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ABSTRACT

DNA methylation is an essential epigenetic mark.
Three classes of mammalian proteins recognize
methylated DNA: MBD proteins, SRA proteins and
the zinc-finger proteins Kaiso, ZBTB4 and ZBTB38.
The last three proteins can bind either methylated
DNA or unmethylated consensus sequences; how
this is achieved is largely unclear. Here, we report
that the human zinc-finger proteins Kaiso, ZBTB4
and ZBTB38 can bind methylated DNA in a
sequence-specific manner, and that they may use
a mode of binding common to other zinc-finger
proteins. This suggests that many other sequence-
specific methyl binding proteins may exist.

INTRODUCTION

DNA methylation is an essential epigenetic mark in
mammals. It is associated with transcriptional repression,
in part because methylated DNA recruits specific proteins,
which themselves act on chromatin and create a repressive
environment (1).

Three families of proteins bind methylated DNA in
mammals (2). The first of these families contains a
domain called methyl-CpG binding domain (MBD) and
comprises MBD1, MBD2, MBD4 and MeCP2. The
second family contains a SET- and Ring finger-associated
(SRA) domain and comprises UHRF1 and UHRF2. The
third family is comprised of three zinc-finger proteins:
Kaiso, ZBTB4 and ZBTB38 (3,4). Kaiso and ZBTB4 are
deregulated in cancer (5,6).

The structural mechanism by which the MBD and SRA
domains interact with methylated DNA has been
elucidated (7,8). In contrast, how the zinc-finger proteins
recognize methylated DNA is unknown. In vitro, Kaiso
binds two types of sequences not only methylated DNA
(4), but also the consensus sequence CTGCNA, named
Kaiso binding sequence (KBS) (9). The KBS does not
contain a CG and cannot be methylated. It is unclear

whether KBS binding and methyl-DNA binding are
related or separate activities of Kaiso. Similarly, ZBTB4
can bind either methylated DNA or the KBS in vitro (3).

Here, we used ZBTB4 as a model to investigate how
human zinc-finger proteins recognize methylated DNA.
We report that ZBTB4 and related proteins bind
methylated DNA in a sequence-specific manner: the nu-
cleotides surrounding the methylated CpG directly con-
tribute to the binding affinity. ZBTB4 also binds a
related sequence in unmethylated DNA, but with lower
affinity. The mode of binding could resemble the canonical
mechanism used by C2H2 zinc-finger proteins. These
findings have implications for the possible targets and
roles of the Kaiso-related proteins. In addition, they
suggest that other zinc-finger proteins might bind
methylated DNA in mammals.

MATERIALS AND METHODS
Plasmids

All the plasmids used are listed in Supplementary
Table S1.

Protein expression in bacteria

GST-Kaiso (ZnF), GST-ZBTB4 (ZnF) and their deriva-
tives were expressed and purified as described (9), except
that 0.5mM IPTG was used for induction. GST-ZBTB38
(ZnF) was induced for 16 h at 18°C with 0.5mM IPTG in
LB medium containing 2% glucose.

SELEX

We used a 49-mer oligonucleotide containing a stretch of
15 random positions (GTTTTCCCAGTCACTAC(N,5)G
TCATAGCTGTTTCCTG).

The initial random oligonucleotide was made
double-stranded by annealing with the oligo SELEX-R
(CAGGAAACAGCTATGAC), and polymerization
by the Klenow fragment of DNA Polymerase I (New
England Biolabs).
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For selections, ~100 ng of GST-ZBTB4 immobilized on
Glutathione beads was incubated for 30 min at room tem-
perature with 1ug of double-stranded random oligo-
nucleotide in 100 pl binding buffer (25mM HEPES pH
7.5, 50mM KCI, 2.5mM MgCl,, 0.1% NP-40, 1uM
ZnSOQy, 5% Glycerol) containing 5pg poly(dl-dC) and
5ug BSA. After five washes with 1 ml of binding buffer,
the bound DNA fragments were extracted with phenol/
chlorofom/isoamyl alcohol, and ethanol precipitated.
These products were then PCR-amplified with the
primers SELEX-F (GTTTTCCCAGTCACTAC) and
SELEX-R. The PCR reaction consists of 95°C for 3 min,
10, 15 or 20 cycles of (95°C for 30, 60°C for 1 min, 72°C
for 30s), followed by 10 min extension at 72°C. The PCR
products were subjected to next round of binding reaction.

