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Abstract
The paper investigates parameterized approximate message-passing schemes that are based on
bounded inference and are inspired by Pearl's belief propagation algorithm (BP). We start with the
bounded inference mini-clustering algorithm and then move to the iterative scheme called Iterative
Join-Graph Propagation (IJGP), that combines both iteration and bounded inference. Algorithm IJGP
belongs to the class of Generalized Belief Propagation algorithms, a framework that allowed
connections with approximate algorithms from statistical physics and is shown empirically to surpass
the performance of mini-clustering and belief propagation, as well as a number of other state-of-the-
art algorithms on several classes of networks. We also provide insight into the accuracy of iterative
BP and IJGP by relating these algorithms to well known classes of constraint propagation schemes.

1. Introduction
Probabilistic inference is the principal task in Bayesian networks and is known to be an NP-
hard problem (Cooper, 1990; Roth, 1996). Most of the commonly used exact algorithms such
as join-tree clustering (Lauritzen & Spiegelhalter, 1988; Jensen, Lauritzen, & Olesen, 1990)
or variable-elimination (Dechter, 1996, 1999; Zhang, Qi, & Poole, 1994), and more recently
search schemes (Darwiche, 2001; Bacchus, Dalmao, & Pitassi, 2003; Dechter & Mateescu,
2007) exploit the network structure. While significant advances were made in the last decade
in exact algorithms, many real-life problems are too big and too hard, especially when their
structure is dense, since they are time and space exponential in the treewidth of the graph.
Approximate algorithms are therefore necessary for many practical problems, although
approximation within given error bounds is also NP-hard (Dagum & Luby, 1993; Roth,
1996).

The paper focuses on two classes of approximation algorithms for the task of belief updating.
Both are inspired by Pearl's belief propagation algorithm (Pearl, 1988), which is known to be
exact for trees. As a distributed algorithm, Pearl's belief propagation can also be applied

© 2010 AI Access Foundation. All rights reserved.

NIH Public Access
Author Manuscript
J Artif Intell Res. Author manuscript; available in PMC 2010 August 24.

Published in final edited form as:
J Artif Intell Res. 2010 January 1; 37: 279–328. doi:10.1613/jair.2842.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



iteratively to networks that contain cycles, yielding Iterative Belief Propagation (IBP), also
known as loopy belief propagation. When the networks contain cycles, IBP is no longer
guaranteed to be exact, but in many cases it provides very good approximations upon
convergence. Some notable success cases are those of IBP for coding networks (McEliece,
MacKay, & Cheng, 1998; McEliece & Yildirim, 2002), and a version of IBP called survey
propagation for some classes of satisfiability problems (Mézard, Parisi, & Zecchina, 2002;
Braunstein, Mézard, & Zecchina, 2005).

Although the performance of belief propagation is far from being well understood in general,
one of the more promising avenues towards characterizing its behavior came from analogies
with statistical physics. It was shown by Yedidia, Freeman, and Weiss (2000, 2001) that belief
propagation can only converge to a stationary point of an approximate free energy of the
system, called Bethe free energy. Moreover, the Bethe approximation is computed over pairs
of variables as terms, and is therefore the simplest version of the more general Kikuchi
(1951) cluster variational method, which is computed over clusters of variables. This
observation inspired the class of Generalized Belief Propagation (GBP) algorithms, that work
by passing messages between clusters of variables. As mentioned by Yedidia et al. (2000),
there are many GBP algorithms that correspond to the same Kikuchi approximation. A version
based on region graphs, called “canonical” by the authors, was presented by Yedidia et al.
(2000, 2001, 2005). Our algorithm Iterative Join-Graph Propagation is a member of the GBP
class, although it will not be described in the language of region graphs. Our approach is very
similar to and was independently developed from that of McEliece and Yildirim (2002). For
more information on BP state of the art research see the recent survey by Koller (2010).

We will first present the mini-clustering scheme which is an anytime bounded inference scheme
that generalizes the mini-bucket idea. It can be viewed as a belief propagation algorithm over
a tree obtained by a relaxation of the network's structure (using the technique of variable
duplication). We will subsequently present Iterative Join-Graph Propagation (IJGP) that sends
messages between clusters that are allowed to form a cyclic structure.

Through these two schemes we investigate: (1) the quality of bounded inference as an anytime
scheme (using mini-clustering); (2) the virtues of iterating messages in belief propagation type
algorithms, and the result of combining bounded inference with iterative message-passing (in
IJGP).

In the background section 2, we overview the Tree-Decomposition scheme that forms the basis
for the rest of the paper. By relaxing two requirements of the tree-decomposition, that of
connectedness (via mini-clustering) and that of tree structure (by allowing cycles in the
underlying graph), we combine bounded inference and iterative message-passing with the basic
tree-decomposition scheme, as elaborated in subsequent sections.

In Section 3 we present the partitioning-based anytime algorithm called Mini-Clustering (MC),
which is a generalization of the Mini-Buckets algorithm (Dechter & Rish, 2003). It is a
message-passing algorithm guided by a user adjustable parameter called i-bound, offering a
flexible tradeoff between accuracy and efficiency in anytime style (in general the higher the i-
bound, the better the accuracy). MC algorithm operates on a tree-decomposition, and similar
to Pearl's belief propagation algorithm (Pearl, 1988) it converges in two passes, up and down
the tree. Our contribution beyond other works in this area (Dechter & Rish, 1997; Dechter,
Kask, & Larrosa, 2001) is in: (1) Extending the partition-based approximation for belief
updating from mini-buckets to general tree-decompositions, thus allowing the computation of
the updated beliefs for all the variables at once. This extension is similar to the one proposed
by Dechter et al. (2001), but replaces optimization with probabilistic inference. (2) Providing
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empirical evaluation that demonstrates the effectiveness of the idea of tree-decomposition
combined with partition-based approximation for belief updating.

Section 4 introduces the Iterative Join-Graph Propagation (IJGP) algorithm. It operates on a
general join-graph decomposition that may contain cycles. It also provides a user adjustable
i-bound parameter that defines the maximum cluster size of the graph (and hence bounds the
complexity), therefore it is both anytime and iterative. While the algorithm IBP is typically
presented as a generalization of Pearl's Belief Propagation algorithm, we show that IBP can
be viewed as IJGP with the smallest i-bound.

We also provide insight into IJGP's behavior in Section 4. Zero-beliefs are variable-value pairs
that have zero conditional probability given the evidence. We show that: (1) if a value of a
variable is assessed as having zero-belief in any iteration of IJGP, it remains a zero-belief in
all subsequent iterations; (2) IJGP converges in a finite number of iterations relative to its set
of zero-beliefs; and, most importantly (3) that the set of zero-beliefs decided by any of the
iterative belief propagation methods is sound. Namely any zero-belief determined by IJGP
corresponds to a true zero conditional probability relative to the given probability distribution
expressed by the Bayesian network.

Empirical results on various classes of problems are included in Section 5, shedding light on
the performance of IJGP(i). We see that it is often superior, or otherwise comparable, to other
state-of-the-art algorithms.

The paper is based in part on earlier conference papers by Dechter, Kask, and Mateescu
(2002), Mateescu, Dechter, and Kask (2002) and Dechter and Mateescu (2003).

2. Background
In this section we provide background for exact and approximate probabilistic inference
algorithms that form the basis of our work. While we present our algorithms in the context of
directed probabilistic networks, they are applicable to any graphical model, including Markov
networks.

2.1 Preliminaries
Notations: A reasoning problem is defined in terms of a set of variables taking values on finite
domains and a set of functions defined over these variables. We denote variables or subsets of
variables by uppercase letters (e.g., X, Y, Z, S, R. . .) and values of variables by lower case
letters (e.g., x, y, z, s). An assignment (X1 = x1,. . ., Xn = xn) can be abbreviated as x = (x1,. . .,
xn). For a subset of variables S, DS denotes the Cartesian product of the domains of variables
in S. xS is the projection of x = (x1,. . ., xn) over a subset S. We denote functions by letters f, g,
h, etc., and the scope (set of arguments) of the function f by scope(f).

DEFINITION 1 (graphical model) (Kask, Dechter, Larrosa, & Dechter, 2005) A graphical model
 is a 3-tuple, , where: X = {X1,. . ., Xn} is a finite set of variables; D = {D1,. . .,

Dn} is the set of their respective finite domains of values; F = {f1,. . ., fr} is a set of positive
real-valued discrete functions, each defined over a subset of variables , called its scope,
and denoted by scope (fi). A graphical model typically has an associated combination operator
1 ⊗, (e.g.,  - product, sum). The graphical model represents the combination of all
its functions: . A graphical model has an associated primal graph that captures the
structural information of the model:

1The combination operator can also be defined axiomatically (Shenoy, 1992).
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DEFINITION 2 (primal graph, dual graph) The primal graph of a graphical model is an undirected
graph that has variables as its vertices and an edge connects any two vertices whose
corresponding variables appear in the scope of the same function. A dual graph of a graphical
model has a one-to-one mapping between its vertices and functions of the graphical model.
Two vertices in the dual graph are connected if the corresponding functions in the graphical
model share a variable. We denote the primal graph by G = (X, E), where X is the set of variables
and E is the set of edges.

DEFINITION 3 (belief networks) A belief (or Bayesian) network is a graphical model
, where G = (X, E) is a directed acyclic graph over variables X and P = {pi},

where pi = {p(Xi | pa (Xi))} are conditional probability tables (CPTs) associated with each
variable Xi and pa(Xi) = scope(pi)−{Xi} is the set of parents of Xi in G. Given a subset of
variables S, we will write P(s) as the probability P(S = s), where s ∈ DS. A belief network

represents a probability distribution over X, . An evidence set
e is an instantiated subset of variables. The primal graph of a belief network is called a moral
graph. It can be obtained by connecting the parents of each vertex in G and removing the
directionality of the edges. Equivalently, it connects any two variables appearing in the same
family (a variable and its parents in the CPT).

Two common queries in Bayesian networks are Belief Updating (BU) and Most Probable
Explanation (MPE).

DEFINITION 4 (belief network queries) The Belief Updating (BU) task is to find the posterior
probability of each single variable given some evidence e, that is to compute P(Xi|e). The Most
Probable Explanation (MPE) task is to find a complete assignment to all the variables having
maximum probability given the evidence, that is to compute argmaxX∏ipi.

2.2 Tree-Decomposition Schemes
Tree-decomposition is at the heart of most general schemes for solving a wide range of
automated reasoning problems, such as constraint satisfaction and probabilistic inference. It is
the basis for many well-known algorithms, such as join-tree clustering and bucket elimination.
In our presentation we will follow the terminology of Gottlob, Leone, and Scarcello (2000)
and Kask et al. (2005).

