely related to the
frequency of naïve T cells. Further, CD8 T cells in rhesus macaques have a propensity to
undergo more rounds of divisions than CD4 T cells (Jankovic et al., 2003; Pitcher et al.,
2002). Since extinction of CD28 expression correlates with the number of divisions, this
observation could explain the selective accumulation of CD28neg cells within the CD8
subset in rhesus macaques (Jankovic et al., 2003).

b) Decreased CD4:CD8 ratio
Another hallmark of immune senescence is a decrease in the CD4:CD8 T cell ratio, which
falls from ~2 to less than 1 in the most severe cases (Pawelec et al.). This decrease is
believed to be due to expansion of terminally differentiated memory CD8+ T cells, rather
than a loss of CD4 T cells. The enlarged CD8+ EM T cell pool is believed to be largely due
to the lifelong persistent CMV infection (Koch et al., 2007). Additional studies suggest that
another persistent herpesvirus, Epstein-Barr virus (EBV), may also play a role in promoting
the accumulation of terminally differentiated CD8 T cells thereby contributing to the
reduced CD4:CD8 ratio (Wikby et al., 2005).

One study in rhesus macaques has shown that when CD8 T cells are defined based on
coincident staining with anti-CD3, the CD4:CD8 ratio in young juvenile animals is ~2
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(Dykhuizen et al., 2000). This study also showed that the CD4:CD8 ratio progressively
declines in rhesus macaques between 2 months and 5 years of age with no further decline
detected between 5 and 7 years of age (Dykhuizen et al., 2000). Unfortunately, no studies to
date have documented changes in the CD4:CD8 ratio with increasing age. We have
investigated this question by carrying out a cross-sectional analysis of the rhesus macaque
colony at the Oregon National Primate Research Center (ONPRC). We measured CD4 and
CD8 T cell frequencies using an anti-CD8β antibody (a marker exclusively expressed on
CD8 T cells) in peripheral blood mononuclear cells (PBMC) obtained from juvenile (1–4
years), adult (7–15), and aged (18–30 years) animals. All the animals were housed indoors
and free of overt disease. As described previously (Dykhuizen et al., 2000), we also found
that the CD4:CD8 ratio declines early in life and that after 7 years of age no significant
changes are observed (data not shown). However, the relationship between persistent
herpesviruses and the CD4:CD8 ratio in aged rhesus macaques is unclear at this point.
Rhesus CMV (RhCMV) is ubiquitous in most colonies where the majority of animals
seroconvert by 1 year of age (Swack and Hsiung, 1982; Vogel et al., 1994). As described for
humans, RhCMV infection results in the development of large T cell clonal responses
(Bitmansour et al., 2001; Price et al., 2008). However, careful analysis of the CMV status
(antibody titer, frequency of antigen specific T cells) and how it correlates with the
CD4:CD8 ratio not yet been carried out in rhesus macaques.

c) Altered Cytokine production
Although a vast literature describes the impact of aging on cytokine production by T cells,
these studies have been controversial with some reporting a decrease in inflammatory
cytokine production while others describing an increase or no change (Gardner and
Murasko, 2002; Hobbs and Ernst, 1997). These seemingly contradictory results stem from
differences in the health status of the subjects, tissue sources, T cell stimuli, readout
methodologies and types of cytokines. Despite these differences, there are trends that
suggest that T cell inflammatory cytokine production increases with age in humans. Early
studies showed that T cells from aged individuals secrete higher levels of the pro-
inflammatory cytokines IL-6, TNF-α and IFN-γ following long stimulations (24–72 hrs)
with phorbol 12-myristate 13-acetate (PMA) (McNerlan et al., 2002; O’Mahony et al., 1998;
Sandmand et al., 2003). Later studies using CD8+ T cells purified from PBMC obtained
from healthy young and old individuals also showed an age-related increase in both type-1
(IFNγ, IL-2, TNFα) and type-2 (IL-4, IL-6, IL-10) cytokines in response to PMA
stimulation (Zanni et al., 2003). More specifically, the number of central and effector
memory CD8+ T cells producing type-1 and type-2 cytokines was increased (Zanni et al.,
2003). On the other hand, studies investigating CD4+ T cell cytokine production in response
to PMA showed a decrease in the frequency of IFNγ, and TNFα-producing cells and an
increase in IL-4-producing cells (Alberti et al., 2006). Thus, in the case of CD4 T cells,
aging seems to result in a shift from type-1 to type-2 cytokine production profile (Alberti et
al., 2006). T cell cytokine profiles in the elderly were also influenced by CMV status
(Almanzar et al., 2005). More specifically, T cells from CMVneg donors showed increased
production of IL-2, IL-4 and IFNγ with age. On the other hand, T cells from CMVpos