The products selected after 10 cycles of binding and
amplification were cloned and sequenced. The sequences
were aligned and the motifs analyzed with Weblogo
(http://weblogo.berkeley.edu/).

Methyl-SELEX

We used a 48-mer oligonucleotide with a fixed central CG,
flanked by random stretches (GTTTTCCCAGTCACTAC
(Ng)CG(Ng)GTCATAGCTGTTTCCTG).

Before selections, the double-stranded DNA was
methylated with the CpG methylase SssI (NEB) for 6h.
Binding, washing and PCR was performed identically to
these steps in our SELEX protocol. After 10 cycles of
selection, the enriched PCR products were cloned and
sequenced.

In trial selections, we saw a rapid enrichment of se-
quences containing tracts of repeated CpGs. As ZBTB4
can bind a single methyl-CpG (3), we sought to eliminate
sequences with repeated CpGs. For this, at each round,
the oligonucleotides were digested for 1 h with the enzyme
BstUI, that cleaves at CGCG. They were then
remethylated by SssI and re-selected.

Electrophoretic mobility shift assay

All the oligonucleotides used in electrophoretic mobility
shift assay (EMSA) are listed in Supplementary Table S2.

Double-stranded oligonucleotides were end-labeled
with y-*P-ATP using T4 polynucleotide kinase (NEB)
and purified on Sephadex-G25 columns (Roche).
Approximately 10ng of GST-fused proteins were
incubated for 15min at room temperature with the
labeled probe in 20pl binding buffer 25mM HEPES
pH7.5, 50mM KCl, 2.5mM MgCl,, 0.1% NP-40, 10 uM
ZnCl,, 5% Glycerol) containing 1 pg poly(dI-dC) (Sigma)
and 1 ng BSA. For competition experiments, proteins were
pre-incubated with unlabeled competitor DNA for 20 min
on ice and then labeled probes were added to the reaction
mixture. The binding mixtures were electrophoresed in
0.5x TBE buffer for 1.5h at 50V in a gel containing
0.5x TBE, 2.5 % Glycerol and 5% acrylamide.

For the chelation experiment, GST-ZBTB4 was
pre-incubated with 3mM 1,10-O-phenanthroline (OPA)
or the corresponding solvent, methanol, for 20 min at
room temperature, before adding back ZnCl, to a final
concentration of 0.2mM or 0.5mM. The mixtures were

then incubated for Smin at room temperature, followed
by incubation with the labeled probes as described above.

In order to rule out major artifacts when using mis-
matched probes, we verified that all mismatched probes
formed duplexes to the same extent (Supplementary
Figure S7).

Quantification of bands was done with the ImageQuant
TL software (GE Healthcare). The competition experi-
ments were performed at least twice, and representative
pictures and accompanied graphs are shown.

Cell transfection

The cells were transfected with Lipofectamine 2000
(Invitrogen).

DNA motif analysis
We used the Weblogo software (10).

RESULTS

ZBTB4 binds to the unmethylated consensus sequence
C€/+GCCATC

First, we sought to identify the preferred binding sites for
ZBTB4 on unmethylated DNA. A recombinant fragment
of ZBTB4 containing the three DNA-binding zinc fingers
was used in a site-selection assay (SELEX) (Figure 1A).
Most sequences recovered after 10 selection cycles con-
tained an 8-nt motif, CC/TGCCATC, which we named
the ZBTB4 binding sequence (Z4BS) (Supplementary
Figure S1 and Figure 1B). Under these experimental con-
ditions EMSAs revealed that ZBTB4 binds both CCGCC
ATC and CTGCCATC, but not a random unselected
oligonucleotide (Figure 1C).

