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Why do movements take a characteristic amount of time, and why do diseases that affect the reward system alter control of movements?
Suppose that the purpose of any movement is to position our body in a more rewarding state. People and other animals discount future
reward as a hyperbolic function of time. Here, we show that across populations of people and monkeys there is a correlation between
discounting of reward and control of movements. We consider saccadic eye movements and hypothesize that duration of a movement is
equivalent to a delay of reward. The hyperbolic cost of this delay not only accounts for kinematics of saccades in adults, it also accounts
for the faster saccades of children, who temporally discount reward more steeply. Our theory explains why saccade velocities increase
when reward is elevated, and why disorders in the encoding of reward, for example in Parkinson’s disease and schizophrenia, produce
changes in saccade. We show that delay of reward elevates the cost of saccades, reducing velocities. Finally, we consider coordinated
movements that include motion of eyes and head and find that their kinematics is also consistent with a hyperbolic, reward-dependent
cost of time. Therefore, each voluntary movement carries a cost because its duration delays acquisition of reward. The cost depends on the
value that the brain assigns to stimuli, and the rate at which it discounts this value in time. The motor commands that move our eyes
reflect this cost of time.

Introduction
Passage of time discounts the value of reward. For example, col-
lege students would rather receive $400 now than wait for 5 years
to receive $1000 (Myerson and Green, 1995). This implies that
for young people the value of $1000 drops to less than $400 in 5
years. For older people, this value drops more slowly, and for
children, the value drops more quickly (Green et al., 1999). Psy-
chologists have characterized this behavior via a hyperbolic re-
ward discount function. If � represents the value of something at
present, and � is the rate at which we discount this value in time,
then the value at some time t in the future is as follows:

V(t) �
�

1��t
. (1)

Response of dopamine neurons to stimuli that promise future
reward also follows this hyperbolic form. When monkeys view a
stimulus that predicts when they will receive a drop of juice, in
response to the stimulus that predicts the shortest time delay
midbrain dopamine neurons discharge strongly, whereas for the

stimulus that predicts a longer delay the discharge declines hy-
perbolically (Kobayashi and Schultz, 2008).

Here, we suggest that there is a connection between how the
brain discounts reward in time and how it controls movements.
We begin with the assumption that the purpose of any voluntary
movement is to change the state of our body to one that is more
valuable. Because the passage of time discounts this value (i.e., we
would rather receive the reward now than later), the duration of
movement carries a specific penalty (Eq. 1). We will ask whether
this penalty can explain why movements of people and other
animals take a characteristic amount of time.

Our focus will be on control of saccades, as this movement has
been measured in numerous populations and conditions. Eye
kinematics during a saccade exhibits curious properties. For ex-
ample, people produce higher velocity saccades when they view a
face (Xu-Wilson et al., 2009). Aging of the brain alters saccade
velocities: velocities are highest in children and lowest in the el-
derly (Fioravanti et al., 1995; Munoz et al., 2003). Patients with
Parkinson’s disease (PD) have reduced saccade velocities (Naka-
mura et al., 1991), whereas schizophrenic patients have increased
velocities (Mahlberg et al., 2001). Saccades of some species of
monkeys are nearly twice as fast as those of humans (Straube et
al., 1997; Chen-Harris et al., 2008). We will suggest that, in all
these cases, the specific velocities and durations of saccades arise
from a desire to maximize reward in a setting in which reward
loses value hyperbolically as a function of movement duration.
Finally, we will consider the fact that natural eye movements in
people typically accompany head movements (Guitton and
Volle, 1987) (i.e., voluntary movements rarely involve a single
body part). We will show that the timing and velocities of these
coordinated movements, as well as some of their variability at-
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tributable to task conditions (Epelboim et al., 1997), are also
consistent with our theory. We suggest that our brain views du-
ration of movements as an implicit cost because passage of time
discounts the value of future reward.

Materials and Methods
Theory. Let us assume that to make a movement the brain solves the
following problem: generate motor commands to acquire as much re-
ward as possible while expending as little effort as possible. Suppose that
at time t, the state of our eye is described by vector x(t) (representing
position, velocity, etc.), our motor commands are u(t), and our target is
a stimulus at position g (with respect to the fovea). Furthermore, suppose
that the brain assigns some reward value � to the target. For example,
faces may be more valuable than inanimate objects. The reward is ac-
quired when the image of the target is on the fovea, which will require a
movement that will take time. The key assumption is that the motor
system will incur a cost for delaying the acquisition of reward because of
the time p that it takes to place the valuable image on the fovea as follows:

Jp � ��1 �
1

1 � �p�. (2)

Therefore, the longer it takes to get the target on the fovea, the larger the
loss of reward value (Eq. 2).

To move the eyes, we will have to spend some effort in terms of motor
commands. There is little information about how the brain represents
effort. Two recent results suggest that this cost is approximately a qua-
dratic function of force (Fagg et al., 2002; O’Sullivan et al., 2009) as
follows:

Ju � ��
0

p

u2(t)dt. (3)

When our movement ends at time t � p, our eye position x( p) should
coincide with where reward is (i.e., target position g). This constitutes an
accuracy cost, and it is convenient to represent it also as a quadratic
function as follows:

Jx � E[(x(p) � g)2]. (4)

In Equation 4, E[] is the expected value operator. In summary, we assume
that in performing a movement the brain attempts to produce motor
commands that minimize a cost that depends on accuracy, effort, and
temporal discounting of reward as follows:

J � Jx � Ju � Jp. (5)

The idea of a cost associated with endpoint accuracy (e.g., variance) was
introduced by Harris and Wolpert (1998). The idea of a cost associated
with effort was introduced by Todorov and Jordan (2002). These two
costs by themselves are insufficient to explain movements because, with-
out a cost for time, all movements are unnaturally slow. Recently, Harris
and Wolpert (2006) suggested a cost for time that increased linearly as a
function of movement duration. Here, we will show that, if we assume
that the cost of time is related to the temporal discounting of reward (i.e.,
a hyperbolic cost of time), we will not only account for saccade kinemat-
ics better than any previous model but also explain why there are changes
in movements when there are changes in reward processing in the brain.