individuals only showed an increased in IFNγ production with age and no changes in IL-2
and IL-4 production were detected compared to CMVneg young and middle aged individuals
(Almanzar et al., 2005). Thus chronic CMV infection not only modulates T cell
homeostasis, but also T cell cytokine production. It is possible that the lack of increase of
IL-2 and IL-4 production in CMVpos donors in the face of increased IFNγ production could
contribute to inflammatory processes in the elderly.

In contrast to the vast literature describing cytokine production by human PBMC/T cells,
very few studies have examined the impact of age on T cell cytokine production in NHP.
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LPS or PHA stimulation of whole blood or purified PBMC from rhesus macaques showed
an age-related increase in IL-10 and IL-6, a decrease in IFNγ production and no change in
IL-1β or TNFα production by cytokine ELISA (Mascarucci et al., 2001; Mascarucci et al.,
2002). However, in these studies, cytokine production was determined by ELISA in tissue
culture supernatant and therefore the exact contribution of T cells to cytokine production is
unknown. More recent studies specifically investigated the impact of age on T cell
production of IFNγ and TNFα by splenocytes from neonate (>1 year old), juvenile (1–3 year
old), adult (5–10 year old), and aged animals (>18 years old) using intracellular cytokine
staining (ICS) following anti-CD3 stimulation (Jankovic et al., 2003). Data from these
studies showed an age-related increase in the frequency of IFNγ- and TNFα-secreting T
cells primarily amongst the CD8+ EM T cell population. Unpublished studies from our
laboratory have shown the same phenomenon using PBMC instead of splenocytes.
However, more experiments need to be carried out to investigate age-related changes in type
2 cytokines such as IL-4, IL-6 and IL-10 in NHPs and the impact of CMV status on age-
related changes in cytokine production in rhesus macaques.

d) Reduced T cell proliferation
Immune senescence results in decreased T cell proliferative capacity as measured by the
ability of the T cells to respond to polyclonal stimulation (Miller, 2000). This decreased
proliferative potential is believed to be due in part to the accumulation of terminally
differentiated CD28neg T cells, which have severely shortened telomeres (Nociari et al.,
1999) as well as impaired ability to induce telomerase (Valenzuela and Effros, 2002) and are
therefore impaired in their ability to proliferate (Effros et al., 2005). Similar studies in rhesus
macaques have shown that the ability of T cells to proliferate in vitro in response to
polyclonal stimulation, such as anti-CD3, is reduced in aged rhesus macaques (>18 years of
age) compared to adult monkeys (5–10 year old) (Jankovic et al., 2003). Not only was the
percentage of cells that enter cell cycle reduced but the number of divisions was also
reduced. Thus, as described for humans, aging leads to decreased T cell proliferation
capacity in rhesus macaques.

