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ABSTRACT

We previously demonstrated high-frequency,
targeted DNA addition mediated by the homology-
directed DNA repair pathway. This method uses a
zinc-finger nuclease (ZFN) to create a site-specific
double-strand break (DSB) that facilitates copying
of genetic information into the chromosome from
an exogenous donor molecule. Such donors typic-
ally contain two �750 bp regions of chromosomal
sequence required for homology-directed DNA
repair. Here, we demonstrate that easily-generated
linear donors with extremely short (50 bp) homology
regions drive transgene integration into 5–10% of
chromosomes. Moreover, we measure the over-
hangs produced by ZFN cleavage and find that
oligonucleotide donors with single-stranded 50 over-
hangs complementary to those made by ZFNs are
efficiently ligated in vivo to the DSB. Greater than
10% of all chromosomes directly incorporate this
exogenous DNA via a process that is dependent
upon and guided by complementary 50 overhangs
on the donor DNA. Finally, we extend this non-
homologous end-joining (NHEJ)-based technique
by directly inserting donor DNA comprising recom-
binase sites into large deletions created by the
simultaneous action of two separate ZFN pairs.
Up to 50% of deletions contained a donor insertion.
Targeted DNA addition via NHEJ comple-
ments our homology-directed targeted integration
approaches, adding versatility to the manipulation
of mammalian genomes.

INTRODUCTION

The insertion of exogenous genetic information into the
genome of target cells is broadly used in basic and applied
biology. Gene insertion is conventionally achieved via
virus-mediated or spontaneous integration of transfected
DNA followed by a selection for cells carrying the new
DNA. In the context of cell-based medicine, lack of
control over the transgene integration site can result in
adverse events due to insertional mutagenesis (1). In in-
dustrial use, uncontrolled transgene integration gives
unwanted phenotypic heterogeneity due to the varying
permissivity of integration sites for transgene expression
(position-effect variation; 2). In both situations, it would
be advantageous to target DNA insertion to a specific,
desirable site in the genome.
Targeted gene addition is typically performed by trans-

fection of a selectable marker gene flanked by a substan-
tial amount of DNA homologous to the target locus.
Spontaneous DSBs are formed at the target locus, likely
from stalled DNA replication forks. While normally
repaired inerrantly by homology-directed repair (HDR)
templated by the sister chromosome, HDR can instead
use the homologous donor DNA to heal the break.
When additional DNA sequence is inserted between the
two regions of homology in the donor plasmid, the cellular
DNA repair machinery unwittingly copies this genetic in-
formation into the chromosome (3,4). As this homology-
based targeting relies on the capture of very rare DSBs
within the region of donor homology, extensive
homology to the target locus is needed to obtain
targeted integration at a useful frequency. Six to seven
kilobases of DNA homologous to the chromosomal
target are commonly used in donor construction,
although more extensive homology increases targeting
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efficiency (5). Despite these enormous stretches of
homology, the frequency of successful gene targeting is
typically in the range of 10�5 to 10�6 prior to selection
(5). After selective pressure is applied, resistant clones are
screened to identify the minority that contain the intended
targeted insertion (6).
Creation of a targeted DSB can dramatically increase

the frequency of homologous recombination in mitotically
dividing cells (7). The custom engineering of site-specific
nucleases has therefore accelerated targeted integration
technology. One type of designer nuclease is based on
zinc-finger DNA binding motifs, spaced at 3-bp intervals
across DNA (8). Zinc fingers that recognize a wide variety
of DNA sequences can be joined together to create DNA
binding proteins that recognize a 9–18 bp sequence (8–10).
Zinc-finger nucleases (ZFNs) are fusions between
zinc-finger DNA binding domains and the nuclease
domain of the type IIs restriction enzyme FokI (11).
When two such ZFN fusions bind at adjacent sites on
the chromosome, the nuclease domains interact to create
a DSB in the DNA (11–13). The non-homologous end-
joining (NHEJ) pathway can directly ligate the broken
ends together, often with a gain or loss of several base
pairs (14). Alternately, the cell can perform the highly
faithful HDR described above.
Exploiting HDR of ZFN-induced DSBs, we previously

demonstrated targeted integration of several kilobase
transgenes at multiple endogenous loci at frequencies of
5–15% without the need for any selective pressure (15–17).
In contrast to the essentially random locations of spon-
taneous DSBs, the ZFNs specify the position of the DSB
in these experiments. Since the large amount of homolo-
gous DNA present in conventional targeted-integration
donors is necessary primarily to expand the region
where a spontaneous DSB can be captured, use of a
ZFN to make a site-specific DSB allowed the amount of
donor homology to be reduced to �1.5 kb. While an im-
provement, the ZFN-promoted targeted integration
process is still hampered by the need for construction of
a donor plasmid or virus via conventional recombinant
DNA techniques. Additionally, although the majority of
targeted gene addition likely happens within the first few
days after transfection, experimental output can be
assayed only after the 3–4 weeks required for loss of
donor–plasmid gene expression. More preferable would
be an easily created donor molecule with a short half-life
post-transfection. We therefore evaluated whether
PCR-generated donors with very limited target site
homology could be readily used for targeted gene
addition. Use of such donors for manipulation of the
yeast Saccharomyces cerevisiae has greatly facilitated mo-
lecular genetics in this organism (18).
In addition to improving homology-directed gene tar-

geting, we were interested in providing similar gene
addition capability to cell types lacking efficient
homology-based DNA repair. Such an approach might
prove particularly useful for gene addition in primary,
non-dividing cells which preferentially use the NHEJ
DNA repair pathway. Gene addition via NHEJ would
also be useful for unsequenced genomes (e.g. Cricetulus
griseus, CHO cells) as donor construction without a

genome sequence requires arduous preliminary cloning
and sequencing. Several previous investigators have
found that non-specific DNA can be captured at the site
of NHEJ-mediated DSB repair (19). Repetitive element
and mitochondrial DNA fragments have been observed
to integrate at the site of DSBs in S. cerevisiae (20,21).
Similarly, exogenous DNA has been found in the output
of the NHEJ pathway in mammalian cells (22–24). These
observations prompted us to investigate whether the in-
formation present in the single-stranded overhangs
created by ZFN cleavage could be used to perform
targeted DNA integration using the NHEJ DNA repair
machinery.

We demonstrate here ZFN-driven targeted integration
of genetic information into five loci in mammalian cells
using the homology-directed DNA repair pathway. HDR
donors with as little as 100 bp of chromosomal homology
(50 bp per arm) generally yielded targeted integration
frequencies similar to plasmid donors with 15-fold more
homology. We determined the types of 50 overhangs left
by ZFNs using high-throughput DNA sequencing of mol-
ecules cleaved in vitro and used this knowledge to drive
DNA integration via the complementary NHEJ DNA
repair pathway. This direct insertion of exogenous DNA
into the chromosome was demonstrated at four loci in two
cell types at a frequency similar to HDR-based integration
(up to 10%). Capture of DNA by NHEJ worked well at
both a single DSB and at a deletion created by two DSBs.
As the linear donors in both experiments were made by
PCR amplification or chemical synthesis, both types allow
for rapid experimentation and ascertainment of targeted
integration.