Our first objective is to ask whether a hyperbolic temporal cost can
account for the kinematics (i.e., duration, velocity, etc.) of saccades. Our
second objective is to ask whether this temporal cost is related to reward
processing in the brain. These objectives require solving an optimal con-
trol problem in which Equation 5 serves as a cost function. The crucial
prediction of the theory is that there should be specific changes in saccade
durations and velocities because of changes in the reward discounting
function (Eq. 2), for example, because of changes in stimulus reward
value � or temporal discounting rate �.

Control of saccades. We modeled the dynamics of the human eye as a
discrete linear system with signal-dependent noise as follows:

x(k�1) � Ax(k) � b(u(k) � �(k))
�(k) � N(0, �2(u(k))2).
y(k) � Cx(k)

(6)

The superscripts on the above equations refer to time steps. The term � is
signal-dependent noise (i.e., a random variable with a normal distribu-
tion of mean zero and SD that linearly scales with the motor commands).
Our objective was to find motor commands uh � [u(0),u(1), . . . ,u(p�1)]T

that minimized the cost as follows:

J � E[(y(p) � r)T T(y(p) � r)] � uh
T Luh � ��1 �

1

1 � �p�,

(7)

where

T � � �1 0 0
0 �2 0
0 0 �3

� r � � g
0
0
�

L � �
�(0) 0 0 0
0 �(1) 0 0
0 0 · · · 0
0 · · · 0 �(p�1)

�. (8)

The first term in Equation 7 enforces our desire to have endpoint accu-
racy. It penalizes the expected squared difference between the state of the
eye at movement end and the goal state (i.e., the sum of bias and variance
of the movement). The second term penalizes effort. The third term is a
cost of time, as passage of time discounts reward. We define the
following:

�h � �
�(0)

�(1)

···
�(p�1)

	 U � �
u(0) 0 · · · 0
0 u(1) 0 0
···

0 · · ·
···

0 0 0 u(p�1)
	. (9)

The mean and variance of our noise vector are as follows:

E[�h] � � 0
···
0
� var[�h] � �2UU. (10)

The state at end of the movement is as follows:

x(p) � Apx(0) � F�(uh � �h), (11)

where

F � [Ap�1 Ap�2 Ap�3 · · · I] � � �
b 0 · · · 0
0 b 0 0
···

0 · · ·
···

0 0 · · · b
	.

(12)

The expected value and variance of our state at the end of the movement
are as follows:

E[x(p)] � Apx(0) � F�uh

var[x(p)] � �2F�UU�T FT . (13)

Therefore, we have:

E[J] � E[x(p)]T CTTCE[x(p)] � tr[CTTCvar[x(p)]]

� 2E[x(p)]T CTTr � rT Tr � uh
T Luh � ��1 �

1

1 � �p�. (14)

In the above equation, tr� � is the trace operator. We can simplify the trace
operator as follows:
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tr[CTTC var[x(p)]] � �2tr[CT TCF�UU�T FT]
� �2tr[U�T FT CT TCF�U]
� �2uh

T diag [�T FT CT TCF�]uh

. (15)

The term diag[X] in Equation 15 is the diagonal operator that generates
a matrix with only the diagonal elements of the square matrix X. Setting
the derivative of Equation 15 with respect to uh to zero and solving for uh

gives us the optimal sequence of motor commands for a given duration of
movement:

S � diag[�T FT CT TCF�]

uh*(p)� (L � �T FT CT TCF� � �2S)�1

	 �T FT CTT(rh � CAp x(0)).

(16)

However, what is the optimum duration of our movement? To arrive at
this, we divide the problem into two parts: first, we select an arbitrary
duration p and find the optimal set of motor commands uh*(p) via Equa-
tion 16, and then compute the cost of this movement via Equation 7.
Next, we search the space of p for the one movement duration that
provides the minimum cost J, as illustrated in Figure 1. In our simula-
tions, all saccades started from x (0) � 0.

Parameter values. Our eye plant model in continuous form is as
follows:

� ẋ1

ẋ2

ẋ3

� � �
0 1 0
0 0 1
�c4

c1

�c3

c1

�c2

c1

	 � x1

x2

x3

� � �
0
0
1

c1

	(u � �).

(17)

For the human eye, we used time constants of 224, 13, and 4 ms (Keller,
1973; Robinson et al., 1986). For the eyes of the rhesus monkey, we used
time constants of 260, 12, and 1 ms (Fuchs et al., 1988). The constants in
Equation 17 are related to these time constants as follows: c4 � 1, c3 � �1 �
�2 � �3, c2 � �1�2 � �2�3 � �1�3, and c1 � �1�2�3. For example, for the
human eye, �1 � 0.224, �2 � 0.013, and �3 � 0.004. The continuous
equations were transformed to discrete time using matrix exponentials
with time interval of 1 ms. The goal of the movement is to position the
eyes at the target with zero velocity and acceleration, r � [g 0 0]T, while
minimizing effort and reward costs. For head-fixed saccades, the matrix C is
the identity matrix and the motor costs � (i ) � 1. The only unknown param-
eters are the accuracy cost � and noise �. To find these parameters, we con-
sidered a 50° saccade, which has a peak velocity of �450°/s. The parameters
that reproduced such a movement are � � �5 	 109 1 	 106 50�, and
� � 0.0075. These parameters were then kept constant for all simulations
here. Given these parameters, we searched for reward costs that reproduced
the durations of saccades. This search involved the two parameters of the
reward cost function: � and � in Equation 2.

To simulate saccades of children and other special populations, we
varied �, which in turn altered both the value of the stimulus and the rate
of reward discounting as a function of movement duration. In other
words, the parameter � is the only variable that we manipulated to gen-
erate saccades for various populations and conditions in this paper.