3. IMPACT OF AGING ON B CELL HOMEOSTASIS
Aging is also associated with a decline in B cell function and the antibody response is
substantially impaired. Until recently, this decline was attributed to reduced T cell help.
However, it has become clear that the B cell compartment undergoes several significant
intrinsic changes with age that are independent from changes in T cell compartment
(Ademokun et al.; Cancro et al., 2009; Frasca and Blomberg, 2009). It is widely accepted
that B cell numbers decline with age (Frasca et al., 2008) partly due to a decline in B cell
precursor numbers. For instance, a study that examined the presence of B cell precursors in
patients ranging from 2 months to 92 years of age found that despite a wide variation at all
ages, statistical analysis showed a distinct decrease in B cell precursors with increasing age
(McKenna et al., 2001). The data regarding B cell subsets is less clear. Circulating B cells
can be divided into subsets based on the expression of IgD and CD27: naïve (IgD+CD27−),
marginal-zone like (IgD+CD27+) and isotype-switched memory (IgD−CD27+) B cells
(Colonna-Romano et al., 2008). There is some evidence that aging results in the
accumulation of memory B cells at the expense of naïve B cells (Colonna-Romano et al.,
2006; Colonna-Romano et al., 2008). Regardless of changes in subset frequency, aging is
accompanied by a significant decrease in the B cell repertoire diversity, which correlates
strongly with frailty (Gibson et al., 2009). B cell homeostasis in NHP has not been widely
investigated. Unpublished data from our lab indicate that similar to what has been observed
in older humans, both male and female aged rhesus macaques (>18 year old) have fewer
circulating B cells in peripheral blood than adult animals (5–10 year old) and that the
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frequency of antigen experienced CD27+ (memory and marginal-zone like) B cells increases
with age (data not shown).

2. INFLAMMATION IN THE OLD RHESUS MACAQUE
Several observations suggest that aging in humans is associated with an increase in
proinflammatory plasma cytokine levels, specifically IL-6 and TNFα, a phenomenon that
has been termed “Inflammaging” (Franceschi et al., 2000). However, these findings have
been rather controversial. While some studies have reported an increase (Donato et al.,
2008), others have reported no changes and that most cytokines were below detection
threshold (Hasegawa et al., 2000). These differences are most likely due to differences in the
health of the subjects studied. IL-6 levels for instance correlate strongly with several chronic
diseases such as Alzheimer disease (AD), atherosclerosis, type-2 diabetes, sarcopenia, and
osteoporosis as well as increased morbidity and mortality in the elderly (Bruunsgaard, 2002;
Ershler and Keller, 2000; Huang et al., 2005). Moreover, it is unclear whether the increased
systemic inflammation contributes to or is the consequence of age-related diseases.

One study in rhesus macaques indicated that old female monkeys had higher plasma levels
of TNFα and IL-8 concentrations than adult females but no differences in IL-1α, IL-2, or
IL-6 levels were detected in those studies either (Kaack et al., 1998). It is possible that the
elimination of frail animals from most NHP colonies contributes to the maintenance of an
unusually healthy geriatric population that does not display hallmarks of inflammation found
in older humans. Interestingly, another studies showed that the release of IL-6 by endothelial
cells either spontaneously or in response to inflammatory cytokines and hypoxia increases
with age even in healthy aged (>20 year old) animals (Coe, 2004). This area of research is
rapidly expanding given the interest in developing NHP models of sarcopenia, osteoporosis
and atherosclerosis.

3. THE RESPONSE TO VACCINATION IN AGED RHESUS MACAQUES
Changes associated with immune senescence are believed to contribute to increased
morbidity and mortality from infectious diseases. This increased susceptibility is further
exacerbated by the reduced vaccine efficacy observed in the elderly. Few studies have
compared the ability of adult and aged rhesus macaques to respond to vaccines.
Nevertheless, as early as 1987 studies by Ershler W.B. and colleagues showed that
lymphocyte proliferation and antibody production to tetanus toxoid vaccination were
reduced in older monkeys, especially males. In fact, lymphocytes from old male monkeys
responded significantly less to test mitogens than did those of old female or young males
and females (Ershler et al., 1988). Another study also showed a compromised mucosal
immune response followed cholera toxin vaccination (Taylor et al., 1992). Similarly, we
have recently compared the immune response of young and aged female rhesus macaques to
modified vaccinia ankara (MVA) and found that aged macaques experience a decline in
CD8 T cell and antibody responses to MVA vaccine (data not shown). In contrast to these
findings, another recent study found that aged (19–24 year old) baboons generated a more
robust antibody response to a Yersinia antigen than young baboons (Stacy et al., 2008). One
possible explanation for the difference in outcome is that the study by Stacy and colleagues
use 2 ½ year old animals as young controls while previous studies used adult animals (10
year old macaques). Juvenile animals could potentially have an immature immune system
that can result in reduced immune responses to vaccination and/or infection compared to
adult animals.
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5. REJUVENATING THE AGED IMMUNE SYSTEM
Restoring immunity in the elderly would tremendously improve their quality of life. Since it
is generally believed that improving T cell immunity will in turn also result in improved B
cell responses, much of the emphasis over the last few years has centered on improving T
cell function and thymic output in the elderly (Aspinall and Mitchell, 2008). In this section
we will be summarize the findings from various interventions aimed at improving T cell
function in aged individuals.