METHODS

Donor plasmids and oligonucleotides

Oligonucleotides used to create synthetic linear donors for
AAVS1 are AAVS1-100F: 50-c*c*t gtg tcc ccg agc tgg gac
cac cTT ATA TTC CCA GGG CCG GTT AAT GTg gct
ctg gtt ctg ggt act ttt atc tgt ccc ctc cac ccc aca gtg ggg c-30

and AAVS1-100R: 50-a*a*t ctg cct aac agg agg tgg ggg
tTA GAC CCA ATA TCA GGA GAC TAG GAa gga
gga ggc cta agg atg ggg ctt ttc tgt cac caa tcc tgt ccc tag t-30

where regions of alternating case indicate the termini of
analogous oligonucleotides with 75 and 50 bp of AAVS1
homology. Donors were generated by PCR of the AAVS1
donor plasmid described below. These oligonucleotides
contain 2 bp of phosphorothioate linkages at their
50-termini indicated by asterisks. Oligonucleotides used
to create synthetic linear donors for IL2Rg are GC-50F:
50-g*t*g tgg atg ggc aga aac gct aca cgt ttc gtg ttc gga gcc
gct tta ac-30 and GC-50R: 50-t*g*g att ggg tgg ctc cat tca
ctc caa tgc tga gca ctt cca cag agt gg-30. Donors were
generated by PCR of the IL2Rg donor plasmid (25).

Double-stranded oligonucleotides for direct insertion
into the chromosome were annealed in 50mM NaCl,
10mM Tris pH 7.5 and 1mM EDTA at a final concen-
tration of 40 or 500 uM each (Figures 4 and 5, respective-
ly). Correct annealing was verified by non-denaturing
polyacrylamide gel electrophoresis. Oligonucleotides are
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as follows: AAVS1F, (50-g*c*c agc tta ggt gag aat tcg gcg
gat ccc gaa gct tgc taa ctc agc c-30); AAVS1R, (50-t*g*g
cgg ctg agt tag caa gct tcg gga tcc gcc gaa ttc tca cct aag
c-30). These oligonucleotides, identical versions lacking the
first four bases, and versions with the first four bases
changed to 50-ctgg-30 and 50-ccag-30, respectively, were
used as donors in Figure 4B. These oligonucleotides and
versions with the first four bases changed to 50-aaga-30 and
50-tctt-30, respectively, were used as donors in Figure 4C.
Oligonucleotides for insertion into the POU5F1 deletion
were loxP F, (50-t*t*t ggg aat tca taa ctt cgt ata gca tac att
ata cga agt tat gga tcc-30) and loxP R (50-t*g*c agg atc cat
aac ttc gta taa tgt atg cta tac gaa gtt atg aat tc-30); for
BAK, the first 5 bp of the loxP F oligo was replaced by
50-cagc-30 in combination with the loxP R oligo with its
first 4 bp changed to 50-ccca-30. All oligonucleotides were
50 phosphorylated and contain phosphorothioate linkages
between the 50-terminal two bases unless otherwise noted.

The plasmid donor for the AAVS1 locus was made by
PCR with HAL-F: 50-tgc ttt ctc tga cca gca tt-30 and
HAL-R: 50-cca ctg tgg ggt gga ggg ga-30 for the left
homology region and with HAR-F: 50-tag gga cag gat
tgg tga ca-30 and HAR-R: 50-ccc tta gag cag agc cag
ga-30. This plasmid has 1641 bp of AAVS1 homology
and a 12-bp sequence (50-ggc aag ctt tac-30) containing a
HindIII site between the regions of homology. A donor
transgene was inserted into the HindIII site to make the
donor plasmid (17). AAVS1 donors with variable-length
homology arms were constructed by cloning of fusion
PCR products bounded by the following oligonucleotides:
For 750 bp donors, 50-ctt tct ctg acc agc att ctc tcc-30 and
50-ccc tta gag cag agc cag gaa cc-30; for 500 bp donors,
50-ggt tcc ctt ttc ctt ctc ctt ctg g-30 and 50-acg ggg ctg gct
act ggc c-30; for 250 bp donors, 50-ctc ccc tac ccc cct tac ctc
tc-30 and 50-aac cgg gca ggt cac gca tc-30; for 100 bp
donors, 50-gat cct gtg tcc ccg agc tgg-30 and 50-gaa tct
gcc taa cag gag gtg gg-30 and combinations of the above.

The plasmid donor for the GS locus was made by PCR
with GJC 185F (50-tta ctg tcc aga gac agg ag-30) and GJC
184R (50-cag gaa tgg gct tgg ggt c-30) for the left homology
region with and GJC 182F (50-aat ggt gca ggc tgc cat a-30)
and GJC 183R (50-ttc ttc tcc tgg ccg aca gt-30) for the right
homology region. This plasmid has 1605 bp of GS flanking
homology and a 17 bp sequence containing a SalI site
(50-atc gat gtc gac ccg gg-30) between the homology
regions.

The plasmid donors for the CCR5 locus contains a left
homology region bounded by 50-aat tgt tgt caa agc ttc at-30

and 50-atg agg atg acc agc atg tt-30 with a right arm
bounded by 50-aaa ctg caa aag gct gaa ga-30 and 50-aaa
tca cac atg aaa agt gt-30. This plasmid has 1878 bp of
CCR5 flanking homology and a 52 bp sequence containing
two XbaI sites (50-(t)cta gat cag tga gta tgc cct gat ggc gtc
tgg act gga tgc ctc gtc tag a-30) between the homology
regions.

ZFN design, production and assay

ZFNs were designed as described previously (IL2R�,
AAVS1, POUF5, GS; 17,25,26) or were provided by
Sigma-Aldrich (BAK, Rosa). Obligate heterodimer

nucleases were constructed as described and are referred
to as HiFi nucleases (27). ZFN cleavage in vivo was
assayed as described (28).

Cell growth and transfection

CHO-K1 and K562 cells were obtained from the
American Type Culture Collection and grown and trans-
fected via nucleofection as described (25,28). For donor
capture by NHEJ, one million K562 cells, 3 mg 2A-linked
AAVS1 ZFNs, and 2000, 200, 20 or 0 nM donor were
transfected in 100 ml. At the GS locus, one million
CHO-K1 cells, 3 mg 2A-linked GS ZFNs, and 2000, 200,
20, 2 or 0 nM donor were transfected in 100 ml. For donor
capture by NHEJ at the site of a deletion, one million
K562 cells, 2 mg each POU5F1 ZFN, and 40, 4 or 0 mM
donor were transfected in 100 ml.

Alteration of donor topology, methylation and terminal
homology

To compare linear donors versus circular, supercoiled
donors, the donor plasmids were cut with ScaI. ScaI
cleaves the donor plasmids once, in the b-lactamase
gene. Per 200 000 cells, 1 mg of each donor was used in
this experiment.
Topologically relaxed and alternately methylated

donors for the GS, AAVS1 and CCR5 loci were
prepared in parallel to obtain combinations of super-
coiled, relaxed, Dam/Dcm-methylated, CpG-methylated
and unmethylated DNA. Supercoiled Dam/Dcm-
methylated donors were obtained through transformation
and culture of Top 10 cells (Invitrogen). Supercoiled,
unmethylated donors were obtained by substitution of
Top10 cells with the dam�dcm� Escherichia coli strain
ER2925 (New England Biolabs). Relaxed donors were
produced by a 12-h 37�C incubation of 60 mg of super-
coiled donor with 5U of Topoisomerase I (New
England Biolabs) in 1�Buffer 4 and 100 mg/ml BSA in a
30 ml reaction volume. CpG-methylated supercoiled and
relaxed donors were produced by a 12-h 37�C incubation
of 50 mg of unmethylated donor with four units of CpG
methyltransferase (New England Biolabs) in 1�TE,
50mM NaCl, 1mM DTT and 160 mM SAM in a 30 ml
reaction volume. Supercoiling and relaxation were
verified by TAE agarose gel electrophoresis. CpG methy-
lation was assayed by the acquisition of insensitivity to
NotI.
To ensure ectopic recombination was not responsible