DEFINITION 5 (tree-decomposition, cluster-tree) Let  be a belief network. A tree-
decomposition for  is a triple 〈T, χ, ψ〉, where T = (V, E) is a tree, and χ and ψ are labeling
functions which associate with each vertex v ∈ V two sets, χ(v) ⊆ X and ψ(v) ⊆ P satisfying:

1. For each function pi ∈ P, there is exactly one vertex v ∈ V such that pi ∈ ψ(v), and
scope(pi) ⊆χ(v).

2. For each variable Xi ∈ X, the set {v ∈ V|Xi ∈ χ(v)} induces a connected subtree of T.
This is also called the running intersection (or connectedness) property.

We will often refer to a node and its functions as a cluster and use the term tree-decomposition
and cluster-tree interchangeably.

DEFINITION 6 (treewidth, separator, eliminator) Let D = 〈T, χ, ψ〉 be a tree-decomposition of a
belief network . The treewidth (Arnborg, 1985) of D is maxv∈V|χ(v) − 1. The treewidth of 
is the minimum treewidth over all its tree-decompositions. Given two adjacent vertices u and
v of a tree-decomposition, the separator of u and v is defined as , and
the eliminator of u with respect to v is elim(u, v) = χ(u) − χ(v). The separator-width of D is
max(u,v)|sep(u, v)|. The minimum treewidth of a graph G can be shown to be identical to a
related parameter called induced-width (Dechter & Pearl, 1987).
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Join-tree and cluster-tree elimination (CTE) In both Bayesian network and constraint
satisfaction communities, the most used tree-decomposition method is join-tree decomposition
(Lauritzen & Spiegelhalter, 1988; Dechter & Pearl, 1989), introduced based on relational
database concepts (Maier, 1983). Such decompositions can be generated by embedding the
network's moral graph G into a chordal graph, often using a triangulation algorithm and using
its maximal cliques as nodes in the join-tree. The triangulation algorithm assembles a join-tree
by connecting the maximal cliques in the chordal graph in a tree. Subsequently, every CPT
pi is placed in one clique containing its scope. Using the previous terminology, a join-tree
decomposition of a belief network  is a tree T = (V, E), where V is the set of
cliques of a chordal graph G′ that contains G, and E is a set of edges that form a tree between
cliques, satisfying the running intersection property (Maier, 1983). Such a join-tree satisfies
the properties of tree-decomposition and is therefore a cluster-tree (Kask et al., 2005). In this
paper, we will use the terms tree-decomposition and join-tree decomposition interchangeably.

There are a few variants for processing join-trees for belief updating (e.g., Jensen et al.,
1990; Shafer & Shenoy, 1990). We adopt here the version from Kask et al. (2005), called
cluster-tree-elimination (CTE), that is applicable to tree-decompositions in general and is
geared towards space savings. It is a message-passing algorithm; for the task of belief updating,
messages are computed by summation over the eliminator between the two clusters of the
product of functions in the originating cluster. The algorithm, denoted CTE-BU (see Figure
1), pays a special attention to the processing of observed variables since the presence of
evidence is a central component in belief updating. When a cluster sends a message to a
neighbor, the algorithm operates on all the functions in the cluster except the message from
that particular neighbor. The message contains a single combined function and individual
functions that do not share variables with the relevant eliminator. All the non-individual
functions are combined in a product and summed over the eliminator.

Example 1 Figure 2a describes a belief network and Figure 2b a join-tree decomposition for
it. Figure 2c shows the trace of running CTE-BU with evidence G = ge, where h(u,v) is a message
that cluster u sends to cluster v.

THEOREM 1 (complexity of CTE-BU) (Dechter et al., 2001; Kask et al., 2005) Given a Bayesian
network  and a tree-decomposition 〈T, χ, ψ〉 of , the time complexity of CTEBU
is O(deg · (n + N) · dw*+1) and the space complexity is O(N · dsep), where deg is the maximum
degree of a node in the tree-decomposition, n is the number of variables, N is the number of
nodes in the tree-decomposition, d is the maximum domain size of a variable, w* is the
treewidth and sep is the maximum separator size.

3. Partition-Based Mini-Clustering
The time, and especially the space complexity, of CTE-BU renders the algorithm infeasible
for problems with large treewidth. We now introduce Mini-Clustering, a partition-based
anytime algorithm which computes bounds or approximate values on P(Xi, e) for every variable
Xi.

3.1 Mini-Clustering Algorithm
Combining all the functions of a cluster into a product has a complexity exponential in its
number of variables, which is upper bounded by the induced width. Similar to the mini-bucket
scheme (Dechter, 1999), rather than performing this expensive exact computation, we partition
the cluster into p mini-clusters mc(1),. . ., mc(p), each having at most i variables, where i is an

accuracy parameter. Instead of computing by CTE-BU , we can
divide the functions of ψ(u) into p mini-clusters mc(k), k ∈ {1,. . ., p}, and rewrite
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.  By migrating the summation operator

into each mini-cluster, yielding , we get an upper bound on h(u,v).
The resulting algorithm is called MC-BU(i).

Consequently, the combined functions are approximated via mini-clusters, as follows. Suppose
u ∈ V has received messages from all its neighbors other than v (the message from v is ignored
even if received). The functions in clusterv(u) that are to be combined are partitioned into mini-
clusters {mc(1),. . ., mc(p)}, each one containing at most i variables. Each mini-cluster is
processed by summation over the eliminator, and the resulting combined functions as well as
all the individual functions are sent to v. It was shown by Dechter and Rish (2003) that the
upper bound can be improved by using the maximization operator max rather than the
summation operator sum on some mini-buckets. Similarly, lower bounds can be generated by
replacing sum with min (minimization) for some mini-buckets. Alternatively, we can replace
sum by a mean operator (taking the sum and dividing by the number of elements in the sum),
in this case deriving an approximation of the joint belief instead of a strict upper bound.

Algorithm MC-BU for upper bounds can be obtained from CTE-BU by replacing step 2 of the
main loop and the final part of computing the upper bounds on the joint belief by the procedure
given in Figure 3. In the implementation we used for the experiments reported here, the
partitioning was done in a greedy brute-force manner. We ordered the functions according to
their sizes (number of variables), breaking ties arbitrarily. The largest function was placed in
a mini-cluster by itself. Then, we picked the largest remaining function and probed the mini-
clusters in the order of their creation, trying to find one that together with the new function
would have no more than i variables. A new mini-cluster was created whenever the existing
ones could not accommodate the new function.

Example 2 Figure 4 shows the trace of running MC-BU(3) on the problem in Figure 2. First,
evidence G = ge is assigned in all CPTs. There are no individual functions to be sent from
cluster 1 to cluster 2. Cluster 1 contains only 3 variables, χ(1) = {A, B, C}, therefore it is not

partitioned. The combined function  is computed and

the message  is sent to node 2. Now, node 2 can send its message to node
3. Again, there are no individual functions. Cluster 2 contains 4 variables, χ(2) = {B, C, D,
F}, and a partitioning is necessary: MC-BU(3) can choose mc(1) = {p(d|b), h(1,2)(b, c)} and

md(2) = {p(f|c, d)}. The combined functions  and

 are computed and the message  is sent to
node 3. The algorithm continues until every node has received messages from all its neighbors.
An upper bound on p(a, G = ge) can now be computed by choosing cluster 1, which contains
variable A. It doesn't need partitioning, so the algorithm just computes

. Notice that unlike CTE-BU which processes
4 variables in cluster 2, MC-BU(3) never processes more than 3 variables at a time.

It was already shown that:

THEOREM 2 (Dechter & Rish, 2003) Given a Bayesian network  and the evidence
e, the algorithm MC-BU(i) computes an upper bound on the joint probability P(Xi, e) of each
variable Xi (and each of its values) and the evidence e.

THEOREM 3 (complexity of MC-BU(i)) (Dechter et al., 2001) Given a Bayesian network
 and a tree-decomposition 〈T, χ, ψ〉 of , the time and space complexity of MC-
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BU(i) is O(n · hw* · di), where n is the number of variables, d is the maximum domain size of
a variable and , which bounds the number of mini-
clusters.

Semantics of Mini-Clustering The mini-bucket scheme was shown to have the semantics of
relaxation via node duplication (Kask & Dechter, 2001; Choi, Chavira, & Darwiche, 2007).
We extend it to mini-clustering by showing how it can apply as is to messages that flow in one
direction (inward, from leaves to root), as follows. Given a tree-decomposition D, where CTE-
BU computes a function h(u,v) (the message that cluster u sends to cluster v), MC-BU(i)
partitions cluster u into p mini-clusters u1,. . ., up, which are processed independently and then
the resulting functions h(ui,v) are sent to v. Instead consider a different decomposition D′, which
is just like D, with the exception that (a) instead of u, it has clusters u1,. . ., up, all of which are
children of v, and each variable appearing in more than a single mini-cluster becomes a new
variable, (b) each child w of u (in D) is a child of uk (in D′), such that h(w,u) (in D) is assigned
to uk (in D') during the partitioning. Note that D′ is not a legal tree-decomposition relative to
the original variables since it violates the connectedness property: the mini-clusters u1,. . .,
up contain variables elim(u, v) but the path between the nodes u1,. . ., up (this path goes through
v) does not. However, it is a legal tree-decomposition relative to the new variables. It is
straightforward to see that H(u,v) computed by MC-BU(i) on D is the same as {h(ui,v)|i = 1,. . .,
p} computed by CTE-BU on D′ in the direction from leaves to root.

If we want to capture the semantics of the outward messages from root to leaves, we need to
generate a different relaxed decomposition (D″) because MC, as defined, allows a different
partitioning in the up and down streams of the same cluster. We could of course stick with the
decomposition in D′ and use CTE in both directions which would lead to another variant of
mini-clustering.

Example 3 Figure 5(a) shows a trace of the bottom-up phase of MC-BU(3) on the network in
Figure 4. Figure 5(b) shows a trace of the bottom-up phase of CTE-BU algorithm on a problem
obtained from the problem in Figure 4 by splitting nodes D (into D′ and D″) and F (into F′ and
F″).

The MC-BU algorithm computes an upper bound P̄(Xi, e) on the joint probability P(Xi, e).
However, deriving a bound on the conditional probability P(Xi|e) is not easy when the exact
value of P(e) is not available. If we just try to divide (multiply) P̄(Xi, e) by a constant, the result
is not necessarily an upper bound on P(Xi|e). It is easy to show that normalization,

, with the mean operator is identical to normalization of MC-BU
output when applying the summation operator in all the mini-clusters.

MC-BU(i) is an improvement over the Mini-Bucket algorithm MB(i), in that it allows the
computation of P̄(Xi, e) for all variables with a single run, whereas MB(i) computes P̄(Xi, e)
for just one variable, with a single run. When computing P̄(Xi, e) for each variable, MB(i) has
to be run n times, once for each variable, an algorithm we call nMB(i). It was demonstrated by
Mateescu et al. (2002) that MC-BU(i) has up to linear speed-up over nMB(i). For a given i,
the accuracy of MC-BU(i) can be shown to be not worse than that of nMB(i).