To assess the importance of each position in the Z4BS,
we used an EMSA competition assay. A 200-fold molar
excess of unlabeled Z4BS was sufficient to fully displace
the binding to a labeled Z4BS (Figure 1D). We then tested
different mutant probes present in the same molar excess.
Mutating positions 3 or 4 of the Z4BS, for instance,
severely decreased the competing effect of the oligonucleo-
tide. (Figure 1D). This experiment showed that nucleo-
tides 1 through 7 of the Z4BS contribute to binding,
with larger contributions of positions 3, 4, 6 and 2, in
decreasing order of importance.

The optimal Kaiso binding site, or KBS, is TCCTGC
NA (9). The Z4BS is similar to the KBS (Figure 1B), and
we found that Kaiso can bind both Z4BS sequences CCG
CCATC and CTGCCATC (Supplementary Figures S2
and S6). These data show that the optimal binding site
for ZBTB4 on unmethylated DNA is an 8-nt sequence
that is related to the KBS.

ZBTB4 is a sequence-specific methylated DNA
binding protein

We next asked whether ZBTB4 has a preferred target
on methylated DNA. For this, we modified the
methyl-SELEX (Figure 2A; 11).

Twenty-two independent clones were sequenced after 10
selection cycles. Sixteen contained the consensus
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Figure 1. The optimal binding site for ZBTB4 on unmethylated DNA. (A) The human ZBTB4 protein. The underlined region containing three zinc
fingers (ZF, black rectangles) was used in EMSA experiments. BTB: BTB/POZ domain. (B) The consensus ZBTB4-binding sequence (Z4BS) obtained
by SELEX. The Z4BS resembles the KBS that has been previously reported (9). (C) Validation of the identified consensus by EMSA. The indicated
proteins were used in increasing amounts (2 and 10ng), with the indicated probes. (D) The relative importance of positions within the Z4BS. Nine
unlabeled duplexes (m0-m8), each differing from the Z4BS at a single position, were used in EMSA assay, to outcompete a labeled Z4BS probe.

€/AMGCS/1AT, M being methylated cytosine, that
we named methylation-dependent Z4BS (meZ4BS)
(Figure 2B and Supplementary Figure S3). ZBTB4
bound the methylated consensus sequence CCGCTAT
in EMSA. It also bound this sequence when it
was unmethylated, albeit with lower affinity (Figure 2C).
The last 6 selected clones did not contain a meZ4BS,
and were bound only when methylated (Supplementary
Figure S4). Z4BS and meZ4BS are highly similar
(Figure 2B).

We then tested the effect of mutations in the meZ4BS
(Figure 2D). All the oligonucleotides were 100%
methylated at synthesis. The WT sequence CMGCCAT,
when present at 400-fold molar excess, fully outcompeted
the labeled probe. When position 4, just adjacent to the
meCpG, was mutated (m1 oligo), competition was almost
abolished. Mutating positions 5 or 6 (oligos m2 and m3,
respectively), also affected the competing ability, but to a
smaller extent. This establishes that ZBTB4 recognizes
methylated DNA in a sequence-specific manner: nucleo-
tides outside the methylated CpG increase the binding
affinity. We found that this was also true for ZBTB38§
(Figure 2E).

Finally, we determined the binding preference of
ZBTB4 for the different methylated and unmethylated
targets we had identified. In a competition experiment,
we saw the following order of preference: CMGCCAT
> CTGCCAT > CCGCCAT (Figure 3A). Therefore, the
methylated sequence meZ4BS is the preferred binding
target of ZBTB4 in vitro.

A model for ZBTB4 binding to DNA

Next, we tested the ability of ZBTB4 to bind
hemi-methylated DNA, using a competition assay
(Figure 3B). A probe methylated only on the upper
strand competed as efficiently as a symmetrically
methylated probe, showing that ZBTB4 can discriminate
cytosine methylation on the upper strand, and that
cytosine methylation on the other strand contributes
little. In accordance with this model, a probe methylated
only on the lower strand competed better than
unmethylated DNA, but less well than a probe methylated
on the upper strand. This indicates that methylated DNA
binding by ZBTB4 is not symmetrical.