for a signal mimicking targeted integration, we made
and tested linear, PCR-derived donors terminating in di-
deoxycytidine. Using the AAVS1 donor plasmid as a
template, donors were made with 250 bp or 100 bp of
chromosomal homology by PCR with Deep Vent poly-
merase (New England Biolabs). (DeepVent polymerase
lacks terminal transferase activity and therefore
produces blunt-ended PCR products.) For 250 bp
donors, the oligonucleotides used for PCR were 50-c*t*c
ccc tac ccc cct tac ctc tc-30 and 50-a*a*c cgg gca ggt cac gca
tc-30; for 100 bp donors, 50-g*a*t cct gtg tcc ccg agc tgg-30

and 50-g*a*a tct gcc taa cag gag gtg gg-30, where
the asterisks indicate a phosphorothioate linkage.
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Twenty picomoles (�7 mg) of these two donor PCR
products were tailed with terminal transferase (New
England Biolabs) and dideoxycytidine (USB/Affymetrix).
Care was taken during oligonucleotide design to ensure
that addition of cytidine would maintain homology with
the AAVS1 locus (i.e. for both donors the next base in
AAVS1 is naturally a C). Per 200 000 cells, 1 mg of the
250 bp plasmid donor, 0.9 mg of the 100 bp plasmid
donor, 142 ng of the 250 bp linear donor and 56 ng of
the 100 bp linear donor was used in this experiment.

Analysis of donor capture by NHEJ and HDR

All primers used for analysis of HDR-based gene addition
are outside the homology regions of plasmid and linear
donors.
For analysis of HDR-based gene addition at AAVS1,

PCR reactions contained 100 ng genomic DNA,
1�Accuprime Buffer II and 1U Accuprime Taq DNA
Polymerase High Fidelity (Invitrogen), 4 mCi 32P-dGTP,
and 50 uM each of primers HDRF4 (50-cgg aac tct gcc
ctc taa cg-30) and HDRR5 (50-ctg gga tac ccc gaa gag
tg-30). PCR reactions were carried out for 23 cycles of
amplification; quantitation of 21- and 25-cycle amplicons
gave comparable data. The annealing temperature was
62�C and the extension time 3:00.
For analysis of HDR-based gene addition at IL2Rg,

PCR reactions contained 50 ng genomic DNA,
1�Accuprime Buffer II and 1U Accuprime Taq DNA
Polymerase High Fidelity (Invitrogen), 4 mCi 32P-dGTP,
and 50 uM each of primers F4 (50-cca cag ctg gac tgt
gag tga cta gg-30) and R4 (50-gtg att ctg tgt tct ctg tgc
ctg-30). PCR reactions were carried out for 23 cycles of
amplification; quantitation of 21- and 25-cycle amplicons
gave comparable data. The annealing temperature was
62�C and the extension time 3:30.
For analysis of HDR-based gene addition at GS, PCR

reactions contained 100 ng genomic DNA, 1�Accuprime
Buffer II and 1U Accuprime Taq DNA Polymerase High
Fidelity (Invitrogen), and 50 uM each of primers GJC
180F (50-agc ttc ctc ccc ata agt tc-30) and GJC 179R
(50-ggc ggt ctt caa agt aac ct-30). PCR reactions were
carried out for 30 cycles of amplification. The annealing
temperature was 60�C and the extension time 1:30.
Insertion of the 17 bp sequence (50-atc gat gtc gac ccg
gg-30) into GS was assayed by digestion with 10U of
SalI for 2 h.
For analysis of HDR-based gene addition at CCR5,

PCR reactions contained 100 ng genomic DNA,
1�Accuprime Buffer II and 1U Accuprime Taq DNA
Polymerase High Fidelity (Invitrogen), and 50 uM each
of primers CCR5F (50-ctg cct cat aag gtt gcc cta ag-30) and
CCR5R (50-cca gca ata gat gat cca act caa att cc-30). PCR
reactions were carried out for 30 cycles of amplification.
The annealing temperature was 60�C and the extension
time 1:30. Insertion of the XbaI-containing sequence was
assayed by digestion with 10 U of XbaI for 2 h.
Southern blot analysis at AAVS1 was done with

XmnI-digested chromosomal DNA probed with a
radiolabelled 474 bp BamHI fragment of the left AAVS1
homology arm.

For analysis of donor capture via NHEJ, the AAVS1
locus was PCR-amplified with AAVS1 CEL-I F2 (50-ccc
ctt acc tct cta gtc tgt gc-30) and AAVS1 CEL-I R1 (50-ctc
agg ttc tgg gag agg gta g-30). The GS locus was
PCR-amplified with GS F5928 (50-ggg tgg ccc gtt tca
tct-30) and GS R6272 (50-cgt gac aac ttt ccc ata tca
ca-30). POU5F1 was amplified using Group3F (50-gat
aga acg aga ttc cgt ctt ggt gg-30) and Group4R (50-gca
gag ctt tga tgt cct ggg act-30). BAK was amplified using
GJC 24F (50-cat ctc aca tct gga cca cag ccg-30) and GJC
163R (50-ctg cgg gca aat aga tca c-30). All PCR reactions
done for analysis of donor capture by NHEJ-contained
100 ng genomic DNA, 1�Accuprime Buffer II, and 1U
Accuprime Taq DNA Polymerase High Fidelity
(Invitrogen), and 50 uM each of the appropriate primer.
PCR reactions were carried out for 30 cycles of amplifica-
tion. The annealing temperature was 60�C and the exten-
sion time 0:30.

Quantitation of all gels was performed by densitometry
with Imagequant 5.1 software. Care was taken during
photography and autoradiography to ensure that no
portion of the image was saturated. Longer exposure gel
photographs are displayed in the figures to show some-
times low-abundance bands.

Sequencing of donor insertions

Samples containing transgene insertion into AAVS1 were
PCR-amplified with the HDRF4 and HDRR5 primers.
The insert band was gel purified and nested PCR was per-
formed with the CEL-I F2 and CEL-I R1 primers.
Insert-containing bands were excised, cloned, and
sequenced.

Samples from Figure 4C, lanes 3 and 7 were PCR
amplified with GJC 172F (50-atc cgc atg gga gat cat
ct-30) and GJC 171R (50-gcc ttg gtg cta aag ttg gt-30),
electrophoresed on a 10% polyacrylamide gel, and
donor-specific bands excised and purified. A second
round of PCR was performed and the resulting fragments
cloned and sequenced. Sequence reads that were wild-type
or consistent with NHEJ events not resulting in donor
insertion were not considered further.

The donor-specific bands from Figure 5B, lanes 7 and
14 were excised from the gel, purified and re-amplified
with Group3F and Group4R (POU5F1) or GJC 24F
and GJC 163R (BAK), cloned and sequenced. Sequence
reads of deletions that did not contain inserts were not
considered further.

Determination of ZFN-generated overhangs

Oligos containing ZFN target sites for the AAVS1 (50-tgt
ccc ctc cAC CCC ACA GTG Ggg cca cTA GGG ACA
GGA Ttg gtg aca ga-30), GS (50-gac cCC AAG CCC ATT
CCT GGG Aac tgg aAT GGT GCA GGC Tgc cat acc
aa-30) and IL2R� (50-gtt tcg tgt tCG GAG CCG CTT
Taa ccc ACT CTG TGG AAG tgc tca gca tt-30) ZFN
pairs were annealed to their reverse complements in
50mM NaCl, 10mM Tris pH 7.5 and 1mM EDTA.
Capital letters denote the ZFN binding sites, while
lowercase letters denote flanking and spacer sequence.
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The double-stranded products were then cloned into the
EcoRV site of the pBluescript II KS�.