3.2 Experimental Evaluation of Mini-Clustering
The work of Mateescu et al. (2002) and Kask (2001) provides an empirical evaluation of MC-
BU that reveals the impact of the accuracy parameter on its quality of approximation and
compares with Iterative Belief Propagation and a Gibbs sampling scheme. We will include
here only a subset of these experiments which will provide the essence of our results. Additional
empirical evaluation of MC-BU will be given when comparing against IJGP later in this paper.
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We tested the performance of MC-BU(i) on random Noisy-OR networks, random coding
networks, general random networks, grid networks, and three benchmark CPCS files with 54,
360 and 422 variables respectively (these are belief networks for medicine, derived from the
Computer based Patient Case Simulation system, known to be hard for belief updating). On
each type of network we ran Iterative Belief Propagation (IBP) - set to run at most 30 iterations,
Gibbs Sampling (GS) and MC-BU(i), with i from 2 to the treewidth w* to capture the anytime
behavior of MC-BU(i).

The random networks were generated using parameters (N,K,C,P), where N is the number of
variables, K is their domain size (we used only K=2), C is the number of conditional probability
tables and P is the number of parents in each conditional probability table. The parents in each
table are picked randomly given a topological ordering, and the conditional probability tables
are filled randomly. The grid networks have the structure of a square, with edges directed to
form a diagonal flow (all parallel edges have the same direction). They were generated by
specifying N (a square integer) and K (we used K=2). We also varied the number of evidence
nodes, denoted by |e| in the tables. The parameter values are reported in each table. For all the
problems, Gibbs sampling performed consistently poorly so we only include part of its results
here.

In our experiments we focused on the approximation power of MC-BU(i). We compared two
versions of the algorithm. In the first version, for every cluster, we used the max operator in
all its mini-clusters, except for one of them that was processed by summation. In the second
version, we used the operator mean in all the mini-clusters. We investigated this second version
of the algorithm for two reasons: (1) we compare MC-BU(i) with IBP and Gibbs sampling,
both of which are also approximation algorithms, so it would not be possible to compare with
a bounding scheme; (2) we observed in our experiments that, although the bounds improve as
the i-bound increases, the quality of bounds computed by MC-BU(i) was still poor, with upper
bounds being greater than 1 in many cases.2 Notice that we need to maintain the sum operator
for at least one of the mini-clusters. The mean operator simply performs summation and divides
by the number of elements in the sum. For example, if A, B, C are binary variables (taking
values 0 and 1), and f(A, B, C) is the aggregated function of one mini-cluster, and elim = {A,

B}, then computing the message h(C) by the mean operator gives: .

We computed the exact solution and used three different measures of accuracy: 1) Normalized
Hamming Distance (NHD) - we picked the most likely value for each variable for the
approximate and for the exact, took the ratio between the number of disagreements and the
total number of variables, and averaged over the number of problems that we ran for each class;
2) Absolute Error (Abs. Error) - is the absolute value of the difference between the approximate
and the exact, averaged over all values (for each variable), all variables and all problems; 3)
Relative Error (Rel. Error) - is the absolute value of the difference between the approximate
and the exact, divided by the exact, averaged over all values (for each variable), all variables
and all problems. For coding networks, we report only one measure, Bit Error Rate (BER). In
terms of the measures defined above, BER is the normalized Hamming distance between the
approximate (computed by an algorithm) and the actual input (which in the case of coding
networks may be different from the solution given by exact algorithms), so we denote them
differently to make this semantic distinction. We also report the time taken by each algorithm.
For reported metrics (time, error, etc.) provided in the Tables, we give both mean and max
values.

2Wexler and Meek (2008) compared the upper/lower bounding properties of the mini-bucket on computing probability of evidence.
Rollon and Dechter (2010) further investigated heuristic schemes for mini-bucket partitioning.
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In Figure 6 we show that IBP converges after about 5 iterations. So, while in our experiments
we report its time for 30 iterations, its time is even better when sophisticated termination is
used. These results are typical of all runs.

Random Noisy-OR networks results—are summarized in Tables 1 and 2, and Figure 7.
For NHD, both IBP and MC-BU gave perfect results. For the other measures, we noticed that
IBP is more accurate when there is no evidence by about an order of magnitude. However, as
evidence is added, IBP's accuracy decreases, while MC-BU's increases and they give similar
results. We see that MC-BU gets better as the accuracy parameter i increases, which shows its
anytime behavior.

General random networks results—are summarized in Figure 8. They are similar to those
for random Noisy-OR networks. Again, IBP has the best result only when the number of
evidence variables is small. It is remarkable how quickly MC-BU surpasses the performance
of IBP as evidence is added (for more, see the results of Mateescu et al., 2002).

Random coding networks results—are given in Table 3 and Figure 9. The instances fall
within the class of linear block codes, (σ is the channel noise level). It is known that IBP is
very accurate for this class. Indeed, these are the only problems that we experimented with
where IBP outperformed MC-BU throughout. The anytime behavior of MC-BU can again be
seen in the variation of numbers in each column and more vividly in Figure 9.

Grid networks results—are given in Figure 10. We notice that IBP is more accurate for no
evidence and MC-BU is better as more evidence is added. The same behavior was consistently
manifested for smaller grid networks that we experimented with (from 7×7 up to 14×14).

CPCS networks results—We also tested on three CPCS benchmark files. The results are
given in Figure 11. It is interesting to notice that the MC-BU scheme scales up to fairly large
networks, like the real life example of CPCS422 (induced width 23). IBP is again more accurate
when there is no evidence, but is surpassed by MC-BU when evidence is added. However,
whereas MC-BU is competitive with IBP time-wise when i-bound is small, its runtime grows
rapidly as i-bound increases. For more details on all these benchmarks see the results of
Mateescu et al. (2002).

Summary—Our results show that, as expected, IBP is superior to all other approximations
for coding networks. However, for random Noisy-OR, general random, grid networks and the
CPCS networks, in the presence of evidence, the mini-clustering scheme is often superior even
in its weakest form. The empirical results are particularly encouraging as we use an un-
optimized scheme that exploits a universal principle applicable to many reasoning tasks.

4. Join-Graph Decomposition and Propagation
In this section we introduce algorithm Iterative Join-Graph Propagation (IJGP) which, like
mini-clustering, is designed to benefit from bounded inference, but also exploit iterative
message-passing as used by IBP. Algorithm IJGP can be viewed as an iterative version of mini-
clustering, improving the quality of approximation, especially for low i-bounds. Given a cluster
of the decomposition, mini-clustering can potentially create a different partitioning for every
message sent to a neighbor. This dynamic partitioning can happen because the incoming
message from each neighbor has to be excluded when realizing the partitioning, so a different
set of functions are split into mini-clusters for every message to a neighbor. We can define a
version of mini-clustering where for every cluster we create a unique static partition into mini-
clusters such that every incoming message can be included into one of the mini-clusters. This
version of MC can be extended into IJGP by introducing some links between mini-clusters of

Mateescu et al. Page 9

J Artif Intell Res. Author manuscript; available in PMC 2010 August 24.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



the same cluster, and carefully limiting the interaction between the resulting nodes in order to
eliminate over-counting.

Algorithm IJGP works on a general join-graph that may contain cycles. The cluster size of the
graph is user adjustable via the i-bound (providing the anytime nature), and the cycles in the
graph allow the iterative application of message-passing. In Subsection 4.1 we introduce join-
graphs and discuss their properties. In Subsection 4.2 we describe the IJGP algorithm itself.

4.1 Join-Graphs
DEFINITION 7 (join-graph decomposition) A join-graph decomposition for a belief network

 is a triple D = 〈JG, χ, ψ〉, where JG = (V, E) is a graph, and χ and ψ are labeling
functions which associate with each vertex v ∈ V two sets, χ(v) ⊆ X and ψ(v) ⊆ P such that:

1. For each pi ∈ P, there is exactly one vertex v ∈ V such that pi ∈ ψ(v), and scope(pi)
⊆ χ(v).

2. (connectedness) For each variable Xi ∈ X, the set {v ∈ V|Xi ∈ χ(v)} induces a
connected subgraph of JG. The connectedness requirement is also called the running
intersection property.

We will often refer to a node in V and its CPT functions as a cluster3 and use the term join-
graph decomposition and cluster-graph interchangeably. Clearly, a join-tree decomposition or
a cluster-tree is the special case when the join-graph D is a tree.

It is clear that one of the problems of message propagation over cyclic join-graphs is over-
counting. To reduce this problem we devise a scheme, which avoids cyclicity with respect to
any single variable. The algorithm works on edge-labeled join-graphs.

DEFINITION 8 (minimal edge-labeled join-graph decompositions) An edge-labeled join-graph
decomposition for  is a four-tuple D = 〈JG, χ, ψ, θ〉, where JG = (V, E) is a
graph, χ and ψ associate with each vertex v ∈ V the sets χ(v) ⊆ X and ψ(v) ⊆ P and θ associates
with each edge  the set θ((v, u)) ⊆ X such that:

1. For each function pi ∈ P, there is exactly one vertex v ∈ V such that pi ∈ ψ(v), and
scope(pi) ⊆ χ(v).

2. (edge-connectedness) For each edge , such that ∀Xi ∈
X, any two clusters containing Xi can be connected by a path whose every edge label
includes Xi.

Finally, an edge-labeled join-graph is minimal if no variable can be deleted from any label
while still satisfying the edge-connectedness property.

DEFINITION 9 (separator, eliminator of edge-labeled join-graphs) Given two adjacent vertices u and
v of JG, the separator of u and v is defined as sep(u, v) = θ((u, v)), and the eliminator of u with
respect to v is elim(u, v) = χ(u) − θ((u, v)). The separator width is max(u,v)|sep(u, v)|.

Edge-labeled join-graphs can be made label minimal by deleting variables from the labels while
maintaining connectedness (if an edge label becomes empty, the edge can be deleted). It is
easy to see that,

Proposition 1 A minimal edge-labeled join-graph does not contain any cycle relative to any
single variable. That is, any two clusters containing the same variable are connected by exactly
one path labeled with that variable.

3Note that a node may be associated with an empty set of CPTs.
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Notice that every minimal edge-labeled join-graph is edge-minimal (no edge can be deleted),
but not vice-versa.

Example 4 The example in Figure 12a shows an edge minimal join-graph which contains a
cycle relative to variable 4, with edges labeled with separators. Notice however that if we
remove variable 4 from the label of one edge we will have no cycles (relative to single variables)
while the connectedness property is still maintained.

The mini-clustering approximation presented in the previous section works by relaxing the
join-tree requirement of exact inference into a collection of join-trees having smaller cluster
size. It introduces some independencies in the original problem via node duplication and applies
exact inference on the relaxed model requiring only two message passings. For the class of
IJGP algorithms we take a different route. We choose to relax the tree-structure requirement
and use join-graphs which do not introduce any new independencies, and apply iterative
message-passing on the resulting cyclic structure.