Next, we asked if ZBTB4 binds DNA in a
zinc-dependent fashion: we chelated Zn>" ions with
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Figure 2. ZBTB4 binds to methylated DNA in a sequence-specific manner. (A) The Methyl-SELEX procedure. (B) The methylation-dependent
ZBTB4-binding site (meZ4BS) identified by Methyl-SELEX, and its alignment with the Z4BS. (C) The MSS8 sequence (CCGCTAT) was
unmethylated or methylated with SssI and used in EMSA analysis with GST or GST-ZBTB4. (D) GST-ZBTB4 was pre-incubated with 50-,
150- or 400-fold molar excess of the indicated unlabeled competitor oligonucleotides, and then incubated with labeled methylated meZ4BS and
used in EMSA. (E) ZBTB38 also binds methylated DNA in a sequence-specific manner. GST-ZBTB38 was used in EMSA as in (D). The oligo-

nucleotides m1, m2 and m3, are the same as in (D).

OPA, then performed EMSA (Figure 4A). Pre-incubation
with OPA abolished the binding of ZBTB4 to both Z4BS
and meZ4BS, and addition of Zn?" restored both.
Therefore, zinc is required for ZBTB4 to bind both
methylated and unmethylated DNA.

The canonical C2H2 protein Zif268 makes the majority
of its contacts to DNA from four positions in each recog-
nition helix: positions —1, +2, +3, and +6 (12). ZBTB4 has
three zinc fingers, so 12 such amino acids, of which six are
highly conserved (Figure 4B and Supplementary Figure
S5). We mutated these to alanine, along with a control,
non-conserved residue in zinc finger 3. Mutating R326A
abolished recognition of the Z4BS and of the meZ4BS in
EMSA (Figure 4C). The mutation of K354 or T376 to
alanine did not have a discernible consequence on
binding to the Z4BS or the meZ4BS. Mutating S323,
L348 or Y351, each modestly reduced binding to the
Z4BS, but had little effect on the binding to the
meZ4BS. The E350A mutation did not affect binding to
the Z4BS, but strongly reduced binding to the meZ4BS.
The corresponding Kaiso mutant (ES35A) still bound the

Z4BS, but also lost to the meZ4BS
(Supplementary Figure S6).

There are two possible causes for the behavior of the
E350A mutation of ZBTB4: this mutation may affect
ZBTB4's ability to directly discriminate methylated C
from C or T; alternatively, it may affect ZBTB4's ability
to recognize the G basepaired to the C in position 2 of the
primary strand. To discriminate these possibilities, we
used mismatched probes. Mutation E350A did not
prevent recognition of a TG/GC mismatched probe
(Supplementary Figure S7). It did however strongly
inhibit recognition of an MG/AC mismatched probe,
from which the guanine is absent.

Although we cannot exclude the possibility that
the some of the effect observed with the mismatched
probes is due to mismatch-induced distortions in
the DNA backbone, these data imply that the
E350A mutation affects ZBTB4's ability to directly
discriminate methylated C from C or T, rather than af-
fecting its ability to recognize the G on the opposite strand
of DNA.

binding
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Figure 3. ZBTB4 has highest affinity for methylated DNA, and its
recognition mode is not symmetrical. (A) GST-ZBTB4 was pre-
incubated with 10-, 50-, 150- or 400-fold molar excess of unlabeled
unmethylated meZ4BS (CCGCCAT), meZ4BS (CMGCCAT) or
Z4ABS (CTGCCAT) and then incubated with labeled meZ4BS and
analyzed by EMSA. (B) GST-ZBTB4 was pre-incubated with 50-,
150- or 400-fold molar excess of the indicated unmethylated competitor
DNA before adding the labeled meZ4BS probe.
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Mutant E350A of ZBTB4 retained a weak capacity to
bind the meZ4BS (Figure 4C), but we found that mutating
the nucleotides flanking the methylated CpG completely
abolished binding (Figure 4D). Collectively, these data
argue that residue E350 of ZBTB4 is critical for
recognizing methylated cytosine when bound to its high
affinity binding site, and that ZBTB4 simultaneously rec-
ognizes flanking sequences via several residues in zinc
fingers (Figure 5).