ZFNs were synthesized in vitro by means of a
T7-coupled transcription/translation kit using rabbit re-
ticulocyte lysate (Promega). For the 2A-linked ZFNs
AAVS1 (SBS 15 556 and 15 590) and GS (SBS 9372 and
9075), 30 ng of plasmid were used; for the unlinked IL2R�
ZFNs (SBS 7263 and 7264), 20 ng of each plasmid were
used. Transcription and translation reactions (60 ml) were
supplemented with 500 mM ZnCl2 and incubated for 1.5 h
at 30�C. ZFN-containing lysates were used for DNA
cleavage within 30min. With the exception of those tar-
geting IL2R�, all ZFNs used were of the HiFi variety (27).

Cleavage reactions (35ml) contained 2.5 mg of target
plasmid, 28.5ml of reticulocyte lysate, 10mM EGTA and
1�Restriction Buffer 2 (New England Biolabs) and were
incubated at 37�C. Control experiments with HindIII in
ZFN-free lysate, and Hind III in 1�NEB Buffer 2 were
also conducted. Plasmid linearization required the
presence of the correct ZFN pair (data not shown).
Reactions with AAVS1, IL2R� and HindIII were
terminated after 2min and the GS reaction after 5min
by addition of 10mM Tris/1mM EDTA to 200 ml,
followed by phenol extraction and ethanol precipitation.
Linearized plasmids were gel purified by agarose gel elec-
trophoresis and incubated for 30min at 37�C with 0.05U
Klenow DNA polymerase (New England Biolabs) in
1�Buffer 2, plus 50 mM dNTPs. Klenow polymerase
was inactivated by incubation at 75�C for 20min,
followed by addition of 20U of T4 DNA Ligase (New
England Biolabs) and ATP to 1mM.

Ligation reactions were amplified with 30 cycles of PCR
using target-specific primers containing standard Illumina
sequencing regions. PCR products were purified with the
QIAquick Gel Extraction Kit, then re-purified with a
GeneJET PCR Purification Kit (Fermentas), and eluted
in 0.1� elution buffer. Samples were mixed together at
an equimolar ratio and submitted for 34 bp read length
Illumina DNA sequencing (Elim Biopharmaceuticals).
Sequencing reads with a quality score of at least 30 were
binned using a custom Python script. A quality score
cutoff of 2 was used for AAVS1 reads due to a
template-specific sequencing anomaly that reduced
quality scores without an actual adverse effect on
sequence interpretability. Wild-type target sequences
(5–15% of the total) were discarded and the top 10 bins
for each target were analyzed manually. Percentages given
in the text were calculated using the relevant bin as the
numerator and the entire collection of reads as the denom-
inator. The percentages shown do not sum to 100% as the
unanalyzed sequences (�1500 bins with 0.2–0.0001%
each) were not analyzed. For HindIII in buffer
2, 573 490 sequence reads were analyzed; for HindIII in
reticulocyte lysate, 3 473 683; for IL2Rg, 1 985 413; for GS,
2 389 486; AAVS1, 3 111 505.

RESULTS

We assembled a ZFN pair which cleaves �33% of
chromosomes in intron 1 of the AAVS1 gene

(PPP1R12C) and a plasmid donor molecule containing
two �750-bp regions of AAVS1 sequence flanking a trans-
gene (Figure 1A; 29). To explore the requirements of the
targeted integration reaction, analogous donors were
PCR-amplified using oligonucleotides containing 50 exten-
sions of 50, 75 or 100 bp of AAVS1 sequence from both
sides of the DSB created by the AAVS1 ZFNs (Figure 1B).
The 50-terminal two phosphates in the oligonucleotides
were derived from phosphorthioamidite nucleotides to
make the resulting PCR product resistant to cellular
exonucleases.
The donor molecules were transfected into the human

erythroleukemia cell line K562 with and without
co-transfection of the AAVS1 ZFNs. Targeted integration
of the donor transgene was monitored by PCR and
Southern blot. Integration produced a 3050 bp PCR
product that was dependent on the presence of both the
donor and the AAVS1 ZFNs (Figure 1C); only the
1953 bp wild-type amplicon was seen in the absence of
ZFNs. Surprisingly, the efficiency of integration with
short-homology synthetic donors was similar to the
plasmid donor even though the plasmid donor has a
�15-fold longer region of AAVS1 homology (Figure 1C,
lanes 7, 8–12). These cell populations were expanded and
targeted integration confirmed by Southern blot. Between
6% and 10% of chromosomes contained a correctly
targeted transgene insertion in these samples (Figure 1D,
lanes 6–10).
To demonstrate the general applicability of these

results, we tested analogous reagents at the IL2Rg locus
(25). Insertion of the donor into the IL2Rg locus will
produce a 3326 bp product upon PCR whereas the
wild-type amplicon is only 1738 bp. Similar to targeted
integration at the AAVS1 locus, integration at IL2Rg
worked about as well with synthetic donor molecules
with 50 bp of IL2Rg homology at each end as with a con-
ventional plasmid donor with a total of 1500 bp of IL2Rg
homology (Figure 1E, lanes 5 versus 6, and 8 versus 9).
Targeted integration worked both with and without the
use of modified FokI domains (27; Figure 1E, lanes 5–7
versus 8–10). Nuclease-resistant phosphorothioate DNA
yielded insertion frequencies slightly higher than donors
with a conventional DNA backbone (Figure 1E, lane 6
versus 7 and lane 9 versus lane 10).
To ensure that gene addition using short-homology syn-

thetic donor molecules proceeded via the homology-
directed DNA repair pathway, the PCR amplicon from
the AAVS1 transgene insertion using 50 bp homology
regions was cloned and sequenced. Fifty-eight of
60 clones were consistent with transgene insertion via a
homology-based process; i.e. showed a perfectly-specific
introduction of the new sequence into an otherwise
wild-type locus. In one instance, the transgene:AAVS1
junction had mutations consistent with insertion via
NHEJ; in the remaining clone, HDR seems to have been
used at one end of the molecule and NHEJ at the other.
Together, these data demonstrate that linear donor mol-
ecules with as little as 50 bp of chromosomal homology are
sufficient to drive efficient and targeted transgene insertion
via HDR.

PAGE 5 OF 15 Nucleic Acids Research, 2010, Vol. 38, No. 15 e152



The unexpected integration efficiency of
short-homology donors prompted us to examine the
specific activities of different donor molecules. These two
donor types have differing topology, methylation,
homology lengths and homology at donor termini. We
performed a systematic series of experiments at
non-saturating donor concentrations designed to reveal
the effect of each of these four differences on HDR.

To examine the influence of donor topology on HDR,
we measured the integration of a HindIII restriction
enzyme site into AAVS1 from supercoiled plasmid
donors and from identical donors linearized outside the
region of chromosomal homology. We found that
circular, supercoiled donors resulted in �60% more
targeted integration than their linear counterparts.
(Figure 2A, compare lanes 6 and 8 with lanes 12 and
14). We then tested a similar AAVS1 donor plasmid and
analogous donors for the CCR5 and GS loci, all of which
had been relaxed with topoisomerase I (Figure 2B). Donor
supercoiling had only a minor affect on targeted
integration.

PCR-derived donors lack DNA methylation. In
contrast, plasmid donors share the methylation pattern
of the bacterial chromosome. We prepared plasmid
donors from bacteria with and without active Dam and
Dcm methyltransferases. Donor plasmids from dam�

dcm� bacteria were then treated with CpG
methyltransferase and the specific activity of all three
donor methylforms assayed (Figure 2B). While CpG
methylation consistently modestly reduced donor-specific
activity, the human and hamster recombination machin-
ery was indifferent to bacterial methylation.