Indeed, it can be shown that any join-graph of a belief network is an I-map (independency map,
Pearl, 1988) of the underlying probability distribution relative to node-separation. Since we
plan to use minimally edge-labeled join-graphs to address over-counting problems, the
question is what kind of independencies are captured by such graphs.

DEFINITION 10 (edge-separation in edge-labeled join-graphs) Let D = 〈JG, χ, ψ, θ〉, JG = (V, E)
be an edge-labeled decomposition of a Bayesian network . Let NW, NY ⊆ V be
two sets of nodes, and EZ ⊆ E be a set of edges in JG. Let W, Y, Z be their corresponding sets

of variables . We say that EZ edge-separates NW and NY in D if
there is no path between NW and NY in the JG graph whose edges in EZ are removed. In this
case we also say that W is separated from Y given Z in D, and write 〈W|Z|Y〉D. Edge-separation
in a regular join-graph is defined relative to its separators.

THEOREM 4 Any edge-labeled join-graph decomposition D = 〈JG, χ, ψ, θ〉 of belief network
 is an I-map of P relative to edge-separation. Namely, any edge separation in

D corresponds to conditional independence in P.

Proof: Let MG be the moral graph of BN. Since MG is an I-map of P, it is enough to prove
that JG is an I-map of MG. Let NW and NY be disjoint sets of nodes and NZ be a set of edges
in JG, and W, Z, Y be their corresponding sets of variables in MG. We will prove:

by contradiction. Since the sets W, Z, Y may not be disjoint, we will actually prove that 〈W −
Z|Z|Y − Z〉MG holds, this being equivalent to 〈W|Z|Y〉MG.

Supposing 〈W − Z|Z|Y − Z〉MG is false, then there exists a path α = γ1, γ2,. . ., γn−1, β = γn in
MG that goes from some variable α = γ1 ∈ W − Z to some variable β = γn ∈ Y − Z without
intersecting variables in Z. Let Nv be the set of all nodes in JG that contain variable v ∈ X, and
let us consider the set of nodes:

We argue that S forms a connected sub-graph in JG. First, the running intersection property
ensures that every Nγi, i = 1,. . ., n, remains connected in JG after removing the nodes in NZ
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(otherwise, it must be that there was a path between the two disconnected parts in the original
JG, which implies that a γi is part of Z, which is a contradiction). Second, the fact that (γi,
γi+1), i = 1,. . ., n − 1, is an edge in the moral graph MG implies that there is a conditional
probability table (CPT) on both γi and γi+1, i = 1,. . ., n − 1 (and perhaps other variables). From
property 1 of the definition of the join-graph, it follows that for all i = 1,. . ., n − 1 there exists
a node in JG that contains both γi and γi+1. This proves the existence of a path in the mutilated
join-graph (JG with NZ pulled out) from a node in NW containing α = γ1 to the node containing
both γ1 and γ2(Nγ1 is connected), then from that node to the one containing both γ2 and
γ3(Nγ2 is connected), and so on until we reach a node in NY containing α = γn. This shows that
〈NW|NZ|NY〉JG is false, concluding the proof by contradiction. □

Interestingly however, deleting variables from edge labels or removing edges from edge-
labeled join-graphs whose clusters are fixed will not increase the independencies captured by
edge-labeled join-graphs. That is,

Proposition 2 Any two (edge-labeled) join-graphs defined on the same set of clusters, sharing
(V , χ, ψ), express exactly the same set of independencies relative to edge-separation, and this
set of independencies is identical to the one expressed by node separation in the primal graph
of the join-graph.

Proof: This follows by looking at the primal graph of the join-graph (obtained by connecting
any two nodes in a cluster by an arc over the original variables as nodes) and observing that
any edge-separation in a join-graph corresponds to a node separation in the primal graph and
vice-versa. □

Hence, the issue of minimizing computational over-counting due to cycles appears to be
unrelated to the problem of maximizing independencies via minimal I-mapness. Nevertheless,
to avoid over-counting as much as possible, we still prefer join-graphs that minimize cycles
relative to each variable. That is, we prefer minimal edge-labeled join-graphs.

Relationship with region graphs—There is a strong relationship between our join-graphs
and the region graphs of Yedidia et al. (2000, 2001, 2005). Their approach was inspired by
advances in statistical physics, when it was realized that computing the partition function is
essentially the same combinatorial problem that expresses probabilistic reasoning. As a result,
variational methods from physics could have counterparts in reasoning algorithms. It was
proved by Yedidia et al. (2000, 2001) that belief propagation on loopy networks can only
converge (when it does so) to stationary points of the Bethe free energy. The Bethe
approximation is only the simplest case of the more general Kikuchi (1951) cluster variational
method. The idea is to group the variables together in clusters and perform exact computation
in each cluster. One key question is then how to aggregate the results, and how to account for
the variables that are shared between clusters. Again, the idea that everything should be counted
exactly once is very important. This led to the proposal of region graphs (Yedidia et al.,
2001, 2005) and the associated counting numbers for regions. They are given as a possible
canonical version of graphs that can support Generalized Belief Propagation (GBP) algorithms.
The join-graphs accomplish the same thing. The edge-labeled join-graphs can be described as
region graphs where the regions are the clusters and the labels on the edges. The tree-ness
condition with respect to every variable ensures that there is no over-counting.

A very similar approach to ours, which is also based on join-graphs appeared independently
by McEliece and Yildirim (2002), and it is based on an information theoretic perspective.
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4.2 Algorithm IJGP
Applying CTE iteratively to minimal edge-labeled join-graphs yields our algorithm Iterative
Join-Graph Propagation (IJGP) described in Figure 13. One iteration of the algorithm applies
message-passing in a topological order over the join-graph, forward and back. When node u
sends a message (or messages) to a neighbor node v it operates on all the CPTs in its cluster
and on all the messages sent from its neighbors excluding the ones received from v. First, all
individual functions that share no variables with the eliminator are collected and sent to v. All
the rest of the functions are combined in a product and summed over the eliminator between
u and v.

Based on the results by Lauritzen and Spiegelhalter (1988) and Larrosa, Kask, and Dechter
(2001) it can be shown that:

THEOREM 5

1. If IJGP is applied to a join-tree decomposition it reduces to join-tree clustering, and
therefore it is guaranteed to compute the exact beliefs in one iteration.

2. The time complexity of one iteration of IJGP is O(deg · (n + N) · dw*+1) and its space
complexity is O(N · dθ), where deg is the maximum degree of a node in the join-graph,
n is the number of variables, N is the number of nodes in the graph decomposition, d
is the maximum domain size, w* is the maximum cluster size and is the maximum
label size.

For proof, see the properties of CTE presented by Kask et al. (2005).

The special case of Iterative Belief Propagation—Iterative belief propagation (IBP)
is an iterative application of Pearl's algorithm that was defined for poly-trees (Pearl, 1988), to
any Bayesian network. We will describe IBP as an instance of join-graph propagation over a
dual join-graph.

DEFINITION 11 (dual graphs, dual join-graphs) Given a set of functions F = {f1,. . ., fl} over scopes
S1,. . ., Sl, the dual graph of F is a graph DG = (V, E, L) that associates a node with each
function, namely V = F and an edge connects any two nodes whose function's scope share a

variable, . L is a set of labels for the edges, each edge being labeled

by the shared variables of its nodes, . A dual join-graph is an edge-
labeled edge subgraph of DG that satisfies the connectedness property. A minimal dual join-
graph is a dual join-graph for which none of the edge labels can be further reduced while
maintaining the connectedness property.

Interestingly, there may be many minimal dual join-graphs of the same dual graph. We will
define Iterative Belief Propagation on any dual join-graph. Each node sends a message over
an edge whose scope is identical to the label on that edge. Since Pearl's algorithm sends
messages whose scopes are singleton variables only, we highlight minimal singleton-label dual
join-graphs.

Proposition 3 Any Bayesian network has a minimal dual join-graph where each edge is labeled
by a single variable.

Proof: Consider a topological ordering of the nodes in the acyclic directed graph of the
Bayesian network d = X1,. . ., Xn. We define the following dual join-graph. Every node in the
dual graph D, associated with pi is connected to node pj, j < i if Xj ∈ pa(Xi). We label the edge
between pj and pi by variable Xj, namely lij = {Xj}. It is easy to see that the resulting edge-
labeled subgraph of the dual graph satisfies connectedness. (Take the original acyclic graph
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G and add to each node its CPT family, namely all the other parents that precede it in the
ordering. Since G already satisfies connectedness so is the minimal graph generated.) The
resulting labeled graph is a dual graph with singleton labels. □

Example 5 Consider the belief network on 3 variables A, B, C with CPTs 1.P(C|A, B), 2.P(B|
A) and 3.P(A), given in Figure 14a. Figure 14b shows a dual graph with singleton | labels on
the edges. Figure 14c shows a dual graph which is a join-tree, on which belief propagation can
solve the problem exactly in one iteration (two passes up and down the tree).

For completeness, we present algorithm IBP, which is a special case of IJGP, in Figure 15. It
is easy to see that one iteration of IBP is time and space linear in the size of the belief network.
It can be shown that when IBP is applied to a minimal singleton-labeled dual graph it coincides
with Pearl's belief propagation applied directly to the acyclic graph representation. Also, when
the dual join-graph is a tree IBP converges after one iteration (two passes, up and down the
tree) to the exact beliefs.

4.3 Bounded Join-Graph Decompositions
Since we want to control the complexity of join-graph algorithms, we will define it on
decompositions having bounded cluster size. If the number of variables in a cluster is bounded
by i, the time and space complexity of processing one cluster is exponential in i. Given a join-
graph decomposition D = 〈JG, χ, ψ, θ〉, the accuracy and complexity of the (iterative) join-
graph propagation algorithm depends on two different width parameters, defined next.

DEFINITION 12 (external and internal widths) Given an edge-labeled join-graph decomposition
D = 〈JG, χ, ψ, θ〉 of a network , the internal width of D is maxv∈V|χ(v)|, while
the external width of D is the treewidth of JG as a graph.

Using this terminology we can now state our target decomposition more clearly. Given a graph
G, and a bounding parameter i we wish to find a join-graph decomposition D of G whose
internal width is bounded by i and whose external width is minimized. The bound i controls
the complexity of join-graph processing while the external width provides some measure of
its accuracy and speed of convergence, because it measures how close the join-graph is to a
join-tree.

We can consider two classes of algorithms. One class is partition-based. It starts from a given
tree-decomposition and then partitions the clusters until the decomposition has clusters
bounded by i. An alternative approach is grouping-based. It starts from a minimal dual-graph-
based join-graph decomposition (where each cluster contains a single CPT) and groups clusters
into larger clusters as long as the resulting clusters do not exceed the given bound. In both
methods one should attempt to reduce the external width of the generated graph-decomposition.
Our partition-based approach inspired by the mini-bucket idea (Dechter & Rish, 1997) is as
follows.