In vivo relevance of methyl-DNA binding

We next tested whether the ZBTB4 E350A mutant binds
to methylated DNA in vivo. In mouse cells, ZBTB4 local-
izes to chromocenters, the DAPI-dense regions of the
nucleus that contain highly methylated pericentric DNA
(3;Figure 4E, left). In contrast, the E350A mutant of
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ZBTB4 had a diffuse nuclear distribution (Figure 4E,
middle). In a minority of cells, the mutant ZBTB4
formed nuclear speckles, but these never co-localized
with the chromocenters (Figure 4E, right). These results
indicate that E350 is essential for heterochromatin local-
ization in vivo.

DISCUSSION

ZBTB4 is a methyl-binding protein with
sequence specificity

One of our main conclusions is that the human zinc-finger
protein ZBTB4 binds methylated DNA in a sequence-
specific manner. This discovery should be contrasted to
two earlier findings.

RFXI, a protein purified from human placenta, was
shown to bind some methylated sequences, but not
others (13,14). Further experiments showed that the
preferred binding sites of RFX1 are non-methylated con-
sensus sequences containing TG; methylated sequences
are second-tier targets, bound because of the structural
resemblance of methylated cytosine and thymine
(Supplementary Figure S9B). In other words, certain
methylated sequences resemble the optimal RFXI1
binding site and are bound with suboptimal affinity. In
contrast, ZBTB4 binds with highest affinity to methylated
DNA. Replacing methyl-cytosine by a thymine in the
ZBTB4 target yields a sequence that it is still bound by
ZBTB4, but with lower affinity.

The other case of binding methylated DNA with
sequence discrimination is MeCP2, which prefers
methylated sites flanked by A/T tracts (11). The effect is
partly indirect: A/T tracts increase MeCP2 binding in part
by tightening the minor groove (15). The situation of
ZBTB4 is different, as the recognition very likely
involves direct contact between the nucleotides that con-
stitute the recognition site, and the exposed amino acids of
the zinc fingers.

Function and targets of Kaiso-related proteins

We report that the human proteins ZBTB38
(Supplementary Figures S8 and Figure 2E) and Kaiso,
which are related to ZBTB4, also bind methylated DNA
in a sequence-specific fashion. Kaiso strongly binds to a
single methylated site if the optimum flanking sequence is
present (Supplementary Figure S6). In light of this finding,
the original observation that Kaiso needs two consecutive
meCpGs for high-affinity binding (4) could be due to the
absence of an appropriate consensus around the meCpG.
However, our data do not rule out the possibility that
consecutive meCpGs are indeed biologically relevant
high-affinity sites. In fact, our results show that ZBTB4
recognizes DNA methylation mostly on one strand; this is
compatible with a mechanism in which double meCpG
sites are bound by two molecules of Kaiso, each on one
DNA strand.

