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Abstract
Deciding which piece of information to acquire or attend to is fundamental to perception,
categorization, medical diagnosis, and scientific inference. Four statistical theories of the value of
information—information gain, Kullback-Liebler distance, probability gain (error minimization),
and impact—are equally consistent with extant data on human information acquisition. Three
experiments, designed via computer optimization to be maximally informative, tested which of
these theories best describes human information search. Experiment 1, which used natural
sampling and experience-based learning to convey environmental probabilities, found that
probability gain explained subjects’ information search better than the other statistical theories or
the probability-of-certainty heuristic. Experiments 1 and 2 found that subjects behaved differently
when the standard method of verbally presented summary statistics (rather than experience-based
learning) was used to convey environmental probabilities. Experiment 3 found that subjects’
preference for probability gain is robust, suggesting that the other models contribute little to
subjects’ search behavior.
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optimal experimental design; Bayesian decision theory; probability gain; hypothesis testing;
computer simulation

Many situations require careful selection of information. Appropriate medical tests can
improve diagnosis and treatment. Carefully designed experiments can facilitate choosing
between competing scientific theories. Visual perception requires careful selection of eye
movements to informative parts of a visual scene. Intuitively, useful experiments are those
for which plausible competing theories make the most contradictory predictions. A Bayesian
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optimal-experimental-design (OED) framework provides a mathematical scheme for
calculating which query (experiment, medical test, or eye movement) is expected to be most
useful. Mathematically, the OED framework is a special case of Bayesian decision theory
(Savage, 1954). Note that a single theory is not tested in this framework; rather, multiple
theories are tested simultaneously. The usefulness of an experiment is a function of the
probabilities of the hypotheses under consideration, the explicit (and perhaps probabilistic)
predictions that those hypotheses entail, and which informational utility function is being
used.

When different queries cost different amounts, and different kinds of mistakes have different
costs, people should use those cost constraints to determine the best queries to make, rather
than using general-purpose criteria for the value of information. This article, however,
addresses situations in which information gathering is the only goal. Specifically, we focus
on situations in which the goal is to categorize an object by selecting useful features to view.
Querying a feature, to obtain information about the probability of a stimulus belonging to a
particular category, corresponds to an “experiment” in the OED framework and will
generally change one’s belief about the probability that the stimulus belongs to each of
several categories. For instance, in environments where a higher proportion of men than
women have beards, learning that a particular individual has a beard increases the
probability that he or she is male.

The various OED models differ in terms of how they calculate the usefulness of looking at
particular features. All of the models use Bayes’s theorem to update the probability of each
category (ci) when a particular feature value f is observed:

(1)

where

For updating to be possible, the probability distribution of the features and categories must
be known. Conveying a particular set of environmental probabilities to subjects presents a
practical difficulty, an issue we address subsequently.

Several researchers have offered specific OED models (utility functions) for quantifying
experiments’ usefulness in probabilistic environments (e.g., Fedorov, 1972; Good, 1950;
Lindley, 1956). We describe some prominent OED models from the literature in the next
section. They disagree with each other in important statistical environments as to which
potential experiment is expected to be most useful (Nelson, 2005, 2008).

OED Models of the Usefulness of Experiments
We use F (a random variable) to represent the experiment of looking at feature F before its
specific form (fj) is known. Each OED model quantifies F’s expected usefulness as the
average of the usefulness of the possible fj, weighted according to their probability:
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where u(fj) is the usefulness (utility) of observing fj, according to a particular utility
function. How does each OED model calculate of the usefulness of observing a particular
feature value fj, that is, u(fj)?

Probability gain (PG; error minimization; Baron, 1981, cited in Baron, 1985) defines a
datum’s usefulness as the extent to which it increases the probability of correctly guessing
the category of a randomly selected item:

Probability gain is by definition optimal when correct decisions are equally rewarded and
incorrect decisions are equally penalized (e.g., when each correct classification is worth a
euro, and each incorrect classification is worth nothing).

Information gain (IG; Lindley, 1956) defines a datum’s usefulness as the extent to which it
reduces uncertainty (Shannon entropy) about the probabilities of the individual categories ci:

Kullback-Liebler (KL) distance defines a datum’s usefulness as the extent to which it
changes beliefs about the possible categories, ci, where belief change is measured with KL
(Kullback & Liebler, 1951) distance:

Expected KL distance and expected information gain are always identical (Oaksford &
Chater, 1996)—meaning EP(f)[uKL(f)] = EP(f)[uIG(f)]—making those measures equivalent for
the purposes of this article.