Next, we performed several experiments to assay the
importance of target homology length in HDR. We
varied homology arm length in the context of plasmid
donors and assayed targeted integration of both a trans-
gene and a restriction site at three loci in four cell types
(Figure 2B and C; Supplementary Figure S1a–d). In brief,
donor homology length is relatively unimportant when
HDR copies a small (17 bp) insert into the chromosome
yet becomes more important when transgene-size
(�1.5 kb) segments are copied (Figure 2B and C).
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Figure 1. Homology-based targeted integration using short-homology
synthetic donors. (A) Diagram of ZFNs binding to the AAVS1 locus.
(B) Schematic of short-homology synthetic donor creation via PCR and
comparison with plasmid donor. (C) Targeted integration at AAVS1
with plasmid and short-homology synthetic donors assayed by PCR.
Homology region length is given in base pairs for linear donors and
kilobase pairs for plasmid donors. DNA type is either plasmid (Pl) or

linear phosphorothioate (S). Co-transfection of 7 mg of a linear donor is
stoichiometrically equal to 50 mg of this plasmid donor. As PCR pref-
erentially amplifies shorter molecules, the assay slightly under-
represents the true frequency of targeted integration. (D) Targeted in-
tegration at AAVS1 with plasmid and short-homology synthetic donors
assayed by Southern blot. Genomic DNAs used as a PCR template in
(B) were analyzed directly by probing for the 50 region of AAVS1
homology present in the donor plasmid. A map of the locus below
the blot shows the position of the homology arms (white box), the
probe (grey region with in the white box), the XmnI sites used for
digestion. The XmnI fragment from wild-type chromosome is
5336 bp; from an integrated chromosome, 6881 bp. (E) Targeted inte-
gration using short-homology synthetic donors at IL2R�. Obligate
FokI heterodimer ZFNs are referred to as HiFi ZFNs. The DNA
type descriptor refers to either plasmid (Pl) or whether the ends of
linear donors are normal (O) or phosphorothioate DNA (S).
Co-transfection of 5mg of a linear donor is approximately stoichiomet-
rically equal to 50 mg of this plasmid donor. Homology region length is
given in base pairs for linear donors and kilobase pairs for plasmid
donors. For (C, D and F) the percentage of modified chromosomes is
shown below each lane in black text.
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Figure 2. The effect of donor topology, methylation and terminal sequence homology on targeted integration of a small, HindIII site-containing
patch. (A) K562 cells were transfected with supercoiled or linearized (ScaI) plasmid donors containing either 500 or 250 bp of flanking AAVS1
homology. Targeted integration was assayed by HindIII digestion of PCR-amplified chromosomes into 1041 and 918 bp products. (B) Targeted
integration with topologically relaxed and differently methylated donors. Donor type is indicated as follows: supercoiled, sc’d; relaxed with topo-
isomerase I, relax; dam and dcm methylated, d&d; CpG methylated, CpG. Targeted integration was assayed by SalI (GS), HindIII (AAVS1) or XbaI
(CCR5) digestion of PCR-amplified chromosomes as appropriate. (C) Insertion of a pGK-GFP-pA transgene into the AAVS1 locus. The length of
the homology arms was varied as indicated and targeted integration measured by PCR. PCR amplification of the wild-type locus produces a 1953 bp
product; integration of the transgene results in a 3498 bp product. (D) Insertion of a small HindIII-containing patch into the AAVS1 locus in K562
cells. The length of the homology arms was varied as indicated and targeted integration measured by PCR and HindIII digestion. Targeted
integration produces 1041 and 918 bp HindIII digestion products. (E) Targeted integration into AAVS1 using donors with and without terminal
sequence homology and extendibility. Targeted integration was performed with equimolar amounts of donors containing 250 or 100 bp of flanking
homology. Circular donors are supercoiled plasmids, linear donors are PCR products. Linear donors tailed with dideoxycytidine are indicated as
lin.+ddC. HindIII site integration was assayed by digestion as above. (F) The targeted integration signal is generated in the cell not during PCR. The
indicated samples were mixed after DNA preparation but before PCR. HindIII site integration was assayed as above. The percentage of modified
chromosomes is shown below each lane in black text.
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Plasmid and PCR-derived donors are also different in
that PCR-derived donors retain chromosomal homology
at the donor termini; plasmid donors necessarily disrupt
this homology at the junction of the plasmid backbone
and the homology region. This disruption might reduce
the specific activity of plasmid donors. To test this hypoth-
esis, we compared the ability of plasmid donors and
PCR-derived donors with identical regions of homology
to drive targeted integration. Similar to the results in
Figure 2A, supercoiled donors resulted in �2-fold more
targeted integration of a HindIII site (Figure 2E, compare
lanes 4 and 6 with 8, 10, 12 and 14). We conclude that
terminal sequence homology is not important for targeted
integration of this short HindIII-containing patch.
In a process which is the inverse of HDR, linear donor

molecules can be extended at their termini using the
homology with chromosomal DNA. Such extended
donors can integrate into the genome in a
non-homologous manner but generate a false-positive
signal in targeted integration assays if the extended
regions contain either the primer-binding or restriction
enzyme sites used for PCR and Southern blot analysis,
respectively (30). To control for this possibility, we
added a dideoxycytidine residue to the 30-ends of the
linear donors in the previous experiment. This modifica-
tion conserves chromosomal homology yet renders the
donor incapable of extension by cellular polymerases.
Relative to linear donors without a 30-dideoxycytidine,
we observed a slight increase in targeted integration
signal, suggesting that this type of ectopic recombination
does not confound our assays (Figure 2E, compare lanes 8
and 10 with lanes 12 and 14). Furthermore, extension by
Taq polymerase of ZFN-cleaved chromosomal DNA
when annealed with a donor molecule could also
produce a false-positive targeted-integration signal. We
eliminated this possibility by demonstrating that
genomic DNA from cells transfected with only the ZFN
plasmid, when mixed prior to PCR with genomic DNA
from cells transfected with only donor DNA, does not
produce any targeted-integration-like signal (Figure 2F).
Having demonstrated HDR-based gene addition using

donors with minimal target homology, we then asked
whether the non-homologous end joining DNA repair
pathway was similarly amenable to the deliberate insertion
of exogenous DNA. ZFNs produce 50 overhangs which
could be exploited to capture DNA with complementary
50 extensions. Successful donor capture at ZFN cleavage
sites would therefore require knowledge of the exact types
of overhangs produced by ZFN cleavage. Previous work
demonstrated that ZFNs spaced 6 bp apart leave mainly
4 bp 50 overhangs (31). As ZFNs with different designs
have been developed since this report, we devised a
simple assay to measure ZFN cleavage overhangs. In
brief, a ZFN-cleaved target plasmid is purified, treated
with Klenow polymerase to create blunt-ended fragments,
the fragments ligated in cis, and the ligated region
sequenced (Figure 3A). This procedure yields short dupli-
cations between the ZFN binding sites from which the
identity of the overhangs can be deduced. The use
of high-throughput DNA sequencing allows the full spec-
trum of cleavage products to be revealed. We validated

this strategy by measuring the 4 bp 50 overhangs generated
by the well-characterized HindIII restriction enzyme, then
used the assay to determine the overhangs created by the
IL2R�, GS and AAVS1 ZFNs (Figure 3B). For IL2Rg
where the ZFN monomers are 5 bp apart, 5 bp 50 over-
hangs comprised 93% of all overhang types. Secondary
and tertiary classes of 4 bp overhangs were seen due to
1 bp shifts in the top and bottom strand nicking sites.
Analogous results were obtained for GS and AAVS1:
these 6-bp spaced ZFNs produced predominantly 4 bp
overhangs with secondary products generated from 1bp
shifts in the FokI nuclease cleavage. Importantly, cleavage
in reticulocyte lysate had no effect on the types of over-
hangs generated (Figure 3B).