In contrast to ZBTB4 and ZBTB38, some targets
of Kaiso in vivo are known. Some of these are
unmethylated and bound via the KBS (16,17), whereas
some others are methylated (18,19). Experiments in
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Figure 4. ZBTB4 residues involved in DNA recognition. (A) To chelate zinc ions, GST-ZBTB4 was incubated with OPA. Zinc was added back at
0.2 or 0.5mM of ZnCl,. The mixtures were then incubated with labeled Z4BS (CTGCCAT) or meZ4BS (CMGCCAT) probes and analyzed by
EMSA. (B) Alignment of the four key positions (+1, +2, +3 and +6) in the zinc fingers of human ZBTB4, Kaiso and ZBTB38. The underlined
residues were mutated in ZBTB4. The numbers indicate the amino-acid position in human ZBTB4. (C) The ZBTB4 mutants were used in EMSA
with Z4BS (CTGCCAT; upper) or meZ4BS (CMGCCAT; lower) probes. The E350A mutant has normal binding to the Z4BS, but is severely
affected for binding to methylated DNA. (D) Wild-type or E350 mutant ZBTB4 were used in EMSA analysis with labeled meZ4BS (CMGCCAT),
mutated meZ4BS (CMGCCCT), Z4BS (CTGCCAT) and unmethylated meZ4BS (CCGCCAT). (E) NIH3T3 cells were transfected with GFP-ZBTB4
or GFP-ZBTB4 (E350A). DNA was stained with DAPI (top row), and green fluorescence recorded (bottom row).
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Figure 5. Summary of the binding data and interpretation. (A) Two
components contribute to the binding of ZBTB4 to an optimal site: the
E350 residue is necessary for recognition of the methylated cytosine
(black lollipop), while other positions in the zinc fingers recognize the
flanking sequences of methylated DNA. (B) Because its affinity for
methylated cytosine is high, ZBTB4 can bind methylated DNA even
if the flanking sequence is suboptimal. (C) ZBTB4 can also recognize
thymine instead of methylated cytosine, but with lower affinity. The
E350A mutant of ZBTB4 has lost affinity for methylated cytosine,
but maintains the recognition of flanking sequences (D). It cannot
bind to methylated DNA lacking the optimal flanking sequence (E),
but still binds the consensus unmethylated target (F).

Xenopus (20), in human cancer cell lines (5) and in mice
(21,22) argue that a least some roles of Kaiso are linked to
DNA methylation.

The 50 million methylated CpGs in the human genome
(23) probably vastly outnumber the methyl-binding
proteins in cells. This number is not known for Kaiso,
ZBTB4, or ZBTB38 but, as a comparison, there are
about 50000 molecules of TATA-binding protein in a
mammalian cell (24). We hypothesize that the
sequence-specificity of Kaiso, ZBTB4 and ZBTB3S§,
helps recruit them to a subset of methylated sites.
This will have to be tested in cells, keeping in mind that
transcription factor targets bound in vitro and in vivo
usually present an overlap that is general but not total
(25,20).

Some of the DNA methylation dynamics during
differentiation and cancer occurs not on CpG islands,
but at flanking CpG ‘shores’ where the CpG density is
low (27,28). These regions are interesting candidates for
the recruitement of Kaiso-related proteins.

An interesting discovery made in the course of this work
is that, unlike MBD proteins, the zinc-finger proteins we
have studied have a significant affinity for hemimethylated
DNA. This behavior is reminiscent of the SRA protein
UHRF1 (29,30) and, by analogy, suggests that the
Kaiso-related proteins might play a role in the mainten-
ance of DNA methylation.



Mechanism of methylated DNA recognition
and consequences

The binding of ZBTB4 to methylated DNA is
strand-specific, requires zinc, and involves amino-acids
that are predicted to be important by the standard
model of C2H2 zinc finger/DNA interactions. In other
words, it is possible that ZBTB4 uses a canonical mech-
anism to recognize methylated DNA; a putative model of
these zinc finger/DNA interaction is provided in
Supplementary Figure S9A. This prediction awaits experi-
mental confirmation by a structural analysis.

An artificial C2H2 zinc-finger protein has been engin-
eered to discriminate methylated and unmethylated DNA
(31). It has very little sequence similarity to the
Kaiso-related proteins. In particular, it lacks an equivalent
of E350, the glutamic acid we found critical for Kaiso and
ZBTB4 to bind methylated DNA. This could be explained
by the fact that the methyl-cytosine recognized by the arti-
ficial protein is in a different position (in the middle of a
triplet), and therefore not contacted by a residue in the
same position as E350 of ZBTB4.

To conclude, we note that there are approximately 700
proteins with C2H2 zinc fingers in the human genome
(32). If, as our results suggest, a canonical binding mode
permits the recognition of methylated DNA, then it is
possible that other methyl-binding proteins with zinc
fingers exist.

SUPPLEMENTARY DATA
Supplementary Data are available at NAR Online.
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