Impact (Imp; Klayman & Ha, 1987, pp. 219–220; Nelson, 2005, 2008; Wells & Lindsay,
1980) defines a datum’s usefulness as the sum absolute change from prior to posterior
beliefs (perhaps multiplied by a positive constant) over all categories:

Impact and probability gain are equivalent if prior probabilities of the categories are equal.

These utility functions can be viewed as candidate descriptive models of attention for
categorization.

Bayesian diagnosticity (Good, 1950) and log diagnosticity, two additional measures, appear
to contradict subjects’ behavior (Nelson, 2005), so we do not consider them here.1

1The diagnosticity measures are also flawed as theoretical models (Nelson, 2005, 2008). For instance, they prefer a query that offers a
1 in 10100 probability of a certain result, but is otherwise useless, to a query that will always provide 99% certainty.
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Statistical Models and Human Information Acquisition
Which, if any, of these OED models describe human behavior? Wason’s research in the
1960s and several subsequent articles suggest that there are biases in human information
acquisition (Baron, Beattie, & Hershey, 1988; Klayman, 1995; Nickerson, 1998; Wason,
1960, 1966; Wason & Johnson-Laird, 1972; but see Peterson & Beach, 1967, pp. 37–38).
Since about 1980, however, several authors have suggested that OED principles provide a
good account of human information acquisition (McKenzie, 2004; Nelson, 2005, 2008;
Trope & Bassok, 1982), even on Wason’s original tasks (Ginzburg & Sejnowski, 1996;
McKenzie, 2004; Nelson, Tenenbaum, & Movellan, 2001; Oaksford & Chater, 1994). OED
principles have been used to design experiments on human memory (Cavagnaro, Myung,
Pitt, & Kujala, 2010), to explain eye movements as perceptual experiments (Butko &
Movellan, 2008; Nelson & Cottrell, 2007; Rehder & Hoffman, 2005), to control eye
movements in oculomotor robots (Denzler & Brown, 2002), and to predict individual
neurons’ responses (Nakamura, 2006).

Some researchers have claimed that human information acquisition is suboptimal because it
follows heuristic strategies. Those claims are questionable because certain heuristic
strategies themselves correspond to OED models. Consider the feature-difference heuristic
(Slowiaczek, Klayman, Sherman, & Skov, 1992). This heuristic, which applies in
categorization tasks with two categories (c1 and c2) and two-valued features, entails looking
at the feature for which |P(f1|c1) − P(f1|c2)| is maximized. This heuristic exactly implements
impact, an OED model, irrespective of the prior probabilities of c1 and c2, and irrespective
of the specific feature likelihoods (for proof, see Nelson, 2005, footnote 2; Nelson, 2009).
This heuristic, therefore, is not suboptimal at all. In another case, Baron et al. (1988) found
that subjects exhibited information bias—valuing queries that change beliefs but do not
improve probability of a correct guess—on a medical-diagnosis information-acquisition
task. Yet the OED models of information gain and impact also exhibit information bias
(Nelson, 2005), which suggests that the choice of model may be central to whether or not a
bias is found.

Which OED model best describes people’s choices about which questions to ask prior to
categorizing an object? Nelson (2005) found that existing experimental data in the literature
were unable to distinguish between the candidate models. Nelson’s new experimental results
strongly contradicted Bayesian diagnosticity and log diagnosticity, but were unable to
differentiate between other OED models as descriptions of human behavior.

In this article, we address whether information gain (or KL distance), impact, or probability
gain best explains subjects’ evidence-acquisition behavior. We also test the possibility that
people use a non-OED heuristic strategy of maximizing the probability of learning the true
hypothesis (or category) with certainty (Baron et al., 1988). Mathematically, the probability-
of-certainty heuristic states that a datum (e.g., a specific observed feature value or other
experiment outcome) has a utility of 1 if it reveals the true category with certainty, and a
utility of 0 otherwise.