Armed with this knowledge, we synthesized two 49 bp
50 phosphorylated oligonucleotides designed to have 4 bp
50 overhangs complementary to those produced by the
AAVS1 ZFNs when annealed (Figure 4A). The double-
stranded oligonucleotide contains two phosphorothioate
nucleotide residues at each 50-end and a site for the
EcoRI restriction enzyme. Control donor oligonucleotides
were created that have either no 50 overhangs or 4 bp 50

overhangs predicted not to base-pair with those created by
the AAVS1 ZFNs. These double-stranded DNA donors
were co-transfected with the AAVS1 ZFNs. Two days
post-transfection, the AAVS1 locus was amplified by
PCR and donor insertion into the AAVS1 site assayed
by EcoRI digestion (Figure 4B). Successful insertion will
produce 327 and 258 bp EcoRI fragments; if insertion
were to occur in the opposite orientation, 308 and
277 bp bands would result. More than 7% of PCR
products produced the expected EcoRI fragments in a
donor concentration-, overhang- and ZFN-dependent
manner (Figure 4B, lane 3). As measured by the CEL-I
mutation detection assay (27), 28±5% of chromosomes
were cleaved by the ZFNs in this experiment; the efficiency
of donor capture was therefore as high as 27% (7.6/28,
Supplementary Figure S2a). The donor that could not
correctly base pair with the AAVS1 overhangs was
inserted into the chromosome in the opposite orientation
at a lower frequency (3%), (Figure 4B, lane 6). The donor
without 50 overhangs was not detectably integrated
(Figure 4B, lane 9).

To demonstrate that NHEJ-capture of a linear donor
was neither locus nor cell-type specific, we extended this
same technique to the glutamine synthase (GS) gene in
Chinese hamster ovary cells (CHO cells; C. griseus). In
this experiment, donors analogous to those described
above were co-transfected with ZFNs that cleave the GS
gene (26). Donor insertion was measured two days
post-transfection by BamHI digestion of the PCR
product into 288 and 106 bp fragments. Eleven percent
of chromosomes contained an insertion of the donor
DNA (Figure 4C, lane 7). As at least 24±3% of GS
loci were ZFN-cleaved in this experiment, the efficiency
of donor capture was as high as 46% (11/24,
Supplementary Figure S2b). When a non-
phosphorothioate donor was used, 8% of chromosomes
accepted a donor insertion and insertion became more
sensitive to low donor concentration (Figure 4C, lanes
3–6). Similar to the results obtained at the AAVS1 locus,
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synthetic donor insertion at GS took place at lower fre-
quency with non-complementary-overhang donors and
was abolished when blunt-ended donors were used.
(Figure 4C, lanes 11–18). At the GS locus, the frequency
of donor integration via NHEJ was comparable to
HDR-mediated targeted integration using a conventional
plasmid donor (compare Figure 4C, lane 7 and Figure 2B,
lane 2).

To confirm the results of our PCR-based donor inser-
tion assay, we isolated CHO cell clones bearing insertions
of donor sequence. One hundred and thirty-five clones
were screened by BamHI digestion to find 11 clones
(8%) with bona fide donor insertion as confirmed by
DNA sequencing.

Insertion of donors with incorrectly base-paired ends
requires the inexact joining mode of NHEJ. The
lower-but-appreciable frequency of inexact end joining
suggested that some donors might not have been faithfully
inserted even when perfectly complementary overhangs
were provided. To determine the fidelity of donor inser-
tion, a pool of donor-dependent PCR products was cloned
and sequenced. Fifty-five percent of insertions contained
perfectly ligated junctions when phosphorothioate donors
were used; this frequency dropped to only 9% with use of
standard DNA donors (Table 1). Exonuclease digestion of
the donor and chromosomal ends at the break resulted in
imperfect insertion in the remainder of events.

Co-transfection of two separate ZFN pairs results
in the creation of two DSBs and occasionally, loss
of the intervening DNA to create a deletion via
microhomology-mediated end joining (MMEJ; 26,32).
To see if donors could be captured at the site of deletions,

we created donors compatible with the outer two over-
hangs generated by two ZFN pairs targeted to the
POU5F1 locus in K562 cells and the BAK locus in
CHO-K1 cells (Figure 5A; 17). ZFN pairs were trans-
fected individually and in combination with the second
pair, both with and without inclusion of a donor oligo-
nucleotide containing a loxP site (Supplementary Figure
S2c and d). Deletion formation was assayed by PCR amp-
lification of the POU5F1 and BAK loci. Only when both
ZFN pairs were co-transfected did deletion-specific PCR
products appear (Figure 5B). For POU5F1, deletion of
�1617 bp resulted in formation of a �339 bp
deletion-specific band (e.g. lane 3). For BAK, deletion of
�5833 resulted in formation of �245 deletion-specific
band (e.g. lane 11). When a donor was co-transfected
along with both ZFN pairs, a new band appeared with a
size corresponding to donor insertion at the deletion
(Figure 5B, lanes 6 and 7, 390 bp; lanes 14 and 15,
295 bp). The efficiency of insertion into POU5F1 increased
proportionally when the donor concentration was raised
10-fold to 50 mM; in contrast, insertion into BAK was
reduced when the donor concentration was increased to
50 mM (compare lanes 6, 7, 14 and 15).
The donor used in these experiments contains both

BamHI and EcoRI restriction enzyme sites. When the
deletion PCR products from Figure 5B were incubated
with either BamHI or EcoRI, the donor-dependent
bands were digested. For both POU5F1 and BAK, the
sizes of the digestion products exactly matched the sizes
expected from donor insertion (for POU5F1, 230 and
160 bp BamHI products and 270 and 120 bp EcoRI
products, Figure 5C, lanes 5 and 8, 6 and 9; for BAK,

A

B

Figure 3. Analysis of the overhang types created by ZFNs. (A) Scheme to determine ZFN overhangs. A supercoiled plasmid with a ZFN cleavage
site is cut by a titration of in vitro transcribed and translated ZFNs. ZFN-linearized plasmids are purified by gel electrophoresis, 50 overhangs filled in
with Klenow polymerase (grey nucleotides), and the resulting blunt ends ligated. The mixture is subjected to high-throughput DNA sequencing. (B)
Overhang types generated by a control restriction enzyme (HindIII) and three of the ZFN pairs used in this work. For clarity, only one DNA strand
is shown. Enzyme binding sites are shown in grey; only the flanking three nucleotides are shown for ZFN binding sites. Primary cleavage sites, black
triangles; secondary and tertiary cleavage sites, dark and light grey triangles, respectively; deletions, �. Microhomology within the target site can
prevent unambiguous deduction of the overhang type. In such situations the possible overhangs are shown as joined triangles. Either of the two
indicated thymidine residues may have been deleted after HindIII digestion.
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176 and 119 bp BamHI products and 216 and 79 bp EcoRI
products, lanes 14 and 17, 15 and 18). Quantitation of the
digests in Figure 5C indicated that 52% of POU5F1 dele-
tions and 7–19% of BAK deletions acquired a donor
insertion.