Eye– head coordination. People and some species of monkeys (e.g.,
rhesus and macaques) rarely move their eyes in isolation. Rather, to view
a stimulus, we typically move both our eyes and our head. In this head-
free setting, a stimulus at position g does not produce a displacement of
the eyes by amount g. Rather, both the eyes and the head contribute to the
movement. Therefore, in response to a given stimulus, the eyes move
differently in the head-free versus the head-fixed conditions. To test the
strength of our model, we asked whether our cost function could account
for saccade kinematics in both the head-fixed and head-free conditions.

To model movements of the eyes and the head, we augmented the state
vector x to include three new states associated with the third-order dy-
namics of the head. That is, x � [x1 x2]

T, where x1 is state of the eye and
x2 is state of the head. The time constants for the head were 270, 150, and

10 ms, which we extrapolated from monkey data (Bizzi, 1974). In con-
trast to head-fixed condition in which the objective was to position the
eye at the target, now our objective was to position gaze at the target (i.e.,
the sum of eye and head positions). This means that

C � � 1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1

�. (18)

We kept the eye plant parameters unchanged from the head-fixed simu-
lations. The addition of the head model required addition of one new
parameter, the motor cost associated with the head. We assumed that the
motor cost term �2 was larger for the head than for the eye �1 (4 for the
head, 1 for the eye). As before, we varied the parameter � to investigate
the relationship between stimulus value and movement kinematics.

Experimental methods. An interesting prediction of our theory is that
delay of reward should alter saccade kinematics. Specifically, our theory
predicts that if at saccade completion, the stimulus is not present until
after some time delay, the time delay should act as a reward prediction
error, discounting the value of the stimulus, reducing saccade velocities.
To check this prediction, we recruited healthy volunteers (n � 8; mean
age, 26; range, 18 –39; two females) and asked them to make saccades to
targets that appeared on the horizontal meridian at displacements of 30°.
Our procedures were approved by the Johns Hopkins Institutional Re-
view Board. We measured eye movements using a high-speed infrared
camera (EyeLink 1000; SR Research), which sampled eye position at 1000
Hz. An experimental session consisted of 12 sets, with each set composed
of 40 targets. Subjects were tested on two sessions, performed on different
days. Stimuli were presented on a 19 inch CRT monitor (frame rate, 120
Hz) and viewed from a distance of 37 cm. All fixation and target points
were red dots (0.3° in diameter) presented against a black background. In
each session, a set began with a fixation point, as illustrated in Figure 4 A.
Targets were displayed at 15° to the left and right of center resulting in 30°
saccades symmetric about center. After saccade onset, the target was
either maintained on the screen (first 10 and last 10 targets of the set as
well all trials in the 0 ms delay sets) or extinguished (middle 20 targets of
the set). If the target was extinguished, on saccade completion it was
redisplayed after a time delay 
. This delay was constant within each set,
and then reset to a randomly selected value for the next set. Five nonzero
delays were explored on day 1, and five were explored on day 2, along
with two sets of the zero-delay condition during each session. To analyze
the data, we measured the within-subject change in saccade parameters
between the trials in which there was a delay and the trials for which delay
was zero. It is important to note that, in our task, there were no explicit
rewards associated with the saccades. Indeed, no score or feedback of any
kind was provided to the volunteers regarding their performance. They
were simply instructed to look at the target.

Data analysis. Abnormal saccades were excluded from analysis using
global criteria that were applied to all subjects: (1) saccade amplitude,
�20° (67% of target displacement) and �35°; (2) saccade duration, �60
and �300 ms; (3) saccade reaction time, �100 or �400 ms. For each
subject, outliers for amplitude and peak velocity, which are those outside
of two times the interquartile range, were also removed. Overall, �9% of
saccades were excluded from analysis.

Results
There are two basic ideas that we want to test: (1) movement
durations carry a hyperbolic cost for the brain, and (2) this cost
arises because the duration of a movement is equivalent to a delay
in acquisition of reward. To test these ideas, we will first compare
a hyperbolic cost of time with other kinds of cost functions to ask
how well it can account for movement kinematics. Next, we will
link the hyperbolic cost of time to discounting of reward by show-
ing that variations in how the brain represents reward appear to
produce variations in kinematics of movements.

Hyperbolic costs versus other costs of time
Figure 1A, right panel, plots the cost for a 20° saccade under a
hyperbolic cost of time. Short duration saccades have a large cost
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because the penalties associated with inac-
curacy and effort increase as saccade du-
ration decreases. With increasing saccade
duration, the cost of delaying the reward
increases. According to our hypothesis,
the optimum movement duration is one
that balances the need to be accurate ver-
sus the need to maximize reward (i.e.,
minimize the devaluation associated with
delaying the reward). To test our hypoth-
esis, let us consider kinematics of saccades
that result under a hyperbolic discounting
function, and compare it with saccades
that result from other functions that pe-
nalize time.

For example, consider a quadratic cost
of time Jp � �p 2, as shown in the left panel
of Figure 1A. We see that, for both hyper-
bolic and quadratic costs, there are pa-
rameter values so that a 20° saccade will
have its minimum total cost at �85 ms
(this is the duration of a typical 20° sac-
cade). Therefore, there is nothing special
about a hyperbolic cost, as any increasing
function of time can account for the ob-
served kinematics of a 20° saccade. How-
ever, if we consider a family of movements
(i.e., all amplitudes), then the implica-
tions for the choice of cost becomes clear.
A quadratic cost of time implies that the cost as a function of
movement duration increases rapidly. Therefore, with a qua-
dratic cost, there is little increased penalty when we compare
movements of 50 and 100 ms in duration (Fig. 1A, red dotted
lines), but much greater increased penalty when we compare
movements of 350 and 400 ms in duration. In contrast, for a
hyperbolic function, there is greater increase in cost for short-
duration saccades than for long-duration saccades. That is, for a
hyperbolic cost, as movement durations increase the sensitivity
to passage of time decreases.