We used computer search techniques to find statistical environments in which two models
maximally disagree about which of two features is more useful for categorization and then
tested those environments with human subjects. A major limitation of most previous work in
this area is that the subjects have been told probabilities verbally. However, verbal

2In some conditions, subjects could in principle have reached the performance criterion by learning only the F feature. However, error
data during learning (Figs. S4 and S5) in the Supplemental Material, debriefing of subjects following the experiment, explicit tests of
knowledge in a replication of Condition 1 of Experiment 1, and subsequent experiments showed that subjects learned configurations
of features.
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description and experience-based learning result in different behavior on several
psychological tasks (Hertwig, Barron, Weber, & Erev, 2004; McKenzie, 2006). We
therefore designed an experiment using experience-based learning, with natural sampling
(i.e., items were chosen at random from the specified environmental probabilities) and
immediate feedback to convey the underlying probabilities. We also used a within-subjects
manipulation to determine whether experience in the statistical environment and verbal
statistics-based transmission of the same probabilities yield similar patterns of information
acquisition.

Experiment 1: Pitting OED Theories Against One Another Using
Experience-Based Learning

This experiment involved classifying the species of simulated plankton (copepod) specimens
as species a or b (here, a and b play the role of c1 and c2), where the species was a
probabilistic function of two two-valued features, F and G. Subjects first learned
environmental probabilities in a learning phase, during which both features were visible, and
then completed an information-acquisition phase, in which only one of the features could be
selected and viewed on each trial.

In the learning phase, subjects learned the underlying environmental probabilities by
classifying the species of each plankton specimen and were given immediate feedback. On
each trial, a stimulus was chosen randomly according to the probabilities governing
categories and features. One form of each feature was always present. The learning phase
continued until a subject mastered the underlying probabilities. Figure 1 shows examples of
the plankton stimuli and illustrates the probabilistic nature of the categorization task.

In the subsequent information-acquisition phase, subjects continued to classify the plankton
specimens. However, the features were obscured so that only one feature (selected by the
subject) could be viewed on each trial. The feature likelihoods in each condition were
designed so that two competing theories of the value of information strongly disagreed about
which of the two features was more useful. In this way, subjects’ choice of which feature to
view provided information about which theoretical model best described their intuitions
about the usefulness of information. We pitted the different OED models and the
probability-of-certainty heuristic against each other in four conditions, as shown in Table 1.

Finally, each subject completed a verbal summary-statistic-based questionnaire on the
usefulness of several features in an alien-categorization task. The questionnaire employed
the same probabilities that the subject had just learned experientially on the plankton task.
Inclusion of this questionnaire enabled within-subjects comparison of how the different
means of conveying environmental probabilities affect information-acquisition behavior.

Subjects
Subjects were 129 students in social science classes at the University of California, San
Diego. They received partial or extra course credit for participation. Subjects completed the
study, which took 1.5 to 2 hr, in small groups of up to 5 people. They were assigned at
random to one of the four conditions in Table 1, with the constraint of keeping
approximately equal numbers of subjects who reached criterion learning-phase performance
in each condition.

Optimizing experimental probabilities
For each condition, we used computational search techniques to determine the feature
likelihoods that would maximize disagreement between a pair of theories about which
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feature (F or G) was more useful for categorization (see Optimization Notes in the
Supplemental Material available online for additional information on how the optimizations
were conducted). This automatic procedure found scenarios with strong (and often
nonobvious) disagreement between theories. Note that a prior probability distribution in this
task is specified by five numbers: the prior probability of category a, or P(a), and four
feature likelihoods, P(f1|a), P(f1|b), P(g1|a), and P(g1|b). We set P(a) to 70%, as suggested
by Nelson’s (2005) optimizations. The program first found, at random, a case in which the
two models disagreed, and then modified the four feature likelihoods to make that
disagreement as large as possible (Fig. 2). Table 1 gives the feature likelihoods obtained by
the optimization for each condition.

We defined the preference strength of a model m for feature F(PStrm) as the difference
between the two features’ expected usefulness, eum(F) − eum(G), where each term is defined
by Equation 1, scaled by the maximum possible difference in features’ usefulness according
to model m (maxPStrm) and multiplied by 100:

For all the OED models and the probability-of-certainty heuristic, the (typically unique)
maxPStrm is obtained when the categories are equally probable a priori, such that one
feature is definitive, and the other feature is useless, for example, when P(a) = P(b) = .50,
P(f1|a) = 0, P(f1|b) = 1, and P(g1|a) = P(g1|b).

We then defined the pair-wise disagreement strength (DStr) as the geometric mean of the
opposed models’ respective absolute preference strengths (PStrm1 and PStrm2), when Model
1 and Model 2 disagree:

If, however, the models agree about which feature is most useful, DStr is zero:

An example calculation is provided in the Optimization Notes section of the Supplemental
Material.

