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Dehydroamino acids are important moieties in biological investigations and are found in many
natural products including roquefortine C and E,1 azinomycins A and B,2 AM-toxines and
tentoxin.3 Dehydroamino acids introduce conformational rigidity and change the reactivities
of peptides. They are also important intermediates in the biosynthesis of other non-
proteinogenic amino acids and D-amino acids.

Phomopsins A (1) and B (2) are natural products isolated from the fungus species Phomopsis
leptostromiformisa and potent inhibitors of microtubule polymerization (Figure 1).4 A
significant structural feature of phomopsins A and B is an unsaturated tripeptide side chain,
which contains dehydroisoleucine and dehydroaspartate. This side chain was reported to be
important for the molecular interaction of 1 with tubulin.5 In this report, we describe an efficient
and stereoselective synthesis of the phomopsin tripeptide side chain precursor.

Synthesis of the phomopsin side chain requires a stereoselective method to prepare (E)-
dehydroisoleucine. Many methods are available for the synthesis of dehydroamino acids, and
elimination of water from β-hydroxy-α-amino acids is a well established route. Activation of
the hydroxyl group for elimination can be achieved by many reagents: DAST/N,N-
diisopropylethyl amine (DIPEA), tosyl chloride, mesyl chloride, Martin’s sulfurane and
triphenyl phospine/diethyl azodicarboxylate (DEAD).6 However, these methods are not highly
stereoselective for E/Z isomers if there is no strong thermodynamic preference. Wandless et
al. first reported an anti-selective two-step cyclic sulfamidate approach to the (E)-
dehydroisoleucine. Based on this method they reported a total synthesis of phomopsin B in
2007.7 Ferreira et al. also reported an anti-selective Boc anhydride/DMAP elimination method.
Under their conditions all amides were Boc-protected.8 In addition to elimination approaches,
the Horner-Wadsworth-Emmons reaction has also been utilized to form the double bond.9 The
vinyl amidation method which couples amides and vinyl halides is another useful approach to
synthesize dehydroamino acids.10

We now describe a one-step copper-carbodimide elimination that provides the required (E)-
dehydroisoleucine in a highly stereoselective manner. The copper-carbodimide elimination
method was first reported in 1960s,11 Sai and co-workers found that this elimination method
could give high syn-selective E/Z enamides.12 The utility of the copper-carbodimide method
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to prepare dehydroamino acids in a natural product was demonstrated in the total synthesis of
roquefortine C.13

N-Boc-Dehydroproline (5) was prepared by a three-step sequence from commercially available
pyrrolidine 3 (Scheme 1). Michael addition of methyl cuprate to the commercially available
unsaturated ester 6, at low temperature resulted in a single anti addition product 7.14 Osmium
tetroxide-mediated dihydroxylation gave syn diol 8. (Sharpless asymmetric dihydroxylation
was not chosen because an enantiomeric pure compound was not needed since the syn
elimination would provide a single dehydration product.) Diol 8 was converted to cyclic sulfate
9 and treated with sodium azide to provide β-hydroxy azide 10. Hydrogenation of azide 10 to
amine 11 and subsequent coupling with acid 5 gave amide 12, the precursor of the dehydro
amino acid moiety.

We screened different EDC(1-ethyl-3-(3-dimethylaminopropyl) carbodiimide)-copper
mediated dehydration conditions to introduce the unsaturation and found that copper triflate
in THF gave the highest yield and the single desired isomer 13 (Table 1, all the entries gave a
single isomer 13). To our knowledge, this is the first example of preparing a trisubstituted
enamide by using this method.

The third amino acid fragment, amine 16, was prepared by a three-step sequence from
commercial available (+)-dimethyl tartrate (Scheme 2).15 The coupling between acid 17 and
amine 16 resulted in the formation of an unreactive azlactone 18.7b To avoid the azlactone
formation, the amide nitrogen had to be protected.

Thus, the ethyl ester 13 was converted to allyl ester 19 and the amide nitrogen was protected
with Boc to afford compound 20 (Scheme 3). The allyl ester was cleaved under palladium
catalyzed conditions to give acid 21 without reducing the double bond in the dehydroproline
moiety.16 A benzyl ester was also tested but the partial reduction of the double bond occurred
under hydrogenolysis conditions. Finally, acid 21 was coupled with amine 16 to give tripeptide
22 and Boc deprotection afforded 23 as the side chain precursor in the synthesis of phomopsin.
17 As shown by previous workers, the dehydroaspartate unit in the phomopsin side chain
isomerizes readily under basic conditions.18 Compound 23 will be coupled with the macrocycle
part of phomopsins A and B directly and the β-hydroxy group will not be eliminated until the
final stage of the synthesis.

A highly stereoselective approach to make the (E)-dehydroisoleucine moiety of the phomopsin
tripeptide side chain was developed to afford the material for the total syntheses of phomopsins
A and B. The copper-carbodimide method provides an efficient solution to the stereoselective
synthesis of dehydroamino acids. The synthesis and evaluation of the biological activities of
phomopsins and their analogues will be reported in due courses.
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Figure 1.
Phomopsins A and B.
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Scheme 1.
Preparation of the dehydration precursor
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Scheme 2.
Preparation of amine 16 and azlactone formation
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Scheme 3.
Completion of the side chain
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Table 1

Carbodimide Copper Dehydration.

Conditions Yield

CuCl2, 80 °C, toluene, overnight 11%

CuCl2, 100 °C, toluene, 2 h 20%

CuI, 100 °C, toluene, 4 h 30%

No copper, toluene, 100 °C, overnight 0

Cu(OTf)2, THF, 45 °C, overnight 42%

Cu(OTf)2, THF, 60 °C, 1.5 h 73%
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