Given a bound i, algorithm Join-Graph Structuring(i) applies the procedure Schematic Mini-
Bucket(i), described in Figure 17. The procedure only traces the scopes of the functions that
would be generated by the full mini-bucket procedure, avoiding actual computation. The
procedure ends with a collection of mini-bucket trees, each rooted in the mini-bucket of the
first variable. Each of these trees is minimally edge-labeled. Then, in-edges labeled with only
one variable are introduced, and they are added only to obtain the running intersection property
between branches of these trees.

Proposition 4 Algorithm Join-Graph Structuring(i) generates a minimal edge-labeled join-
graph decomposition having bound i.
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Proof: The construction of the join-graph specifies the vertices and edges of the join-graph,
as well as the variable and function labels of each vertex. We need to demonstrate that 1) the
connectedness property holds, and 2) that edge-labels are minimal.

Connectedness property specifies that for any 2 vertices u and v, if vertices u and v contain
variable X, then there must be a path u, w1,. . ., wm, v between u and v such that every vertex
on this path contains variable X. There are two cases here. 1) u and v correspond to 2 mini-
buckets in the same bucket, or 2) u and v correspond to mini-buckets in different buckets. In
case 1 we have 2 further cases, 1a) variable X is being eliminated in this bucket, or 1b) variable
X is not eliminated in this bucket. In case 1a, each mini-bucket must contain X and all mini-
buckets of the bucket are connected as a chain, so the connectedness property holds. In case
1b, vertexes u and v connect to their (respectively) parents, who in turn connect to their parents,
etc. until a bucket in the scheme where variable X is eliminated. All nodes along this chain
connect variable X, so the connectedness property holds. Case 2 resolves like case 1b.

To show that edge labels are minimal, we need to prove that there are no cycles with respect
to edge labels. If there is a cycle with respect to variable X, then it must involve at least one
in-edge (edge connecting two mini-buckets in the same bucket). This means variable X must
be the variable being eliminated in the bucket of this in-edge. That means variable X is not
contained in any of the parents of the mini-buckets of this bucket. Therefore, in order for the
cycle to exist, another in-edge down the bucket-tree from this bucket must contain X. However,
this is impossible as this would imply that variable X is eliminated twice. □

Example 6 Figure 18a shows the trace of procedure schematic mini-bucket(3) applied to the
problem described in Figure 2a. The decomposition in Figure 18b is created by the algorithm
graph structuring. The only cluster partitioned is that of F into two scopes (FCD) and (BF),
connected by an in-edge labeled with F.

A range of edge-labeled join-graphs is shown in Figure 19. On the left side we have a graph
with smaller clusters, but more cycles. This is the type of graph IBP works on. On the right
side we have a tree decomposition, which has no cycles at the expense of bigger clusters. In
between, there could be a number of join-graphs where maximum cluster size can be traded
for number of cycles. Intuitively, the graphs on the left present less complexity for join-graph
algorithms because the cluster size is smaller, but they are also likely to be less accurate. The
graphs on the right side are computationally more complex, because of the larger cluster size,
but they are likely to be more accurate.

4.4 The Inference Power of IJGP
The question we address in this subsection is why propagating the messages iteratively should
help. Why is IJGP upon convergence superior to IJGP with one iteration and superior to MC?
One clue can be provided when considering deterministic constraint networks which can be
viewed as “extreme probabilistic networks”. It is known that constraint propagation algorithms,
which are analogous to the messages sent by belief propagation, are guaranteed to converge
and are guaranteed to improve with iteration. The propagation scheme of IJGP works similar
to constraint propagation relative to the flat network abstraction of the probability distribution
(where all non-zero entries are normalized to a positive constant), and propagation is
guaranteed to be more accurate for that abstraction at least.

In the following we will shed some light on the IJGP's behavior by making connections with
the well-known concept of arc-consistency from constraint networks (Dechter, 2003). We show
that: (a) if a variable-value pair is assessed as having a zero-belief, it remains as zero-belief in
subsequent iterations; (b) that any variable-value zero-beliefs computed by IJGP are correct;
(c) in terms of zero/non-zero beliefs, IJGP converges in finite time. We have also empirically
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investigated the hypothesis that if a variable-value pair is assessed by IBP or IJGP as having
a positive but very close to zero belief, then it is very likely to be correct. Although the
experimental results shown in this paper do not contradict this hypothesis, some examples in
more recent experiments by Dechter, Bidyuk, Mateescu, and Rollon (2010) invalidate it.

4.4.1 IJGP AND ARC-CONSISTENCY—For any belief network we can define a constraint network that
captures the assignments having strictly positive probability. We will show a correspondence
between IJGP applied to the belief network and an arc-consistency algorithm applied to the
constraint network. Since arc-consistency algorithms are well understood, this correspondence
not only proves the target claims, but may provide additional insight into the behavior of IJGP.
It justifies the iterative application of belief propagation, and it also illuminates its “distance”
from being complete.

DEFINITION 13 (constraint satisfaction problem) A Constraint Satisfaction Problem (CSP) is a
triple 〈X, D, C〉, where X = {X1,. . ., Xn} is a set of variables associated with a set of discrete-
valued domains D = {D1,. . ., Dn} and a set of constraints C = {C1,. . ., Cm}. Each constraint
Ci is a pair 〈Si, Ri〉 where Ri is a relation Ri ⊆ DSi defined on a subset of variables Si ⊆ X and
DSi is a Cartesian product of the domains of variables Si. The relation Ri denotes all compatible
tuples of DSi allowed by the constraint. A projection operator π creates a new relation,

, where Sj ⊆ Si. Constraints can
be combined with the join operator ⋈, resulting in a new relation,

. A solution is an assignment of values to all the
variables x = (x1,. . . xn), ∈ Di, such that ∀Ci ∈ C, xSi ∈ Ri. The constraint network represents
its set of solutions, .

Given a belief network , we define a flattening of the Bayesian network into a constraint
network called , where all the zero entries in a probability table are removed from the
corresponding relation. The network  is defined over the same set of variables and has
the same set of domain values as .

DEFINITION 14 (flat network) Given a Bayesian network , the flat network
 is a constraint network, where the set of variables is X, and for every Xi ∈ X and its

CPT  we define a constraint RFi over the family of Xi,  as
follows: for every assignment x = (xi, xpa(Xi) to Fi, (xi, xpa(Xi)) ∈ RFi iff P(xi|xpa(Xi)) > 0.

THEOREM 6 Given a belief network , where X = {X1,. . ., Xn}, for any tuple
 where  is the set}of solutions of

the flat constraint network.

Proof: . □

Constraint propagation is a class of polynomial time algorithms that are at the center of
constraint processing techniques. They were investigated extensively in the past three decades
and the most well known versions are arc-, path-, and i-consistency (Dechter, 1992, 2003).

DEFINITION 15 (arc-consistency) (Mackworth, 1977) Given a binary constraint network (X, D,
C), the network is arc-consistent iff for every binary constraint Rij ∈ C, every value v ∈ Di has
a value u ∈ Dj s.t. (v, u) ∈ Rij.
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Note that arc-consistency is defined for binary networks, namely the relations involve at most
two variables. When a binary constraint network is not arc-consistent, there are algorithms that
can process it and enforce arc-consistency. The algorithms remove values from the domains
of the variables that violate arc-consistency until an arc-consistent network is generated. There
are several versions of improved performance arc-consistency algorithms, however we will
consider a non-optimal distributed version, which we call distributed arc-consistency.

DEFINITION 16 (distributed arc-consistency algorithm) The algorithm distributed arc-consistency
is a message-passing algorithm over a constraint network. Each node is a variable, and
maintains a current set of viable values Di. Let ne(i) be the set of neighbors of Xi in the constraint
graph. Every node Xi sends a message to any node Xj ∈ ne(i), which consists of the values in
Xj's domain that are consistent with the current Di, relative to the constraint Rji that they share.

Namely, the message that Xi sends to Xj, denoted by , is:

(1)

and in addition node i computes:

(2)

Clearly the algorithm can be synchronized into iterations, where in each iteration every node
computes its current domain based on all the messages received so far from its neighbors (Eq.
2), and sends a new message to each neighbor (Eq. 1). Alternatively, Equations 1 and 2 can be
combined. The message Xi sends to Xj is:

(3)

Next we will define a join-graph decomposition for the flat constraint network so that we can
establish a correspondence between the join-graph decomposition of a Bayesian network 
and the join-graph decomposition of its flat network . Note that for constraint networks,
the edge labeling θ can be ignored.

DEFINITION 17 (join-graph decomposition of the flat network) Given a join-graph decomposition
D = 〈JG, χ, ψ, θ〉 of a Bayesian network , the join-graph decomposition Dflat = 〈JG, χ,
ψflat〉 of the flat constraint network  has the same underlying graph structure JG = (V,
E) as D, the same variable-labeling of the clusters χ, and the mapping ψflat maps each cluster
to relations corresponding to CPTs, namely Ri ∈ ψflat(v) iff CPT pi ∈ (v).

The distributed arc-consistency algorithm of Definition 16 can be applied to the join-graph
decomposition of the flat network. In this case, the nodes that exchange messages are the
clusters (namely the elements of the set v of JG). The domain of a cluster of v is the set of
tuples of the join of the original relations in the cluster (namely the domain of cluster u is

). The constraints are binary, and involve clusters of v that are neighbors. For two
clusters u and v, their corresponding values tu and tv (which are tuples representing full
assignments to the variables in the cluster) belong to the relation Ruv (i.e., (tu, tv) ∈ Ru,v) if the
projections over the separator (or labeling θ) between u and v are identical, namely πθ((u,v))tu
= πθ((u,v))tv.
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We define below the algorithm relational distributed arc-consistency (RDAC), that applies
distributed arc-consistency to any join-graph decomposition of a constraint network. We call
it relational to emphasize that the nodes exchanging messages are in fact relations over the
original problem variables, rather than simple variables as is the case for arc-consistency
algorithms.

DEFINITION 18 (relational distributed arc-consistency algorithm: RDAC over a join-graph) Given
a join-graph decomposition of a constraint network, let Ri and Rj be the relations of two clusters
(Ri and Rj are the joins of the respective constraints in each cluster), having the scopes Si and
Sj, such that . The message Ri sends to Rj denoted h(i,j) is defined by:

(4)

where  is the set of relations (clusters) that share a variable with Ri. Each
cluster updates its current relation according to:

(5)

Algorithm RDAC iterates until there is no change.

Equations 4 and 5 can be combined, just like in Equation 3. The message that Ri sends to Rj
becomes:

(6)

To establish the correspondence with IJGP, we define the algorithm IJGP-RDAC that applies
RDAC in the same order of computation (schedule of processing) as IJGP.

DEFINITION 19 (IJGP-RDAC algorithm) Given the Bayesian network , let Dflat =
〈JG, χ, ψflat, θ〉 be any join-graph decomposition of the flat network . The algorithm
IJGP-RDAC is applied to the decomposition Dflat of , and can be described as IJGP
applied to D, with the following modifications:

1. Instead of ∏, we use ⋈.

2. Instead of ∑, we use π.

3. At end end, we update the domains of variables by:

(7)

where u is the cluster containing Xi.