Experience-based learning experiment
Software was programmed to conduct the experiment. Subjects were familiarized with the
features in advance, to ensure that they perceived the two variants of each feature (see Fig.
S1 in the Supplemental Material for a sample stimulus from the learning phase). The
physical features (eye, claw, and tail) were adjusted during pilot research to minimize any
salience differences. Each subject was randomly assigned to one of 96 possible
randomizations of each condition to guard against any residual bias among the physical
features, the two variants of each feature, or the species names.

Design and procedure—The learning phase of the experiment was similar to the
learning phase of probabilistic category-learning experiments (Knowlton, Squire, & Gluck,
1994; Kruschke & Johansen, 1999). In each trial, a plankton stimulus was randomly
sampled from the environmental probabilities and presented to the subject: The category
was chosen according to the prior probabilities P(a) and P(b), and the features were
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generated according to the feature likelihoods P(f1|a), P(f1|b), P(g1|a), and P(g1|b). There
were no symmetries or other class-conditional feature dependencies. The subject classified
the specimen as species a or b and was given immediate feedback (smiley or frowny face)
on whether the classification was correct according to which category had been generated.
Note that the optimal decision (corresponding to the category with highest posterior
probability, given the observed features) was frequently given negative feedback, because
certain combinations of features were observed in both species (cf. Fig. 1). Subjects were
also given the running percentage of trials in which their classifications were correct.

Pilot work had revealed that subjects vary by more than a factor of 10 in the number of trials
they need to learn environmental probabilities. Therefore, the learning phase continued until
criterion performance was reached or the available time (~2 hr) elapsed. Criterion
performance was defined as either making at least 99% optimal (not necessarily correct)
responses in the last 200 trials, irrespective of the specific stimuli in those trials, or making
at least 95% optimal responses in the last 20 trials of every single stimulus type. The goal
was to ensure that subjects achieved high mastery of the environmental probabilities before
beginning the information-acquisition (test) phase.2 The test phase was designed to identify
which of the two features the subject considered most useful and, by implication, which of
the underlying theoretical models best describes the subjective value of information to that
subject. The test phase consisted of 101 trials in which the features were initially obscured,
and the subject could view only a single feature, chosen via a mouse click.

Results—The median number of trials required to achieve criterion performance in the
learning phase was 933, 734, 1,082, and 690 trials in Conditions 1 through 4, respectively.
Among the 129 subjects, 113 achieved criterion performance and were given the
information-acquisition task.

The most striking result from the information-acquisition task was that in all conditions,
irrespective of which theoretical models were being compared, the feature with higher
probability gain was preferred by a majority of subjects (Fig. 3). Moreover, the preference to
view the feature with higher probability gain (F) was quite strong. Across all conditions, the
median subject viewed the higher-probability-gain feature 99% of the time (in 100 of 101
trials).3 The median subject viewed F 97%, 97%, 99%, and 100% of the time in Conditions
1 through 4, respectively (Fig. 3). (Chance behavior would be 50%.) Between 82% and 97%
of subjects preferentially viewed the higher-probability-gain feature in each condition (Table
2; all ps < .001). In Conditions 1 and 2, all models except probability gain preferred G,
making subjects’ preference for F especially striking. In Condition 3, 27 of 28 subjects
preferred F, which optimized information gain, probability gain, and probability of certainty,
rather than impact. In Condition 4, 28 of 29 subjects preferred to optimize the OED models,
including probability gain, rather than the probability-of-certainty heuristic.

Summary-statistics-based task
After completing the experience-based learning and information-acquisition phases of the
probabilistic plankton-categorization task, subjects were given an equivalent task in which
environmental probabilities (prior probabilities and feature likelihoods) were presented
verbally via summary statistics. (Gigerenzer & Hoffrage, 1995, called this the standard
probability format.) This task used the Planet Vuma scenario (Skov & Sherman, 1986), in
which the goal is to classify the species of invisible aliens (glom or fizo) by asking about

3We tested separately the extent to which subjects viewed an individual feature when two features were statistically identical: P(a) =
P(b) = .5, P(f1|a) = 0, P(f1|b) = .5, P(g1|a) = 0, and P(g1|b) = .5. The median percentage of views to individuals’ more frequently
viewed feature was 64% across all subjects. This suggests that if the vast majority of subjects view a particular feature in the vast
majority of trials, that behavior should be taken to reflect a real preference between features, and not simply habit or perseveration.
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features that the different species have in varying proportion (such as wearing a hula hoop or
gurgling a lot). The prior probability of each species (e.g., P(glom) = 70%) and the
likelihoods of each feature (e.g., for the feature hula, P(hula | glom) = 0% and P(hula | fizo)
= 29%) exactly matched the values in the plankton task the subject had just completed
(though this was not disclosed). An uninformative third feature (present in 100% of both
species or in 0% of both species) was also included to ensure that subjects read and
understood the information presented. Subjects were asked to rate, from most to least useful
(in a rank ordering from 1 to 3), which of the features would be most helpful to enable them
to categorize an alien as a glom or fizo.