Indeed, with a hyperbolic cost of time, we can account for an
important property of saccades: on average, the duration of a
saccade as a function of amplitude grows faster than linearly
(Collewijn et al., 1988). For a quadratic cost of time, increasing
movement amplitudes produce smaller and smaller changes in
saccade durations, as shown by the tick marks in Figure 1B. In
contrast, for a hyperbolic cost, the increasing movement ampli-
tudes accompany a faster than linear increase in saccade dura-
tions. Figure 2 summarizes this idea for three kinds of temporal
costs: quadratic, linear, and hyperbolic. This figure includes data
from Collewijn et al. (1988), as well as a line of best fit that
Collewijn et al. (1988) computed for saccades of small amplitude.
A quadratic temporal cost produces reasonable estimates of sac-
cade parameters for small amplitudes but fails for larger ampli-
tudes. The reason is that, with a quadratic cost, the rate of increase
in the penalty increases with time. If we consider a linear cost of
time, an approach that was used by Harris and Wolpert (2006),
the rate of increase in the penalty is constant, and we can produce
reasonable trajectories for small-amplitude saccades. However,
as Figure 2 illustrates, a linear cost of time underestimates saccade
durations for large-amplitude movements. Therefore, with a hy-
perbolic cost of time we can account for durations of both small
as well as large-amplitude saccades, but not with linear or qua-

dratic costs of time. The fact that saccade durations increase faster
than linearly is consistent with a hyperbolic cost of time.

Cost of time and temporal discounting of reward
Why should the brain impose a hyperbolic cost on duration of
movements? The answer, in our opinion, is that this cost ex-
presses how the brain temporally discounts reward. That is, the

Figure 1. The cost of a saccade. Here, two forms of temporal discounting are considered: quadratic and hyperbolic. A, For a 20°
saccade, the cost in Equation 5 is plotted as a function of movement duration p. Both quadratic and hyperbolic costs of time can
produce a total cost that has a minimum at �85 ms. B, Expected value of the cost as a function of movement duration. Each curve
is the cost for a movement of constant amplitude. The curves are drawn for saccade amplitudes in the range 10 – 80°, by intervals
of 10°. The tick marks near the x-axis are the optimal durations (i.e., the movement durations that produce minimum cost). For
quadratic cost of time, movement durations get closer to each other as movement amplitude increases. For a hyperbolic cost, the
durations get farther apart as amplitudes increase. Quadratic discount parameter: � � 5.75 	 10 4. Hyperbolic discount param-
eters: � � 0.8 	 10 4 and � � 2.5.

Figure 2. Effect of cost of time on movement durations. The data points are from Collewijn et
al. (1988). The dashed line, also from Collewijn et al. (1988), is a good predictor of saccade
durations in the range of 5–30° but underestimates durations for larger amplitudes. Quadratic
Jp � �p 2 or linear Jp � �p costs cannot account for the fact that saccade durations increase
faster than linearly as a function of saccade amplitudes. The shaded areas along each curve
represent the effect of changing stimulus value � by 
20%. The hyperbolic discounting not
only accounts for the faster than linear increase in durations but also for the variability in this
relationship: as stimulus value � changes, it has little effect on saccade durations for short
amplitudes, but a greater effect for large amplitudes. Quadratic: �� 5.75 	 10 4. Linear: ��
1.2 	 10 4. Hyperbolic: � � 0.8 	 10 4 and � � 2.5. The red error bars are SD.
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brain penalizes movement durations because passage of time de-
lays the acquisition of reward. If this hypothesis is true, then it
follows that movement kinematics should vary as a function of
the amount of reward. For example, if we make a movement in
response to a stimulus that promises little reward, � in Equation
1 is small and the motor and accuracy costs become relatively
more important. As a consequence, when our brain assigns a low
value to the stimulus, our movement toward that movement
should be slow. To explore this idea, let us consider what happens
to saccades when we alter the value of the stimulus �. Movement
durations depend on the rate at which reward value is discounted
in time. That is, movement duration depends on the derivate of
cost Jp. This derivative is as follows:

dJp

dp
�

��

(1 � �p)2
. (19)

As � increases, so does the derivative of the reward discount
function. Therefore, the cost of time rises faster when the stimu-
lus has a larger value. As a consequence, movements in response
to stimuli that have larger value will have shorter durations, ex-
hibiting higher velocities. For example, the opportunity to look at
a face is a valued commodity, and physical attractiveness is a
dimension along which value rises (Hayden et al., 2007). As �
increases, durations of simulated saccades decrease (as shown by
the lower bound of the “error bars” in Fig. 2), resulting in higher
velocities. This potentially explains why people make faster sac-
cades to look at faces (Xu-Wilson et al., 2009).

A hyperbolic function is a good fit to discharge of dopamine
cells in the brain of monkeys that have been trained to associate
visual stimuli with delayed reward (Kobayashi and Schultz,
2008). That is, the response of these cells to stimuli is a good
predictor of the temporally discounted value of these stimuli. In
PD, many of the dopaminergic cells die. Let us hypothesize that
this is reflected in a devaluation of the stimulus (i.e., a smaller
than normal �). In Figure 3A, we have plotted velocity–ampli-
tude data from a number of studies that have examined saccades
of people with moderate to severe PD. The saccades of PD pa-
tients exhibit an intriguing property: the peak speeds are normal
for small amplitudes but become much slower than normal for

large amplitudes. If we simply reduce
stimulus value �, the model reproduces
velocity–amplitude characteristics of PD
patients (Fig. 3A).