Note that in algorithm IJGP-RDAC, we could first merge all constraints in each cluster u into
a single constraint  R. From our construction, IJGP-RDAC enforces arc-consistency
over the join-graph decomposition of the flat network. When the join-graph Dflat is a join-tree,
IJGP-RDAC solves the problem namely it finds all the solutions of the constraint network.

Proposition 5 Given the join-graph decomposition Dflat = 〈JG, χ, ψflat, θ〉, JG = (V, E), of the
flat constraint network ,  corresponding to a given join-graph decomposition D of a

Mateescu et al. Page 18

J Artif Intell Res. Author manuscript; available in PMC 2010 August 24.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Bayesian network , the algorithm IJGP-RDAC applied to Dflat enforces arc-
consistency over the join-graph Dflat.

Proof: IJGP-RDAC applied to the join-graph decomposition Dflat = 〈JG, χ, ψflat, θ〉, JG = (V,
E), is equivalent to applying RDAC of Definition 18 to a constraint network that has vertices

V as its variables and  as its relations. □

Following the properties of convergence of arc-consistency, we can show that:

Proposition 6 Algorithm IJGP-RDAC converges in O(m · r) iterations, where m is the number
of edges in the join-graph and r is the maximum size of a separator Dsep(u,v) between two
clusters.

Proof: This follows from the fact messages (which are relations) between clusters in IJGP-
RDAC change monotonically, as tuples are only successively removed from relations on
separators. Since the size of each relation on a separator is bounded by r and there are m edges,
no more than O(m · r) iterations will be needed. □

In the following we will establish an equivalence between IJGP and IJGP-RDAC in terms of
zero probabilities.

Proposition 7 When IJGP and IJGP-RDAC are applied in the same order of computation, the
messages computed by IJGP are identical to those computed by IJGP-RDAC in terms of zero /
nonzero probabilities. That is, h(u,v)(x) ≠ 0 in IJGP iff x ∈ h(u,v) in IJGP-RDAC.

Proof: The proof is by induction. The base case is trivially true since messages h in IJGP are
initialized to a uniform distribution and messages h in IJGP-RDAC are initialized to complete
relations.

The induction step. Suppose that  is the message sent from u to v by IJGP. We will show

that if ,  then  where  is the message sent by IJGP-
RDAC from u to v. Assume that the claim holds for all messages received by u from its
neighbors. Let f ∈ clusterv(u) in IJGP and Rf be the corresponding relation in IJGP-RDAC, and
t be an assignment of values to variables in elim(u, v). We have

. □

Next we will show that IJGP computing marginal probability P(Xi = xi) = 0 is equivalent to
IJGP-RDAC removing xi from the domain of variable Xi.

Proposition 8 IJGP computes P(Xi = xi) = 0 iff IJGP-RDAC decides that xi ∈ Di.

Proof: According to Proposition 7 messages computed by IJGP and IJGP-RDAC are identical
in terms of zero probabilities. Let f ∈ cluster(u) in IJGP and Rf be the corresponding relation
in IJGP-RDAC, and t be an assignment of values to variables in χ(u)\Xi. We will show that
when IJGP computes P(Xi = xi) = 0 (upon convergence), then IJGP-RDAC computes xi ∈ Di.
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We have . Since
arc-consistency is sound, so is the decision of zero probabilities. □

Next we will show that P(Xi = xi) = 0 computed by IJGP is sound.

THEOREM 7 Whenever IJGP finds P(Xi = xi) = 0, then the probability P(Xi) expressed by the
Bayesian network conditioned on the evidence is 0 as well.

Proof: According to Proposition 8, whenever IJGP finds P(Xi = xi) = 0, the value xi is removed
from the domain Di by IJGP-RDAC, therefore value xi ∈ Di is a no-good of the network

, and from Theorem 6 it follows that . □

In the following we will show that the time it takes IJGP to find all P(Xi = xi) = 0 is bounded.

Proposition 9 IJGP finds all P(Xi = xi) = 0 in finite time, that is, there exists a number k, such
that no P(Xi = xi) = 0 will be found after k iterations.

Proof: This follows from the fact that the number of iterations it takes for IJGP to compute P
(Xi = xi) = 0 is exactly the same number of iterations IJGP-RDAC takes to remove xi from the
domain Di (Proposition 7 and Proposition 8), and the fact the IJGP-RDAC runtime is bounded
(Proposition 6). □

Previous results also imply that IJGP is monotonic with respect to zeros.

Proposition 10 Whenever IJGP finds P(Xi = xi) = 0, it stays 0 during all subsequent
iterations.

Proof: Since we know that relations in IJGP-RDAC are monotonically decreasing as the
algorithm progresses, it follows from the equivalence of IJGP-RDAC and IJGP (Proposition
7) that IJGP is monotonic with respect to zeros. □

4.4.2 A FINITE PRECISION PROBLEM—On finite precision machines there is the danger that an underflow
can be interpreted as a zero value. We provide here a warning that an implementation of belief
propagation should not allow the creation of zero values by underflow. We show an example
in Figure 20 where IBP's messages converge in the limit (i.e., in an infinite number of
iterations), but they do not stabilize in any finite number of iterations. If all the nodes Hk are
set to value 1, the belief for any of the Xi variables as a function of iteration is given in the table
in Figure 20. After about 300 iterations, the finite precision of our computer is not able to
represent the value for Bel(Xi = 3), and this appears to be zero, yielding the final updated belief
(5, 5, 0), when in fact the true updated belief should be (0, 0, 1). Notice that (5, 5, 0) cannot be
regarded as a legitimate fixed point for IBP. Namely, if we would initialize IBP with the values
(5, 5, 0), then the algorithm would maintain them, appearing to have a fixed point, but
initializing IBP with zero values cannot be expected to be correct. When we initialize with
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zeros we forcibly introduce determinism in the model, and IBP will always maintain it
afterwards.

However, this example does not contradict our theory because, mathematically, Bel(Xi = 3)
never becomes a true zero, and IBP never reaches a quiescent state. The example shows that
a close to zero belief network can be arbitrarily inaccurate. In this case the inaccuracy seems
to be due to the initial prior belief which are so different from the posterior ones.

4.4.3 ACCURACY OF IBP ACROSS BELIEF DISTRIBUTION—We present an empirical evaluation of the accuracy
of IBP's prediction for the range of belief distribution from 0 to 1. These results also extend to
IJGP. In the previous section, we proved that zero values inferred by IBP are correct, and we
wanted to test the hypothesis that this property extends to small beliefs (namely, that are very
close to zero). That is, if IBP infers a posterior belief close to zero, then it is likely to be correct.
The results presented in this paper seem to support the hypothesis, however new experiments
by Dechter et al. (2010) show that it is not true in general. We do not have yet a good
characterization of the cases when the hypothesis is confirmed.

To test this hypothesis, we computed the absolute error of IBP per intervals of [0, 1]. For a
given interval [a, b], where 0 ≤ a < b ≤ 1, we use measures inspired from information retrieval:
Recall Absolute Error and Precision Absolute Error.

Recall is the absolute error averaged over all the exact posterior beliefs that fall into the interval
[a, b]. For Precision, the average is taken over all the approximate posterior belief values
computed by IBP to be in the interval [a, b]. Intuitively, Recall([a,b]) indicates how far the
belief computed by IBP is from the exact, when the exact is in [a, b]; Precision([a,b]) indicates
how far the exact is from IBP's prediction, when the value computed by IBP is in [a, b].

Our experiments show that the two measures are strongly correlated. We also show the
histograms of distribution of belief for each interval, for the exact and for IBP, which are also
strongly correlated. The results are given in Figures 21 and 22. The left Y axis corresponds to
the histograms (the bars), the right Y axis corresponds to the absolute error (the lines).

We present results for two classes of problems: coding networks and grid network. All
problems have binary variables, so the graphs are symmetric about 0.5 and we only show the
interval [0, 0.5]. The number of variables, number of iterations and induced width w* are
reported for each graph.

Coding networks: IBP is famously known to have impressive performance on coding
networks. We tested on linear block codes, with 50 nodes per layer and 3 parent nodes. Figure
21 shows the results for three different values of channel noise: 0.2, 0.4 and 0.6. For noise 0.2,
all the beliefs computed by IBP are extreme. The Recall and Precision are very small, of the
order of 10−11. So, in this case, all the beliefs are very small (ε small) and IBP is able to infer
them correctly, resulting in almost perfect accuracy (IBP is indeed perfect in this case for the
bit error rate). When the noise is increased, the Recall and Precision tend to get closer to a bell
shape, indicating higher error for values close to 0.5 and smaller error for extreme values. The
histograms also show that less belief values are extreme as the noise is increased, so all these
factors account for an overall decrease in accuracy as the channel noise increases. These
networks are examples with a large number of ε-small probabilities and IBP is able to infer
them correctly (absolute error is small).

Grid networks: We present results for grid networks in Figure 22. Contrary to the case of
coding networks, the histograms show higher concentration of beliefs around 0.5. However,
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the accuracy is still very good for beliefs close to zero. The absolute error peaks close to 0 and
maintains a plateau, as evidence is increased, indicating less accuracy for IBP.

5. Experimental Evaluation
As we anticipated in the summary of Section 3, and as can be clearly seen now by the structuring
of a bounded join-graph, there is a close relationship between the mini-clustering algorithm
MC(i) and IJGP(i). In particular, one iteration of IJGP(i) is similar to MC(i). MC sends
messages up and down along the clusters that form a set of trees. IJGP has additional
connections that allow more interaction between the mini-clusters of the same cluster. Since
this is a cyclic structure, iterating is facilitated, with its virtues and drawbacks.s

In our evaluation of IJGP(i), we focus on two different aspects: (a) the sensitivity of parametric
IJGP(i) to its i-bound and to the number of iterations; (b) a comparison of IJGP(i) with publicly
available state-of-the-art approximation schemes.

5.1 Effect of i-bound and Number of Iterations
We tested the performance of IJGP(i) on random networks, on M-by-M grids, on the two
benchmark CPCS files with 54 and 360 variables, respectively and on coding networks. On
each type of networks, we ran IBP, MC(i) and IJGP(i), while giving IBP and IJGP(i) the same
number of iterations.

We use the partitioning method described in Section 4.3 to construct a join-graph. To determine
the order of message computation, we recursively pick an edge (u,v), such that node u has the
fewest incoming messages missing.

For each network except coding, we compute the exact solution and compare the accuracy
using the absolute and relative error, as before, as well as the KL (Kullback-Leibler) distance
- Pexact(X = a) · log(Pexact(X = a)Papproximation(X = a)) averaged over all values, all variables
and all problems. For coding networks we report the Bit Error Rate (BER) computed as
described in Section 3.2. We also report the time taken by each algorithm.