Statistics-based results were much less clear than the experience-based results, and
indistinguishable from chance in some conditions. It is interesting to note that the trend in
every condition was for the feature with higher information gain (rather than probability
gain) to be preferred. Were subjects consistent between the experience-based and statistics-
based tasks? We performed a chi-square test in each condition to assess whether individual
preferences following experience-based learning predicted preferences following summary-
statistics-based learning. All four comparisons were nonsignificant, providing no evidence
for within-subjects consistency, or inconsistency, or any relationship whatsoever between
the modalities. This suggests that results from summary-statistics-based information-
acquisition experiments in the literature may fail to predict behavior in naturalistic
information-acquisition tasks (e.g., eye movements in natural scenes) in which people have
personal experience with environmental probabilities.

Experiment 2: Summary-Statistics Versus Experience-Based Information
Acquisition

Confidence intervals for subjects’ preferences between features were much broader in the
summary-statistics-based task (in which subjects gave a rank order only) than in the
comparatively data-rich experience-based task (in which there were 101 information-
acquisition trials). We therefore obtained summary-statistics-based-task data from 85
additional University of California, San Diego, students. Subjects were randomly assigned
to one of the same four conditions as in Experiment 1 and to either an alien- or plankton-
categorization scenario. Each subject was randomly assigned to one of 96 possible
randomizations of the given condition’s probabilities. Results in both scenarios were
consistent with the results from the summary-statistics-based task in Experiment 1. We
therefore aggregated all summary-statistics-based results in the analyses that follow.

Table 2 compares the experience- and statistics-based information-acquisition results in
Experiments 1 and 2. In every condition, the percentage of subjects preferring F was
different for the two types of learning. Experience-based learning led to preferring the
feature with higher probability gain in every condition. Statistics-based learning led to a
modal preference to maximize information gain in each condition. However, the statistics-
based results were closer to chance than were the experience-based results in all conditions,
and indistinguishable from chance in Conditions 3 and 4.

Experiment 3: How Robust Is the Preference for Probability Gain?
In Experiment 3, we explored possible limits in the circumstances in which subjects
maximize probability gain. Experiment 3 was virtually identical to Experiment 1 in its
design and subject pool.4

4Contact Jonathan Nelson for complete details regarding the method for this experiment.
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Condition 1
Would information gain or the possibility of a certain result “break the tie” in people’s
choice of what feature to view when probability gain is indifferent? To address this, we
tested a scenario in which both F and G have probability gain .25, yet F has higher
information gain and is the only feature to offer the possibility of a certain result: P(a) = .50,
P(f1|a) = 0, P(f1|b) = .50, P(g1|a) = .25, and P(g1|b) = .75. It is surprising that only about half
of the subjects (12/22 = 55%) preferred F, even though its greater information and the
possibility of certainty had zero cost in terms of probability gain.

Condition 2
In Condition 2, we modified Conditions 1 and 2 from Experiment 1 so that probability gain
had a relatively marginal preference for F, whereas the other models had increased
preference for G. We tested one such scenario: P(a) = .70, P(f1|a) = 0, P(f1|b) = .15, P(g1|a)
= .57, and P(g1|b) = 0. In this condition, probability gain marginally prefers F (PStr = 9),
whereas the other models more strongly prefer G (PStr for information gain, impact, and
probability of certainty, respectively, are: −20, −35, and −35). Probability gain was
maximized by 8 of 9 learners.

Condition 3
Finally, we modified Conditions 1 and 2 from Experiment 1 so that the F feature, taken
alone, can never give a certain result: P(a) = .70, P(f1|a) = .04, P(f1|b) = .37, P(g1|a) = .57,
and P(g1|b) = 0. F has higher probability gain than G. Yet G is the only feature to offer the
possibility of a certain result and has higher information gain and impact than F. In this
condition, 6 of 20 subjects (30%) preferred G. This environment is the only one we
identified in which a nontrivial minority of subjects optimized something besides probability
gain.