a) Caloric restriction and delay of immune senescence
Caloric restriction (CR) is the only intervention that results in increased median and
maximal life span in a variety of short-lived species by delaying aging process and the onset
of age-related morbidities (Masoro, 2005). Additional studies suggested that CR could delay
immune senescence in mice (Effros et al., 1991; Grossmann et al., 1990; Spaulding et al.,
1997a, b). Recent studies have investigated whether this phenomenon would hold true for
primates (Messaoudi et al., 2008; Messaoudi et al., 2006). These studies showed that adult
onset CR resulted in the preservation of naïve T cells and T cell repertoire diversity, a
decreased frequency of CM and EM T cells that secreted IFNγ and TNFα in response to
CD3 stimulation, and maintenance of T cell proliferative potential (Messaoudi et al., 2006).
Adult-onset CR (starting at 5–7 years) was also shown to reduce the steady-state plasma
levels of IL-6 in rhesus monkeys (Lane et al., 1995), as well as IL-6 production by PBMC
following LPS stimulation or induction of oxidative damage (Kim et al., 1997). On the other
hand, juvenile-onset CR (initiated at 1–2 years of age) and old-onset CR (initiated after 17
years of age) resulted in accelerated T cell-senescence as indicated by accelerated loss of
naïve T cells, increased production of inflammatory cytokines and reduced T cell
proliferative capacity (Messaoudi et al., 2008). These data suggest that CR can delay
immune senescence but only during an optimal window of time. More recently, data from
the Wisconsin Primate Research Center have shown that CR can delay the onset of several
age-related diseases, including diabetes, neoplasia, and cardiovascular disease in rhesus
macaques (Colman et al., 2009). Moreover, CR reduced age-associated brain atrophy in the
areas responsible for motor and executive function, which would predict an increased
quality in life (Colman et al., 2009). The impact of CR-associated changes in T cell
homeostasis on immune response to vaccination in NHPs is currently being investigated.

b) IL-7 therapy and thymic rejuvenation
IL-7 plays a critical role in the development and maintenance of naïve T cells (Surh and
Sprent, 2008) and thus has been examined as a means for thymic rejuvenation in the elderly.
Studies in rhesus macaques showed that IL-7 treatment induces proliferation of naïve and
central memory CD4+ and CD8+ T cells (Moniuszko et al., 2004) and improves anti-viral T
cell responses during SIV infection (Beq et al., 2006; Leone et al., 2009). Subsequently,
IL-7 treatment was found to increase the peak antibody response to influenza vaccination as
well as frequency of phenotypically activated CD4+ and CD8+ T cells in aged female rhesus
macaques (Aspinall et al., 2007). Recent clinical studies have shown that recombinant
human IL-7 administration results in polyclonal expansion of naïve CD4+ and CD8+ T cells
in patients with nonhematologic, nonlymphoid refractory cancer (Sportes et al., 2008). Thus,
this intervention holds great promise for improving thymic output thereby potentially
delaying/reversing T cell senescence in the elderly.