Asymmetry of the BamHI and EcoRI sites within the
donor allows digestion to report the orientation specificity
of donor insertion. Insertion in the reverse orientation will
yield an approximate reversal of the digestion products
(similar to Figure 4B, lane 6). A detectable but very
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Figure 4. Targeted DNA integration via non-homologous end joining. (A) Diagram of ZFN cleavage at AAVS1 resulting in 4-bp 50 overhangs
followed by in vivo ligation of a complimentary-overhang donor. The donor contains both BamHI and EcoRI restriction enzyme sites. (B) NHEJ
capture at the AAVS1 locus in K562 cells. Three 10-fold dilutions (40–0.4 mM) of donor DNA with the indicated overhang types were co-transfected
with the AAVS1 ZFNs. The PCR amplicons were cut with EcoRI, producing 327 and 258 bp products from amplicons with insertion of the
oligonucleotide. All donors in this experiment contain terminal phosphorothioate residues. (C) NHEJ capture at the GS locus in CHO-K1 cells.
Four 10-fold dilutions of donor DNAs (40–0.04 mM) with the indicated overhang types and phosphorothioate usage were co-transfected with the GS
ZFNs. The PCR amplicons were cut with BamHI, producing 288 and 106 bp products from amplicons with insertion of the oligonucleotide. For (B
and C), the percentage of modified chromosomes is shown below each lane in black text; the position of the molecular weight markers used is shown
in grey text on the left of the gel.
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minor fraction of POU5F1 and BAK insertions are in the
incorrect orientation (seen most clearly in Figure 5C, lanes
9 and 15).

To confirm these results and to determine the deletion
and deletion plus insertion frequency, cells from all lanes
in Figure 5C containing a deletion-specific PCR product
were diluted, grown for 2 weeks, and 96 or more 10-cell
pools (>960 cells) assayed by PCR as above.
Approximately 4% of K562 cells treated with POU5F1
ZFNs and 1% of CHO-K1 cells treated with BAK
ZFNs contained either a deletion or a deletion and a
donor insertion. The deletion frequency did not increase
when donor was present. These data are shown under
their respective lanes in Figure 5B and C.

The overall fidelity of donor insertion at deletions was
determined by cloning and sequencing donor insertion
events. Similar to the 55% perfect insertion frequency
found at GS, 42% of POU5F1 donors and 69% of BAK
donors were faithfully inserted (Table 2). A major failure
mode for correct insertion into BAK resulted in disruption
of the EcoRI site (data not shown). Consistent with this,
EcoRI treatment did not completely digest the donor-
dependent band for BAK (Figure 5C, lane 15).

Together, the data show that the NHEJ machinery in
mammalian cells is generally capable of capturing exogen-
ous linear donor DNA at targeted DSBs and that this
reaction is strongly promoted by the presence of comple-
mentary single-strand donor overhangs.

DNA can also integrate into DSBs via
non-homology-dependent mechanisms. DSBs are spon-
taneously generated in the cell due to errors in DNA me-
tabolism and can also created by inappropriate ZFN
action. We searched for off-target integration events at
AAVS1 by inspection of the 10 most-likely off-target
sites predicted ab initio from the known specificity of the
AAVS1 ZFNs (17). A PCR primer specific to each of the
ten loci was paired with a PCR primer in either the trans-
gene donor or in the oligonucleotide donor. Pools of cells
treated with ZFNs and donor molecules were assayed for
the junction between the donor and each off-target site
(Supplementary Figure S3a and b). No such junctions
were observed.

We also assayed off-target ZFN activity by attempting
to force deliberate misintegration of a transgene donor

(Supplementary Figure S3c). When a GFP-containing
AAVS1 donor was co-transfected with the AAVS1
ZFNs, 2.7% of cells became GFP-positive. In contrast,
even in the presence of cleavage at �33% of AAVS1 loci
(in addition to potential cleavage at AAVS1 ZFN
off-target sites), only 0.2% of cells became GFP-positive
when a donor with IL2R� homology was co-transfected.
In contrast, both donors integrate readily at sites of
non-specific DNA cleavage by etoposide. We infer that
the large majority of transgene integration with matched
ZFNs and donors is in fact targeted integration.

DISCUSSION

Our work expands upon earlier targeted gene addition
experiments in which the cellular DNA repair machinery
copies a transgene into the chromosome at the site of a
DSB. Use of site-specific nucleases enabled active induc-
tion of this process and a reduction in target homology to
�750 bp or less on each side of the transgene (7,15,33). We
show here that linear donor molecules with as little as
50 bp of homology on both ends can efficiently hijack
the HDR process and result in transgene insertion. In
parallel, we show efficient and directed integration of syn-
thetic donor molecules based on a completely different
DNA repair pathway, NHEJ. In these experiments,
donor insertion is targeted by the information contained
in the short 50 overhangs generated by ZFN cleavage
rather than any longer donor homology. These two tech-
niques use very different mechanisms for DNA integration
but similarly improve our capacity to manipulate the
mammalian genome.
Linear, synthetic donors for use in HDR-mediated

targeted gene addition can be made easily and rapidly;
in contrast, conventional cloning consumes at least a
week to produce a donor plasmid. Short-homology syn-
thetic donors should have a much reduced level and
duration of background transgene expression, allowing
prompt evaluation of experimental results. Compared to
circular plasmid donors, linear donors with short
homology regions are likely to have less spurious tran-
scription and/or a shorter post-transfection half-life.
It is formally possible that linear donors are themselves

extended using the AAVS1 locus as a template followed by
integration elsewhere in the genome. Extension of exogen-
ous DNA has been observed in mammalian cells and in
plants and might be expected to be more common when
linear fragments with terminal chromosomal homology
are present (30,34,35). We tested this hypothesis by pre-
venting donor extension via addition of dideoxycytidine to
the donor 30 ends (Figure 2C). This modification actually
had a modest positive effect on targeted integration, ruling
out this type of donor misintegration.
It is somewhat surprising that such short regions

of homology can be readily used by the HDR machinery,
as Rad51 is thought to require �100 bp for efficient
homology searching (36,37). Extension of the donor
by the chromosome would also serve to increase
donor homology length, potentially improving its suitabil-
ity as a donor in a subsequent, separate round of

Table 1. Fidelity of donor capture by NHEJ at GS in CHO cells

Normal
donor

Phosphorothioate
donor

Total sequence reads 56 32
Perfect insertions 5 17
Deletion of donor only 33 8
Deletion of chromosome only 0 2
Deletion of donor and chromosome 18 5
Perfect, as percentage of total 9 55
Estimate of cells with perfect insertion (%) 0.7 6

The percent of cells with a perfect insertion was obtained by multiply-
ing the frequency of RFLP-positive cells in Figure 4C by the probabil-
ity of a perfect insertion (Normal DNA: 7.7%� 9%& 0.7%;
Phosphorothioate DNA: 11%� 55% & 6%).
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conventional HDR. Therefore, our experiment preventing
donor extension also indicates that the HDR we observed
employed the intended amount of chromosomal
homology.