Taken together, our data strongly point to probability gain (or a substantially similar model)
as the primary basis for the subjective value of information in categorization tasks.

General Discussion
This article reports the first information-acquisition experiment in which both

• environmental probabilities were designed to maximally differentiate theoretical
predictions of competing models, and

• experience-based learning was used to convey environmental probabilities.

Previous studies did not distinguish among several models of information-acquisition
behavior. Yet we obtained very clear results pointing to probability gain as the primary basis
for the subjective value of information for categorization. Our within-subjects comparison of
traditional summary-statistics-based presentation of environmental probabilities with
experience-based learning is another contribution: The convincing lack of relationship
between behavior in the two types of tasks is remarkable and should be explored further. For
instance, the visual system may more effectively code statistics and contingencies than
linguistic parts of the brain. As a practical matter, experience-based learning might be
speeded by simultaneous presentation of multiple examples (Matsuka & Corter, 2008).
Verbal-based information search might be facilitated by natural-frequency formats or
explicit instruction in Bayesian reasoning (Gigerenzer & Hoffrage, 1995; Krauss,
Martignon, & Hoffrage, 1999; Sedlmeier & Gigerenzer, 2001).

Treating evidence acquisition as an experimental-design problem broadens the “statistical
man” approach, which originally focused on inferences people make given preselected data

Nelson et al. Page 9

Psychol Sci. Author manuscript; available in PMC 2010 August 24.

H
H

M
I Author M

anuscript
H

H
M

I Author M
anuscript

H
H

M
I Author M

anuscript



(Peterson & Beach, 1967). Key current questions include the following: (a) Does
information acquisition in medical diagnosis, scientific-hypothesis testing, and word
learning optimize probability gain? (b) Does the visual system optimize probability gain
when directing the eyes’ gaze? and (c) Can people optimize criteria besides probability gain
when necessary? Theories of the statistical human should aim to address these issues in a
unified account of cognitive and perceptual learning and information acquisition.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
Illustrative plankton specimens. The plankton in the left half of the figure belong to species
a, and those in the right half of the figure belong to species b. Note that only the eye (which
can be yellow or black) and claw (which can be dark or light green) vary across the
specimens. (See Figs. S1–S3 in the Supplemental Material available online for the actual
stimuli; these examples have been altered to make the differences between features clearer
in print.) Because of the probabilistic distribution of the features within each species, most
specimens cannot be identified as species a or species b with certainty (i.e., the combination
of black eye and light claw occurs in both categories). Assuming the observed specimens
match underlying probabilities, the probabilities are as follows: P(species a|yellow eye) = 1,
P(species b|black eye) = 8/13, P(species a|light-green claw) = 7/8, and P(species b|dark-
green claw) = 7/8. Information gain, impact, and probability gain agree that the claw is more
useful for categorizing a random specimen than the eye is, but only the eye offers the
possibility of certainty.
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Fig. 2.
Four scenarios illustrating finding maximally informative features (F and G) to differentiate
the predictions of competing theoretical models of the value of information (Model 1 and
Model 2). The goal of optimization is to maximize disagreement strength (DStr)—which is
based on the geometric mean of the two models’ absolute preference strengths—between the
models. Because the optimization process generates feature likelihoods at random, the first
step typically finds only weak disagreement between competing theoretical models of the
value of information. In (a), Model 1 considers F to be slightly more useful than G, and
Model 2 considers G to be slightly more useful than F. The shallow slopes of the connecting
lines illustrate that the models’ (contradictory) preferences are weak, and DStr is low. An
ideal scenario for experimental test is shown in (b). Model 1 holds that F is much more
useful than G, whereas Model 2 has opposite and equally strong preferences. Thus, DStr is
maximal. In (c), Model 2 strongly prefers G to F, and Model 1 marginally prefers F to G.
This is not an ideal case to test experimentally. Because Model 1 is close to indifferent, DStr
is low even though Model 2 has a strong preference. DStr is higher in (d) than in (c) because
the models both have moderate (and contradictory) preferences.
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Fig. 3.
Preference for the higher-probability-gain feature (F) following experience-based learning in
the four conditions of Experiment 1. The boxes give the interquartile range, with notches
denoting the median subject in each condition. The outermost bars depict the range of the
subjects, with the exception of 2 outlier subjects (those with values more than 10 times
beyond the interquartile range, denoted by plus signs). Chance = 50% in each condition. See
Table 2 for comparison with verbal statistics-based learning results.
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