Consider another curious fact regard-
ing saccades: as we age, the kinematics of
our saccades changes: children produce
faster saccades than young adults (Fiora-
vanti et al., 1995; Munoz et al., 2003). Ac-
cording to our theory, the differences in
saccade kinematics should be a conse-
quence of the way the child’s brain tem-
porally discounts reward. Green et al.
(1999) measured the temporal discount
rate of reward in both young children and
adults and found that the initial slope of
the discount function was two to three
times larger in children than adults. That
is, children discount reward more steeply
than adults. They would rather take a sin-
gle cookie now than wait for a brief period
to receive two cookies. Figure 3B shows
that, if we increase the slope of our tem-
poral cost function (Eq. 19) by a factor of

2 (via parameter �), the resulting saccades share the velocity–
amplitude relationship found in children’s saccades.

As we age, saccade kinematics changes continuously so that
by the time we reach our sixties, velocities are significantly lower
than when we were in our twenties (Irving et al., 2006). Our
theory accounts for this by noting that, as we age, the slope of the
temporal discount function declines (Green et al., 1999).

In Table 1, we have summarized some of the data available on
the rate of discounting of reward in various populations. We find
a remarkable pattern: changes in saccade kinematics are generally
consistent with the change in the rate of discounting of reward.
For example, people with melancholic depression exhibit a
steeper than normal temporal discounting of reward (Takahashi
et al., 2008). Saccades in this population exhibit higher than nor-
mal velocities (Winograd-Gurvich et al., 2006). In schizophrenia,
there is increased rate of temporal discounting (Klöppel et al.,
2008), and this patient population also exhibits higher than nor-
mal saccade velocities (Mahlberg et al., 2001). In people who
suffer from substance abuse, or people with gambling tendencies,
there is increased impulsivity in tests that measure the rate of
temporal discounting of reward (in conditions in which the sub-
jects are not under influence of the substance). In all these cases,
our theory predicts that saccade velocities will be higher than
normal.

Let us now consider the fact that saccade velocities differ
across species. For example, rhesus monkeys exhibit velocities
that are approximately twice as fast as humans (Straube et al.,
1997; Chen-Harris et al., 2008). One possibility is that this is
attributable to interspecies differences in the eye plant. To check
for this, we simulated saccades while taking into account eye
dynamics of rhesus monkeys with a temporal discount function
found in humans (Fig. 3C, dashed line). We found that the sim-
ulated monkey saccades were somewhat slower than in humans.
Therefore, the differences in the eye plant did not appear to ac-
count for the differences in saccades. According to our theory, the
differences in saccades should be related to interspecies differ-
ences in valuation of stimuli and temporal discounting of reward.
Indeed, rhesus monkeys exhibit a much greater temporal dis-
count rate: when making a choice between stimuli that promise

Figure 3. Change in the reward discount function predicts change in saccade velocities. The lines are simulation results, and the
numbers refer to data from previous publications. For each line, the stimulus value � was kept constant. A, Saccade velocities in
Parkinson’s disease and healthy controls from data in the studies by Shibasaki et al. (1979), Collewijn et al. (1988), White et al.
(1983), Blekher et al. (2000), and Nakamura et al. (1991). Reducing the stimulus value decreases saccade speeds. The changes in
saccade speeds are bigger for large-amplitude saccades than small amplitudes. Parameter values are as follows: �� 0.52 	 10 4

to 1.08 	 10 4 and � � 2.5. B, Saccade velocities in children and young adults. Increasing the rate of discounting of reward (� in
Eq. 6) by a factor of 2 produces saccade velocities that are similar to those seen in children. The data are from the studies by
Fioravanti et al. (1995), Collewijn et al. (1988), and White et al. (1983). Parameter values are as follows: children, ��2.16	10 4;
adults, � � 1.08 	 10 4, � � 2.5. C, Saccade velocities in adult humans and rhesus monkeys. The dashed line represents
simulations for which a rhesus monkey eye plant was combined with a human temporal discount function. The black line repre-
sents simulations for which a monkey eye plant was combined with a monkey temporal discount function (� � 6.5 	 10 4). For
the human simulations, � � 1.08 	 10 4. The data on monkey saccades are from the study by Freedman (2008).
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reward (juice) over a range of tens of seconds, thirsty adult rhesus
monkeys (Kobayashi and Schultz, 2008; Hwang et al., 2009) ex-
hibit discount rates that are many times that of thirsty undergrad-
uate students (Jimura et al., 2009). When we took into account
this much faster temporal discount rate, our simulated monkey
saccades had velocities (Fig. 3C) that were fairly consistent with
the velocities that have been recorded from this species (Freedman,
2008).

It is noteworthy that among various species (Luhmann, 2009),
pigeons exhibit some of the highest temporal discount rates
(Green et al., 2004). Our theory suggests that their very fast, al-
most robotic-like movements are a reflection of this impulsivity.

Effect of delaying the reward
There are at least two shortcomings in the approach that we have
taken in testing our theory: first, in experiments that are per-
formed on humans, one is generally not explicitly rewarded for a
saccade (i.e., one is not paid, given juice, etc.). The reader may
doubt the idea that, in a darkened room, the brain would assign a
value to a point of light that serves as the goal of the move-
ment. A second problem is that we have used our theory to fit
existing data, but we have not made predictions and tested the
theory on new data. We designed an experiment to address
both shortcomings.

Volunteers were asked to make a saccade to a visual stimulus
(a point of light on a video monitor), as illustrated in Figure 4A.
No explicit reward or performance measures were provided.
Rather, the only manipulation was that on some blocks of trials
the stimulus disappeared after saccade onset and then reappeared
at a delay 
 after saccade end. Therefore, the saccade completed
but the stimulus was not present. Based on our hypothesis, at trial
onset the brain assigned a value to the target stimulus, and at
saccade end this value had declined as specified by Equation 1.
Because the saccade ended without the expected “reward,” each
trial induces a reward prediction error: if the movement com-
pleted at time p but the stimulus appeared at time p � 
, the
reward prediction error is as follows:

V(p � 
) � V(p) � �
��


(1 � �p)(1 � �(p � 
))
.