c) Keratinocyte growth factor
Keratinocyte growth factor (KGF) has also been investigated as means to jump start thymic
function. KGF was initially shown to accelerate T cell reconstitution in mice undergoing
allogenic bone marrow transplantation (Min et al., 2002). Later studies indicated that KGF
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enhanced thymopoiesis and post-natal thymic recovery in young, middle-aged, and aged
mice (Alpdogan et al., 2006). The effects of KGF administration after total body irradiation
and peripheral blood progenitor cell transplantation were recently investigated in rhesus
macaques (Seggewiss et al., 2007). These studies showed that KGF-treated rhesus macaques
had an increased naïve T cell frequency (Seggewiss et al., 2007) by measuring frequencies
of T cell receptor excision circles (TREC), circular DNA fragments deleted as a result of T
cell receptor (TCR) gene rearrangement. Due to the fact that rearrangement of V, D, and J
TCR genes occurs during T cell differentiation, measurement of TRECs provides
information regarding thymic output (Douek et al., 1998). In the experiments performed by
Seggewiss and colleagues, the frequency of TRECs was significantly higher in animals that
had been given multiple doses of KGF (Seggewiss et al., 2007). Interestingly, animals that
received multiple doses of KGF also had the lowest frequency of Ki67+ T cells in peripheral
blood. These results suggest that increased thymic output results in lower homeostatic T cell
proliferation, which in turn would result in decreased conversion of naïve T cells to memory
T cells.

d) Thymosin
Thymosin alpha 1 (Tα1) has been investigated for more than 25 years as a possible solution
for the decreased immune function observed in both the elderly and the immune suppressed.
In early NHP studies female rhesus macaques (18–25 years) were treated with Tα1 or
placebo after being vaccinated against tetanus toxoid (Ershler et al., 1988). Although an
increase in lymphocyte proliferation and NK cells cytotoxic activity was observed in Tα1
treated animals, no significant effect on antibody response to the tetanus vaccine was
observed (Ershler et al., 1988). However, encouraged by the increased lymphocyte
proliferation, Tα1 was recently tested as an adjuvant to influenza vaccination in individuals
aged 65 years and older (Ershler et al., 2007). It was observed that amongst those patients
receiving Tα1 following influenza vaccination, 69% (31/45) had a fourfold increase in
influenza antibody titers compared to 52% (21/40) of the placebo group. In a second trial by
the same group involving 330 elderly volunteers the authors observed only a modest
reduction in the number of influenza cases in the presence of Tα1, but those who developed
influenza showed only mild or nonexistent symptoms compared to the placebo group
(Ershler et al., 2007), suggesting that Tα1 treatment might attenuate disease severity.

CONCLUDING REMARKS
NHP are becoming the leading translational model for investigations into the biology of
aging. Aged NHP display similar co-morbidity patterns as those observed in older humans
including diabetes, loss of cognitive function, menopause and atherosclerosis (Shively and
Clarkson, 2009; Voytko et al., 2009a; Voytko et al., 2009b). Moreover, rhesus macaques
experience a decline in immune function much as described for humans (Jankovic et al.,
2003; Messaoudi et al., 2006; Pitcher et al., 2002). Thus, the advantages of this model are
numerous: the availability of pedigree in many primate centers coupled with the recently
published rhesus macaque genome allows for in depth analyses of heritability and gene-
environment studies; this animal model is amenable to longitudinal as well as cross-
sectional studies; the large size of NHP facilitates extensive assessments of the interactions
between various organ systems. To facilitate the use of this resource, more studies are
needed to fully characterize immune senescence in this model. For instance, very little is
known about age-related changes in B cell homeostasis in this animal model. Moreover, the
impact of CMV infection on the severity of immune senescence, the immune response to
vaccination/infection and the lifespan in this long-lived animal model is unknown. Last but
not least, gender differences in immune senescence have not been investigated.
Nevertheless, as aged primates are becoming more available for such investigations,
researchers can use this invaluable resource to both understand and test creative solutions to
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promote health during the aging process. One such solution could be the manipulation of the
mTOR pathway (via for instance rapamycin), which was recently shown recently to enhance
life span through prevention age-related diseases in genetically heterogeneous mice
(Harrison et al., 2009).
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