The random networks were generated using parameters (N,K,C,P), where N is the number of
variables, K is their domain size, C is the number of conditional probability tables (CPTs) and
P is the number of parents in each CPT. Parents in each CPT are picked randomly and each
CPT is filled randomly. In grid networks, N is a square number and each CPT is filled randomly.
In each problem class, we also tested different numbers of evidence variables. As before, the
coding networks are from the class of linear block codes, where σ is the channel noise level.
Note that we are limited to relatively small and sparse problem instances because our evaluation
measures are based on comparing against exact figures.

Random networks—results for networks having N=50, K=2, C=45 and P=3 are given in
Table 4 and in Figures 23 and 24. For IJGP(i) and MC(i) we report 3 different values of i-
bound: 2, 5, 8. For IBP and IJGP(i) we report results for 3 different numbers of iterations: 1,
5, 10. We report results for 3 different numbers of evidence: 0, 5, 10. From Table 4 and Figure
23a we see that IJGP(i) is always better than IBP (except when i=2 and number of iterations
is 1), sometimes by an order of magnitude, in terms of absolute error, relative error and KL
distance. IBP rarely changes after 5 iterations, whereas IJGP(i)'s solution can be improved with
more iterations (up to 15-20). As theory predicted, the accuracy of IJGP(i) for one iteration is
about the same as that of MC(i). But IJGP(i) improves as the number of iterations increases,
and is eventually better than MC(i) by as much as an order of magnitude, although it clearly
takes more time, especially when the i-bound is large.

Mateescu et al. Page 22

J Artif Intell Res. Author manuscript; available in PMC 2010 August 24.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 23a shows a comparison of all algorithms with different numbers of iterations, using
the KL distance. Because the network structure changes with different i-bounds, we do not
necessarily see monotonic improvement of IJGP with i-bound for a given number of iterations
(as is the case with MC). Figure 23b shows how IJGP converges with more iterations to a
smaller KL distance than IBP. As expected, the time taken by IJGP (and MC) varies
exponentially with the i-bound (see Figure 24).

Grid networks—results with networks of N=81, K=2, 100 instances are very similar to those
of random networks. They are reported in Table 5 and in Figure 25, where we can see the
impact of having evidence (0 and 5 evidence variables) on the algorithms. IJGP at convergence
gives the best performance in both cases, while IBP's performance deteriorates with more
evidence and is surpassed by MC with i-bound 5 or larger.

CPCS networks—results with CPCS54 and CPCS360 are given in Table 6 and Figure 26,
and are even more pronounced than those of random and grid networks. When evidence is
added, IJGP(i) is more accurate than MC(i), which is more accurate than IBP, as can be seen
in Figure 26a.

Coding networks—results are given in Table 7. We tested on large networks of 400
variables, with treewidth w*=43, with IJGP and IBP set to run 30 iterations (this is more than
enough to ensure convergence). IBP is known to be very accurate for this class of problems
and it is indeed better than MC. However we notice that IJGP converges to slightly smaller
BER than IBP even for small values of the i-bound. Both the coding network and CPCS360
show the scalability of IJGP for large size problems. Notice that here the anytime behavior of
IJGP is not clear.

In summary, we see that IJGP is almost always superior to both IBP and MC(i) and is sometimes
more accurate by several orders of magnitude. One should note that IBP cannot be improved
with more time, while MC(i) requires a large i-bound for many hard and large networks to
achieve reasonable accuracy. There is no question that the iterative application of IJGP is
instrumental to its success. In fact, IJGP(2) in isolation appears to be the most cost-effective
variant.

5.2 Comparing IJGP with Other Algorithms
In this section we provide a comparison of IJGP with state-of-the-art publicly available
schemes. The comparison is based on a recent evaluation of algorithms performed at the
Uncertainty in AI 2008 conference4. We will present results on solving the belief updating
task (also called the task of computing posterior node marginals - MAR). We first give a brief
overview of the schemes that we experimented and compared with.

1. EDBP - Edge Deletion for Belief Propagation—EDBP (Choi & Darwiche, 2006a,
2006b) is an approximation algorithm for Belief Updating. It solves exactly a simplified version
of the original problem, obtained by deleting some of the edges of the problem graph. Edges
to be deleted are selected based on two criteria: quality of approximation and complexity of
computation (tree-width reduction). Information loss from lost dependencies is compensated
for by introducing auxiliary network parameters. This method corresponds to Iterative Belief
Propagation (IBP) when enough edges are deleted to yield a poly-tree, and corresponds to
generalized BP otherwise.

4Complete results are available at http://graphmod.ics.uci.edu/uai08/Evaluation/Report.
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2. TLSBP - A truncated Loop series Belief propagation algorithm—TLSBP is based
on the loop series expansion formula of Chertkov and Chernyak (2006) which specifies a series
of terms that need to be added to the solution output by BP so that the exact solution can be
recovered. This series is basically a sum over all so-called generalized loops in the graph.
Unfortunately, because the number of these generalized loops can be prohibitively large, the
series is of little value. The idea in TLSBP is to truncate the series by decomposing all
generalized loops into simple and smaller loops, thus limiting the number of loops to be
summed. In our evaluation, we used an implementation of TLSBP available from the work of
Gomez, Mooji, and Kappen (2007). The implementation can handle binary networks only.

3. EPIS - Evidence Pre-propagation Importance Sampling—EPIS (Yuan &
Druzdzel, 2003) is an importance sampling algorithm for Belief Updating. It is well known
that sampling algorithms perform poorly when presented with unlikely evidence. However,
when samples are weighted by an importance function, good approximation can be obtained.
This algorithm computes an approximate importance function using loopy belief propagation
and ε-cutoff heuristic. We used an implementation of EPIS available from the authors. The
implementation works on Bayesian networks only.

4. IJGP - Iterative Join-Graph Propagation—In the evaluation, IJGP(i) was first run
with i=2, until convergence, then with i=3, until convergence, etc. until i= treewidth (when i-
bound=treewidth, the join-graph becomes a join-tree and IJGP becomes exact). As
preprocessing, the algorithm performed SAT-based variable domain pruning by converting
zero probabilities in the problem to a SAT problem and performing singleton-consistency
enforcement. Because the problem size may reduce substantially, in some cases, this
preprocessing step may have a significant impact on the time-complexity of IJGP, amortized
over the increasing i-bound. However, for a given i-bound, this step improves the accuracy of
IJGP only marginally.

5. SampleSearch—SampleSearch (Gogate & Dechter, 2007) is a specialized importance
sampling scheme for graphical models that contain zero probabilities in their CPTs. On such
graphical models, importance sampling suffers from the rejection problem in that it generates
a large number of samples which have zero weight. SampleSearch circumvents the rejection
problem by sampling from the backtrack-free search space in which every assignment (sample)
is guaranteed to have non-zero weight. The backtrack-free search space is constructed on the
fly by interleaving sampling with backtracking style search. Namely, when a sample is
supposed to be rejected because its weight is zero, the algorithm continues instead with
systematic backtracking search, until a non zero weight sample is found. For the evaluation
version, the importance distribution of SampleSearch was constructed from the output of IJGP
with i-bound of 3. For more information on how the importance distribution is constructed
from the output of IJGP, see the work by Gogate (2009).

The evaluation was conducted on the following benchmarks (see footnote 4 for details):

1. UAI06-MPE - from UAI-06, 57 instances, Bayesian networks (40 instances were
used).

2. UAI06-PE - from UAI-06, 78 instances, Bayesian networks (58 instances were used).

3. Relational Bayesian networks - constructed from the Primula tool, 251 instances,
binary variables, large networks with large tree-width, but with high levels of
determinism (30 instances were used).

4. Linkage networks - 22 instances, tree-width 20-35, Markov networks (5 instances
were used).
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5. Grids - from 12×12 to 50×50, 320 instances, treewidth 12-50.

6. BN2O networks - Two-layer Noisy-OR Bayesian networks, 18 instances, binary
variables, up to 55 variables, treewidth 24-27.

7. WCSPs - Weighted CSPs, 97 instances, Markov networks (18 instances were used).

8. Promedas - real-world medical diagnosis, 238 instances, tree-width 1-60, Markov
networks (46 instances were used).

Table 8 shows the scope of our experimental study. A √ indicates that the solver was able to
handle the benchmark type and therefore evaluated on it while a lack of a √ indicates otherwise.

We measure the performance of the algorithms in terms of a KL-distance based score. Formally,
the score of a solver on a problem instance is equal to 10−avgkld where avgkld is the average
KL distance between the exact marginal (which was computed using the UCLA Ace solver,
see Chavira & Darwiche, 2008) and the approximate marginal output by the solver. If a solver
does not output a solution, we consider its KL-distance to be ∞. A score lies between 0 and 1,
with 1 indicating that the solver outputs exact solution while 0 indicating that the solver either
does not output a solution or has infinite average KL distance. Figure 27 shows the score as a
function of KL distance.

In Figures 28-35 we report the results of experiments with each of the problem sets. Each solver
has a timeout of 20 minutes on each problem instance; when solving a problem, each solver
periodically outputs the best solution found so far. Using this, we can compute, for each solver,
at any point in time, the total sum of its scores over all problem instances in a particular set,
called SumScore(t). On the horizontal axis, we have the time and on the vertical axis, the
SumScore(t). The higher the curve of a solver is, the better (the higher the score).

In summary, we see that IJGP shows the best performance on the first four classes of networks
(UAI-MPE, UAI-PE, Relational and Linkage), it is tied with other algorithms on two classes
(Grid and BN2O), and is surpassed by EDBP on the last two classes (WCSPs and Promedas).
EPIS and SampleSearch, which are importance sampling schemes, are often inferior to IJGP
and EDBP. In theory, the accuracy of these importance sampling schemes should improve with
time. However, the rate of improvement is often unknown in practice. On the hard benchmarks
that we evaluated on, we found that this rate is quite small and therefore the improvement
cannot be discerned from the Figures. We discuss the results in detail below.

As mentioned earlier, TLSBP works only on binary networks (i.e., two variables per function)
and therefore it was not evaluated on WCSPs, Linkage, UAI06-MPE and UAI06-PE
benchmarks.

The UAI-MPE and UAI-PE instances were used in the UAI 2006 evaluation of exact solvers
(for details see the report by Bilmes & Dechter, 2006). Exact marginals are available on 40
UAI-MPE instances and 58 UAI-PE instances. The results for UAI-MPE and UAI-PE instances
are shown in Figures 28 and 29 respectively. IJGP is the best performing scheme on both
benchmark sets reaching a SumScore very close to the maximum possible value in both cases
after about 2 minutes of CPU time. EDBP and SampleSearch are second best in both cases.