(20)

We have plotted Equation 20 in Figure 4B. We see that the intro-
duction of a delay will always produce a negative reward predic-
tion error. More importantly, with increasing delay the reward
prediction error tends to saturate.

In response to a reward prediction error, the brain should
update the value it assigns to the stimulus (i.e., it should devalue
it because it did not receive the reward that it was expecting). Our
value function is linear in � (Eq. 1). Therefore, an effective ap-

Table 1. Summary of data on the rate of discounting of reward in various populations

Condition Discounting of reward (rate) Saccades (peak velocity)

Schizophrenia Increased (Heerey et al., 2007; Gold et al., 2008) Increased (Mahlberg et al., 2001)
Melancholic depression Increased (Takahashi et al., 2008) Increased (Winograd-Gurvich et al., 2006)
Parkinson Decreased (Nakamura et al., 1991)
DA-medicated Parkinson’s disease patients Increased (Voon et al., 2010) Increased (Nakamura et al., 1991)
Huntington Decreased (Lasker and Zee, 1997)
Low serotonin Increased (Schweighofer et al., 2008) Increased (Long et al., 2009)
Testosterone Increased (Takahashi et al., 2006)
Premenstrual syndrome Decreased (Sundström and Bäckström, 1998)
Progesterone Decreased (van Broekhoven et al., 2006)
Nicotine Increased (Bickel et al., 1999; Reynolds et al., 2003; Ohmura et al., 2005)
Cocaine, heroine, or amphetamine Increased (Coffey et al., 2003; Kirby and Petry, 2004; Hoffman et al., 2006)
Ecstasy Increased (Morgan et al., 2006)
Alcoholism Increased (Mitchell et al., 2005)
Pathological gamblers Increased (Petry, 2001; Alessi and Petry, 2003; Dixon et al., 2003, 2006)

Figure 4. Delaying the stimulus discounts stimulus value. A, Experimental paradigm. Volunteers
were asked to look at a stimulus, but after saccade initiation, the stimulus was removed. The stimulus
was redisplayed at time 
 after saccade end. B, The black line is the theoretical estimate of reward
prediction error (Eq. 17). Parameter values are as follows: � � 1.08 	 10 4, � � 2.5. Saccade
duration is p � 110 ms. The data points are experimental results, showing within-subject change in
peak saccade velocity with respect to the no-delay condition. The changes in saccade velocity are
proportional to reward prediction error. C, Within-subject change in saccade amplitudes were uncor-
related with feedback delay. The horizontal and vertical error bars are SEM.
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proach to minimize the reward prediction error is to update � by
an amount proportional to the error as follows:

��n�1) � �(n) �



1 � �p
(V(p � 
) � V(p)). (21)

In Equation 21, the superscript refers to trial number and 
 is a
learning rate (i.e., sensitivity to reward prediction error, which is
unknown to us). Equation 21 predicts that the change in stimulus
value should be proportional to the change in reward prediction
error. Previously, we showed that as stimulus value decreased, so
did saccade velocity. Importantly, for small changes in stimulus
value the changes in velocity are proportional to changes in value.
Therefore, our model makes two concrete predictions: (1) a delay
in the availability of the stimulus with respect to movement com-
pletion will act as a reward prediction error, resulting in stimulus
devaluation and reduced saccade velocities, and (2) the change in
saccade velocities as a function of stimulus delay will be propor-
tional to reward prediction error (i.e., Eq. 20).

Figure 4B plots the changes that we recorded in saccade kine-
matics of our volunteers as a consequence of delay 
. We found
that delaying the stimulus resulted in reduced saccade velocities
(test for linear trend, p � 0.05), without producing consistent
changes in saccade amplitudes (Fig. 4C) (no significant linear
trend, p � 0.56). As the theory had predicted, the changes in
saccade velocities were proportional to the function specified in
Equation 20. That is, the changes in saccade velocities were pro-
portional to the hypothetical reward prediction error.

Cost of time during eye– head movements
Does our theory generalize to other, more complicated move-
ments? The movements that we have considered thus far are
unusual in the sense that the head is kept fixed during the eye
movement. In the natural setting, the brain responds to a stimu-
lus at position g by moving both the eyes and the head. These
head-free movements exhibit interesting characteristics: eye dis-
placements grow slower than linearly as a function of g (Goossens
and Van Opstal, 1997), whereas head displacements grow faster
than linearly as a function of g (Guitton and Volle, 1987). Fur-
thermore, duration of movement grows faster than linearly as a
function of g (Epelboim et al., 1997). We wondered whether the
hyperbolic cost of time could account for these coordinated
movements.

To simulate head-free movements, we replaced the accuracy
cost associated with eye position with an accuracy cost associated
with gaze, where gaze is the sum of eye and head positions. We did
not alter the parameters associated with this cost (i.e., kept T as
before). Mathematically, our control problem is identical with
one in which two arms cooperate to move a single cursor
(Todorov and Jordan, 2002; Diedrichsen, 2007). Here, the eyes
and head cooperate to move the fovea to the stimulus. However,
unlike the two-arm situation, because of the substantially larger
motor commands required to move the head than the eyes, the
motor and accuracy costs ensure that the eyes lead the head, as
shown for a simulated gaze change to a target at 45° in Figure 5A.
Note that gaze is brought to the target through a combination of
eye and head movements. Specifically, the eye contributions
grow slower than linearly as a function of target displacement g,
as shown in Figure 5B. These results are consequences of motor
and accuracy costs and are generally unaffected by how we penal-
ize time during a movement.