The experiments in Figure 2 were performed with ap-
proximately 10-fold lower concentrations of donor DNA
than those in Figure 1 to allow differences in donor
specific activity to be seen. This fact likely accounts for
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Figure 5. Targeted DNA integration at deletions via non-homologous end joining. (A) Diagram of dual ZFN cleavage at POU5F1 resulting in 5-bp
50 overhangs from the left ZFN pair and 4-bp 50 overhangs from the right ZFN pair followed by in vivo ligation of a complimentary-overhang donor.
The donor contains both BamHI and EcoRI restriction enzyme sites. (B) NHEJ capture at a POU5F1 deletion in K562 cells and at BAK in CHO-K1
cells. Left (L) and right (R) ZFN pairs were transfected individually and in combination (LR), with (+) and without donor co-transfection. The sizes
of significant PCR products are shown on the right side of the gels. As deletions are heterogeneous, their expected sizes are indicated with tildes. Due
to the relatively small deletion made in POU5F1, amplification of the wild-type locus is seen (1956 bp). The deletion quantitiation shown below the
gel is from an independent analysis of cell pools described in the main text; the deletion frequency in lane 6 was not measured. (C) Restriction
enzyme digestion confirms targeted integration into the POU5F1 and BAK deletions. PCR reactions from lanes 3, 6, 7, 11, 14 and 15 in (B) were
divided into thirds, one-third was left uncut (blank), one third was digested with BamHI (B), and one-third was digested with EcoRI (E). The sizes of
BamHI and EcoRI digestion products are shown on the right side of the gel, POU5F1 in the left column, BAK in the right. The amount of digested
DNA was determined by densitometry.
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the less efficient usage of the linear AAVS1 donor seen in
Figure 2A and C compared to Figure 1C and D. While
linear donors are intrinsically less efficient that plasmid
donors, addition of linear donors to saturating levels can
readily compensate for their lower specific activity.

We found that HDR-based copying of a short region of
DNA was insensitive to donor homology arm length
whereas copying of a longer transgene was diminished
with shorter homology arms (Supplementary Figure S1).
One explanation for this observation is that short Rad51
filaments may be less stable than those created with longer
stretches of homology and that the importance of Rad51
filament stability is proportional to the length of the
region copied.

The Rad51-independent single-strand annealing (SSA)
pathway may have been used for transgene insertion
(37,38). SSA-based gene addition is likely relatively ineffi-
cient with donors containing phosphorothioate 50-ends as
their nuclease resistance should prevent efficient gener-
ation of the 30-ends required for SSA (39). Our data there-
fore suggest that use of donors with as little as 50 bp of
flanking homology is supported by classical HDR.

Use of short, synthetic oligonucleotide donors for inser-
tion by NHEJ relies on accurate prediction of the over-
hangs produced by ZFN cleavage. We measured the
overhangs produced during in vitro DNA cleavage with
the IL2R�, GS and AAVS1 ZFNs. Despite use of a very
different ZFP-FokI linker, the main 4 bp 50 overhang class
made by 6-bp spaced ZFNs was similar to that found
previously (31). In contrast, ZFNs spaced 5-bp apart
produced 5 bp 50 overhangs. The production of 2 bp
50 overhangs by 6-bp spaced ZFNs has been asserted
(40); we find no evidence consistent with 2 bp
50 overhangs.

At both AAVS1 and GS we found approximately
one-third of measurable NHEJ events contained a donor
insertion (Figures 4B and C). Faithful NHEJ capture of
donor molecules at DSBs competes kinetically with both
accurate and error-prone NHEJ. Accurate repair of the
ZFN-induced DSB simply precludes donor insertion. In
error-prone NHEJ, any resection of the chromosome
makes accurate donor insertion unlikely. Exonuclease
activity on donor molecules will also prevent faithful in-
sertion. Consistent with this, we found that use of
phosphorothioate-containing donors markedly improved

the fidelity of donor insertion by NHEJ capture (Table 1).
In contrast, degradation of linear donors intended for use
in HDR should not be detrimental to faithful gene
addition unless degradation proceeds below the
minimum length usable by HDR.
NHEJ often heals DSBs correctly; resection and subse-

quent microhomology-mediated ligation are additional,
separate events. As the non-complementary ends joined
to form deletions are necessarily repaired via MMEJ, it
was possible that a donor with perfect complementarity to
the outside ends of both DSBs would obviate the need for
resection and MMEJ, increasing the efficiency of deletion
formation. Despite successful use of such donors, we did
not observe a meaningful change in deletion frequency
(Figure 5B).
Our NHEJ-capture of linear donors occurred at a

similar frequency to previous reports of exogenous DNA
integration at DSBs, but is otherwise different from these
experiments (22,23,41). Specifically, our technique uses the
sequence information contained in the 50 overhang to add
DNA to the break and inserts DNA without loss of
chromosomal sequence. In contrast, previous experiments
involving co-transfection of blunt-ended or single-
stranded fragments required both target and donor resec-
tion to reveal microhomology needed for fragment joining
(23,41). While informative as to the plasticity of the DNA
repair machinery, the near impossibility of chromosomal
and donor sequence conservation reduces the utility of this
previous approach for directed DNA addition.
Furthermore, NHEJ and MMEJ are distinct DNA
repair pathways with different cofactor requirements
(42). Exogenous single-stranded oligonucleotides have
been used to repair DSBs in yeast via SSA but this
homology-based repair is also fundamentally different
than the NHEJ-repair used here (43,44).
Significant effort has gone into the development of re-

combinases and resolvases with engineered specificities
(45–49). The oligonucleotide donors inserted into
POU5F1 and BAK deletions contain loxP sites. ZFN-
mediated integration of a recombinase site followed by
use of a wild-type recombinase could achieve targeted
transgene integration without HDR or custom recombin-
ases, albeit via a less elegant two-step process. Transgene
recombination into such sites could be used to replace the
deleted regions with variants of the original gene, allowing
study of isolated haplotypes. Indeed, any transgene too
large to be efficiently cloned in bacteria or integrated via
HDR might be better integrated via a recombinase-
mediated process. For example, a yeast artificial chromo-
some donor functionalized with a loxP site could be
site-specifically integrated after transfection (50).
Unlike HDR-mediated gene addition, donor capture

by NHEJ results in the direct incorporation of
foreign DNA into the chromosome. Experiments using
phosphorothioate donors therefore result in the chromo-
somal insertion of chemically abnormal DNA. Another
potential use for the NHEJ capture technique is the
creation of cells with a variety of non-native DNA bases
and backbones. In particular, insertion of DNA with
methylated cytosines might serve to establish an area of
persistent transcriptional quiescence.

Table 2. Fidelity of donor capture at deletions by NHEJ

POU5F1 BAK

Total sequence reads 33 32
Perfect insertions 14 22
Deletion of donor only 6 4
Deletion of chromosome only 4 2
Deletion of donor and chromosome 9 4
Perfect, as percentage of total 42 69
Estimate of cells with perfect insertion (%) �0.9 �0.1

The percent of cells with a perfect insertion was obtained by multiply-
ing the approximate frequency of RFLP-positive cells in Figure 5B
by the probability of a perfect insertion (POU5F1: 4%�
52%� 42%&0.9%; BAK: 0.8%� 20%� 69%&0.1%).
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NHEJ normally operates on DNA ends bound by Ku,
the protein which binds to DNA ends and helps align
overhanging bases to promote ligation (51). It is
unknown whether the donors involved in NHEJ capture
are Ku-bound, or if Ku binding is even likely given the
very high donor concentration required for efficient inser-
tion and the limited cellular pool of Ku. NHEJ can be Ku
independent when high-GC content overhangs are present
(52). All overhangs tested here contain at least two G or
C residues. Additional work will be needed to determine
if potential saturation of endogenous Ku pools is conse-
quential for NHEJ capture when mostly A- and
T-containing overhangs are present.
The flexibility of ZFN design and the speed of linear

donor creation we describe here will accelerate targeted
transgene integration into mammalian genomes, both via
homology-directed and non-homologous DNA repair.
Finally, both use of HDR donors with short homology
regions and the directed capture of exogenous DNA
should prove extensible to DSBs created by other nucle-
ases (such as meganucleases) which leave defined over-
hangs amenable to rational donor design.
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