The cost of time, however, is strongly reflected in the relation-
ships between gaze amplitude, duration, and velocity. To com-

pare our model with other costs of time, we once again
considered two other functions that penalized time: linear and
quadratic. For small-amplitude gaze changes, the three costs were
indistinguishable in that they produced velocity–amplitude and
duration–amplitude relationships that matched the available
data (for example, 10 –30° amplitudes) (Fig. 5C,D). However, as
the movement amplitude increased, linear and quadratic costs
tended to underestimate gaze duration and overestimate gaze
velocity. This is a direct result of the fact that, with a hyperbolic
cost of time, the incremental cost associated with increased
movement duration becomes smaller as durations increase (i.e.,
the derivative of cost of time is decreasing). As a result, a hyper-
bolic cost once again reproduced velocity–amplitude– duration
relationships for both short- and long-amplitude movements.

If the duration and speed of our actions are dictated by how we
value the stimulus, then changing the context in which we view
the stimulus might change the value we attribute to it. Contextual
effects have been reported in control of gaze: when people are

Figure 5. Kinematic characteristics of gaze appear consistent with a hyperbolic temporal
discounting of reward. A, Simulation results for a gaze change to a target at 45°. Both the eyes
and the head contribute to the gaze change, with the eyes leading the movement. B, Displace-
ment of eye and head as a function of gaze amplitude. The gray region represents data from the
study by Goossens and Van Opstal (1997). C, Peak gaze velocity as a function of gaze amplitude
for three forms of temporal discounting. The data points are from the study by Epelboim et al.
(1997). Parameter values are as follows: hyperbolic, � � 1.35 	 10 4 and � � 2.5; linear,
�� 2.6 	 10 4; quadratic, �� 2.0 	 10 5. D, Gaze duration as a function of gaze amplitude.
Parameters are same as in C. E, Effect of context on gaze velocities. The data points are from the
study by Epelboim et al. (1997). The gray data points correspond to the tap task in which
volunteers looked at the target that they were reaching for, and the black data points corre-
spond to the look task, in which they only looked at the target. Simulation results of the hyper-
bolic model are shown by the lines. The stimulus value � was increased from � � 1.25 	 10 4

to � � 2.45 	 10 4.
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asked to look and tap objects, they produce faster gaze changes
than when they are asked to simply look at the objects (Epelboim
et al., 1997). If we assume that, in the tap condition, the brain
assigns a greater value � to the stimulus than in the look condi-
tion, then the model produces faster gaze velocities in the tap
condition, as shown in Figure 5E. Our results suggest that the
hyperbolic cost might be as relevant for eye– head movements as
for eye movements alone.

State-dependent value of a stimulus
Finally, let us consider the curious fact that the kinematics of
saccades to target of a reaching movement is affected by the load
that one might impose on the arm. For example, the peak speed of
a saccade is higher when there is a load that resists the reach, and
lower when the load assists the reach (van Donkelaar et al., 2004).
Why should varying the effort required to perform a reach to a
target affect saccade velocities to that target?

Animals do not assign a value to a stimulus based on its inher-
ent properties, but based on their own state when the stimulus
was encountered. For example, birds that are initially trained to
obtain equal rewards after either large or small effort, and are
then offered a choice without the effort, generally choose the
reward previously associated with the greater effort (Clement et
al., 2000). The choice indicates a greater utility (i.e., relative use-
fulness, rather than absolute value) for the reward that was at-
tained after a more effortful action. This phenomenon is called
state-dependent valuation learning and is present in a wide vari-
ety of species from mammals to invertebrates (for review, see
Pompilio and Kacelnik, 2010). In this framework, a reaching
movement that is resisted by a load arrives at the target after a
larger effort than one that is assisted. The more effortful state in
which the reward is encountered favors assignment of a greater
utility for that stimulus. This greater utility in our framework
produces a faster saccade.

Discussion
Let us assume that our brain assigns a value to every part of the
visible space, and each saccade is a voluntary movement with
which the brain directs the fovea to a region where, currently, the
value is highest. This framework naturally applies to the process
with which the brain selects an action. However, the puzzling fact
has been that the landscape of the value map also affects the
motor commands that move the eyes. For example, saccades to
faces are faster (Xu-Wilson et al., 2009), as are saccades to objects
that are subject of a reach (Epelboim et al., 1997; Snyder et al.,
2002; van Donkelaar et al., 2004). In monkeys, stimuli that prom-
ise greater reward result in saccades that have higher velocities
(Takikawa et al., 2002). What is the link between the value that
the brain assigns to a stimulus and the motor commands that it
programs to acquire that stimulus?

We imagined that the objective of any voluntary movement is
to place the body at a more valuable state. The value of the goal
state is not static but is discounted in time. This forms an implicit
cost of time (i.e., a penalty for the duration of our movement). To
formulate this cost, we relied on experiments in which subjects
were asked to choose between two amounts of reward: one that
would be given to them now versus one that would be given later.
These experiments measured time in years (Myerson and Green,
1995), or seconds (Jimura et al., 2009), and found that people’s
choices fit a hyperbolic function of time. Based on these results,
we imagined that discounting of reward might remain hyperbolic
even in the scale of milliseconds in which movements such as

saccades take place. Therefore, we imposed a cost on movement
durations as a hyperbolic function of time.

Previous research had suggested that there are other costs as-
sociated with voluntary movements: a cost for accuracy (Harris
and Wolpert, 1998) and a cost for effort (Todorov and Jordan,
2002; Izawa et al., 2008; O’Sullivan et al., 2009). To improve
accuracy and minimize effort, one must slow the movement and
increase its duration. However, if we also impose a cost of time
based on temporal discounting of reward, then a natural balance
arises between the desire to get as much reward as possible but be
as lazy as possible. When we applied this idea to control of sac-
cades, we found that the hyperbolic shape of temporal costs was
essential to reproduce the velocity– duration–amplitude rela-
tionship found in saccades of healthy people.

A principal neuronal system involved in the encoding of re-
ward is the dopamine system. Dopamine cells have a phasic dis-
charge that varies hyperbolically with respect to stimuli that
promise future reward (Kobayashi and Schultz, 2008). If a move-
ment is required to obtain this reward, our theory indicates that
the current value of this future reward should discount the motor
costs. Indeed, a smaller phasic discharge of dopamine neurons
precedes a slow reaching movement toward a food reward,
whereas a larger discharge precedes a fast reaching movement
toward the same reward [Ljungberg et al. (1992), their Tables 1,
2]. However, movement speeds are affected not only by the value
of the reward predicted by the stimulus but also by the subject’s
global motivational state. Niv et al. (2007) suggested that the
tonic discharge of dopamine neurons may encode the long-term
average rate of reward per unit of time, discounting the effort
needed to perform all actions. This model suggests that duration
of a movement carries a cost because of missed opportunities to
perform other actions. For example, it can account for the fact
that hungry animals are more active, as well as more vigorous in
each action. It is possible that tonic dopamine sets a baseline for
reward per unit of time as applied for all actions, whereas phasic
dopamine sets the reward per unit of time for the specific stimu-
lus that affords the upcoming movement.

In Parkinson’s disease, dopamine cells tend to die. Our infer-
ence that movements in PD are slow because of abnormally low
temporal costs is in close agreement with results obtained in
reaching movements of PD patients (Mazzoni et al., 2007). In
that study, Mazzoni and colleagues demonstrated that PD pa-
tients do not move slowly because they are incapable of making
fast and accurate movements: fast movements in PD are no more
inaccurate than in healthy people. They speculated that slowness
was related to a problem in how the PD brain evaluated effort,
which is equivalent to an abnormally large L in Equation 7. In our
formulation, slowness in PD arises because of an abnormally low
stimulus value �. Mathematically, these two mechanisms pro-
duce fairly similar saccades in the small-amplitude range for
which data are available.

If an abnormally small stimulus value can produce slow sac-
cades, then an abnormally large value should produce fast sac-
cades. In schizophrenia, saccade velocities are faster than in
healthy controls (Mahlberg et al., 2001). Schizophrenia is a com-
plex disease that likely involves dysfunction of generation and
uptake of many neurotransmitters including dopamine, gluta-
mate, and GABA. Stone et al. (2007) suggested that, in the stria-
tum of schizophrenic patients, there is greater than normal
dopamine synthesis. Kapur (2003) noted schizophrenics assign
an unusually high salience to stimuli so that “every stimulus be-
comes loaded with significance and meaning.” Indeed, all cur-
rently available antipsychotic medications have one common
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feature: they block dopamine D2 receptors. The reward temporal
discount function in schizophrenia has a higher slope with re-
spect to controls (Heerey et al., 2007; Klöppel et al., 2008), imply-
ing a greater discount rate. In our theory, this produces a faster
rise in the cost of time, increasing saccade speeds.

Our inference is that the processes with which the brain tem-
porally discounts reward are reflected in the kinematics of move-
ments. Psychologists have quantified discounting of reward in
diverse groups of patients and conditions, and physiologists have
measured saccade kinematics of many of these same groups. Our
theory suggests that there is a link between these two large bodies
of science (Table 1).

The hyperbolic form of the reward discount function is fa-
vored by psychologists, whereas the exponential form is favored
by economists and other theorist. Here, we chose the hyperbolic
form because, empirically, it is a better fit to choices that animals
make (Myerson and Green, 1995). However, in simulating sac-
cades, the timescales are too short to allow us to dissociate
between hyperbolic and exponential temporal discount func-
tions. Reaching movements may provide a better way to test
this dissociation.

Previous efforts in modeling voluntary movements such as
head-fixed (Harris and Wolpert, 1998) and head-free saccades
(Kardamakis and Moschovakis, 2009) had assumed a “best dura-
tion” for each movement amplitude. These models could not
explain why movements are a particular duration. More recent
efforts have suggested that duration of movements are linked to a
desired level of endpoint accuracy (Tanaka et al., 2006), implying
that faster movements that accompany more rewarding stimuli
are attributable to a reduced accuracy cost. It is hard to see why
eye movements should become less accurate when one is reach-
ing for the stimulus versus when one is simply looking at the
stimulus. Our proposed link between a cost of movement dura-
tion and temporal discounting of reward potentially resolves this
issue.

Although there are physiological data that link our cost of time
with temporal discounting of reward in the dopamine system
(Kobayashi and Schultz, 2008), the dorsolateral prefrontal cortex
(Kim et al., 2008), and the posterior parietal cortex (Louie and
Glimcher, 2010), there is comparatively little known regarding
the costs associated with effort and accuracy. Accuracy is a form
of spatial cost, referring to a measure of distance between state of
the eye and the rewarding state. As we move away from the fovea
on the retina, the neuronal density drops exponentially, and as a
result visual acuity drops exponentially. It is likely that, for sac-
cades, spatial accuracy costs are not quadratic as we have as-
sumed, but exponential. The implications of this idea remain to
be explored. Furthermore, we assumed that cost of time interacts
additively with other costs. An alternative, however, is to have
cost of time multiplicatively interact with accuracy costs. This
formulation does not produce satisfactory results with the cur-
rent accuracy costs, suggesting the need for additional theoretical
work.

In our theory, the cost of time during a movement depended
on two parameters: the value � that the brain assigned the stim-
ulus and the rate � that discounted this value in time. Our simu-
lations here only varied � because this variation altered the rate of
change in the cost of time, affecting velocities of small-amplitude
saccades for which data are available in various populations. Im-
portantly, for small-amplitude movements, it is difficult to dis-
sociate the effect of � versus �. However, for large amplitudes, �
alters the asymptotic velocities, whereas � has no effect on the
asymptote. If we could develop robust techniques to measure �

and � in the reward function of individuals, it would be possible
to test for within-subject correlations between the reward func-
tion and movement kinematics.

A prediction of our theory is that some of the interspecies
differences that exist in movement kinematics may be attribut-
able to differences in the cost of time arising from processing of
reward. It will be useful to test our theory on different kinds of
movements across various species and inquire about the evolu-
tionary basis of temporal discount rates and its link to changes in
motor control.
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