Relational network instances are generated by grounding the relational Bayesian networks
using the Primula tool (Chavira, Darwiche, & Jaeger, 2006). Exact marginals are available
only on 30 out of the submitted 251 instances. From Figure 30, we observe that IJGP's
SumScore steadily increases with time and reaches a value very close to the maximum possible
score of 30 after about 16 minutes of CPU time. SampleSearch is the second best performing
scheme. EDBP, TLSBP and EPIS perform quite poorly on these instances reaching the
SumScore of 10, 13 and 13 respectively after 20 minutes of CPU time.
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The Linkage instances are generated by converting linkage analysis data into a Markov network
using the Superlink tool (Fishelson & Geiger, 2003). Exact marginals are available only on 5
out of the 22 instances. The results are shown in Figure 31. After about one minute of CPU
time, IJGP's SumScore is close to 5 which remains steady thereafter while EDBP only reaches
a SumScore of 2 in 20 minutes. SampleSearch is the second best performing scheme while
EDBP is third best.

The results on Grid networks are shown in Figure 32. The sink node of the grid is the evidence
node. The deterministic ratio p is a parameter specifying the fraction of nodes that are
deterministic, that is, whose values are determined given the values of their parents. The
evaluation benchmark set consists of 30 instances having p = 50%,75% and 90% with exact
marginals available on 27 instances only. EPIS, IJGP, SampleSearch and EDBP are in a close
tie on this network, while TLSBP has the lowest performance. While hard to see, EPIS is just
slightly the best performing scheme, IJGP is the second best followed by SampleSearch and
EDBP. On this instances IJGP's SumScore increases steadily with time.

The results on BN2O instances appear in Figure 33. This is again a very close tie, in this case
of all five algorithms. IJGP has a minuscule decrease of SumScore with time from 17.85 to
17.7. Although in general an improvement in accuracy is expected for IJGP with higher i-
bound, it is not guaranteed, and this is an example when it does not happen. The other solvers
reach the maximum possible SumScore of 18 (or very close to it) after about 6 minutes of CPU
time.

The WCSP benchmark set has 97 instances. However we used only the 18 instances for which
exact marginals are available. Therefore the maximum SumScore that an algorithm can reach
is 18. The results are shown in Figure 34. EDBP reaches a SumScore of 17 after almost 3
minutes of CPU time while IJGP reaches a SumScore of 13 after about 3 minutes. The
SumScores of both IJGP and EDBP remain unchanged in the interval from 3 to 20 minutes.
After looking at the raw results, we found that IJGP's score was zero on 5 instances out of 18.
This was because the singleton consistency component implemented via the SAT solver did
not finish in 20 minutes on these instances. Although the singleton consistency step generally
helps to reduce the practical time complexity of IJGP on most instances, it adversely affects it
on these WCSP instances.

The Promedas instances are Noisy-OR binary Bayesian networks (Pearl, 1988). These
instances are characterized by extreme marginals. Namely, for a given variable, the marginals
are of the form (1 − ε, ε) where ε is a very small positive constant. Exact marginals are available
only on 46 out of the submitted 238 instances. On these structured problems (see Figure 35),
we see that EDBP is the best performing scheme reaching a SumScore very close to 46 after
about 7 minutes of CPU time while TLSBP and IJGP are able to reach a SumScore of about
40 in 20 minutes.

6. Related Work
There are numerous lines of research devoted to the study of belief propagation algorithms, or
message-passing schemes in general. Throughout the paper we have mentioned and compared
with other related work, especially in the experimental evaluation section. We give here a short
summary of the developments in belief propagation and present some related schemes that
were not mentioned before. For additional information see also the recent review by Koller
(2010).

About a decade ago, Iterative Belief Propagation (Pearl, 1988) received a lot of interest from
the information theory and coding community. It was realized that two of the best error-
correcting decoding algorithms were actually performing belief propagation in networks with
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cycles. The LDPC code (low-density parity-check) introduced long time ago by Gallager
(1963), is now considered one of the most powerful and promising schemes that often performs
impressively close to Shannon's limit. Turbo codes (Berrou, Glavieux, & Thitimajshima,
1993) are also very efficient in practice and can be understood as an instance of belief
propagation (McEliece et al., 1998).

A considerable progress towards understanding the behavior and performance of BP was made
through concepts from statistical physics. Yedidia et al. (2001) showed that IBP is strongly
related to the Bethe-Peierls approximation of variational (Gibbs) free energy in factor graphs.
The Bethe approximation is a particular case of the more general Kikuchi (1951)
approximation. Generalized Belief Propagation (Yedidia et al., 2005) is an application of the
Kikuchi approximation that works with clusters of variables, on structures called region graphs.
Another algorithm that employs the region-based approach is Cluster Variation Method (CVM)
(Pelizzola, 2005). These algorithms focus on selecting a good region-graph structure to account
for the over-counting (and over-over-counting, etc.) of evidence. We view generalized belief
propagation more broadly as any belief propagation over nodes which are clusters of functions.
Within this view IJGP, and GBP as defined by Yedidia et al. (2001), as well as CVM, are
special realizations of generalized belief propagation.

Belief Propagation on Partially Ordered Sets (PBP) (McEliece & Yildirim, 2002) is also a
generalized form of Belief Propagation that minimizes the Bethe-Kikuchi variational free
energy, and that works as a message-passing algorithm on data structures called partially
ordered sets, which has junction graphs and factor graphs as examples. There is one-to-one
correspondence between fixed points of PBP and stationary points of the free energy. PBP
includes as special cases many other variants of belief propagation. As we noted before, IJGP
is basically the same as PBP.

Expectation Propagation (EP) (Minka, 2001) is a an iterative approximation algorithm for
computing posterior belief in Bayesian networks. It combines assumed-density filtering
(ADF), an extension of the Kalman filter (used to approximate belief states using expectations,
such as mean and variance), with IBP, and iterates until these expectations are consistent
throughout the network. TreeEP (Minka & Qi, 2004) deals with cyclic problem by reducing
the problem graph to a tree subgraph and approximating the remaining edges. The relationship
between EP and GBP is discussed by Welling, Minka, and Teh (2005).

Survey Propagation (SP) (Braunstein et al., 2005) solves hard satisfiable (SAT) problems using
a message-passing algorithm on a factor graph consisting of variable and clause nodes. SP is
inspired by an algorithm called Warning Propagation (WP) and by BP. WP can determine if a
tree-problem is SAT, and if it is then it can provide a solution. BP can compute the number of
satisfying assignments for a tree-problem, as well as the fraction of the assignments where a
variable is true. These two algorithms are used as heuristics to define the SP algorithm, that is
shown to be more efficient than either of them on arbitrary networks. SP is still a heuristic
algorithm with no guarantee of convergence. SP was inspired by the new concept of “cavity
method” in statistical physics, and can be interpreted as BP where variables can not only take
the values true or false, but also the extra “don’t care” value. For a more detailed treatment see
the book by Mézard and Montanari (2009).

7. Conclusion
In this paper we investigated a family of approximation algorithms for Bayesian networks, that
could also be extended to general graphical models. We started with bounded inference
algorithms and proposed Mini-Clustering (MC) scheme as a generalization of Mini-Buckets
to arbitrary tree decompositions. Its power lies in being an anytime algorithm governed by a
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user adjustable i-bound parameter. MC can start with small i-bound and keep increasing it as
long as it is given more time, and its accuracy usually improves with more time. If enough time
is given to it, it is guaranteed to become exact. One of its virtues is that it can also produce
upper and lower bounds, a route not explored in this paper.

Inspired by the success of iterative belief propagation (IBP), we extended MC into an iterative
message-passing algorithm called Iterative Join-Graph Propagation (IJGP). IJGP operates on
general join-graphs that can contain cycles, but it is sill governed by an i-bound parameter.
Unlike IBP, IJGP is guaranteed to become exact if given enough time.

We also make connections with well understood consistency enforcing algorithms for
constraint satisfaction, giving strong support for iterating messages, and giving insight into the
performance of IJGP (IBP). We show that: (1) if a value of a variable is assessed as having
zero-belief in any iteration of IJGP, then it remains a zero-belief in all subsequent iterations;
(2) IJGP converges in a finite number of iterations relative to its set of zero-beliefs; and, most
importantly (3) that the set of zero-beliefs decided by any of the iterative belief propagation
methods is sound. Namely any zero-belief determined by IJGP corresponds to a true zero
conditional probability relative to the given probability distribution expressed by the Bayesian
network.

Our experimental evaluation of IJGP, IBP and MC is provided, and IJGP emerges as one of
the most powerful approximate algorithms for belief updating in Bayesian networks.
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Figure 1.
Algorithm Cluster-Tree-Elimination for Belief Updating (CTE-BU).
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Figure 2.
(a) A belief network; (b) A join-tree decomposition; (c) Execution of CTE-BU.
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Figure 3.
Procedure Mini-Clustering for Belief Updating (MC-BU).
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Figure 4.
Execution of MC-BU for i = 3.
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Figure 5.
Node duplication semantics of MC: (a) trace of MC-BU(3); (b) trace of CTE-BU.
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Figure 6.
Convergence of IBP (50 variables, evidence from 0-30 variables).
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Figure 7.
Absolute error for Noisy-OR networks.
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Figure 8.
Absolute error for random networks.
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Figure 9.
Bit Error Rate (BER) for coding networks.
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Figure 10.
Grid 15×15: absolute error and time.
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Figure 11.
Absolute error for CPCS422.
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Figure 12.
An edge-labeled decomposition.
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Figure 13.
Algorithm Iterative Join-Graph Propagation (IJGP).
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Figure 14.
a) A belief network; b) A dual join-graph with singleton labels; c) A dual join-graph which is
a join-tree.

Mateescu et al. Page 44

J Artif Intell Res. Author manuscript; available in PMC 2010 August 24.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 15.
Algorithm Iterative Belief Propagation (IBP).
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Figure 16.
Algorithm Join-Graph Structuring(i).
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Figure 17.
Procedure Schematic Mini-Bucket(i).
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Figure 18.
Join-graph decompositions.
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Figure 19.
Join-graphs.
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Figure 20.
Example of a finite precision problem.
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Figure 21.
Coding, N=200, 1000 instances, w*=15.
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Figure 22.
10×10 grids, 100 instances, w*=15.
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Figure 23.
Random networks: KL distance.
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Figure 24.
Random networks: Time.

Mateescu et al. Page 54

J Artif Intell Res. Author manuscript; available in PMC 2010 August 24.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 25.
Grid 9×9: KL distance.
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Figure 26.
CPCS360: KL distance.
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Figure 27.
Score as a function of KL distance.

Mateescu et al. Page 57

J Artif Intell Res. Author manuscript; available in PMC 2010 August 24.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 28.
Results on UAI-MPE networks. TLSBP is not plotted because it cannot handle UAI-MPE
benchmarks.
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Figure 29.
Results on UAI-PE networks. TLSBP is not plotted because it cannot handle UAI-PE
benchmarks.
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Figure 30.
Results on relational networks.
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Figure 31.
Results on Linkage networks. EPIS and TLSBP are not plotted because they cannot handle
Linkage networks.
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Figure 32.
Results on Grid networks.
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Figure 33.
Results on BN2O networks. All solvers except IJGP quickly converge to the maximum possible
score of 18 and are therefore indistinguishable in the Figure.
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Figure 34.
Results on WCSPs networks. EPIS and TLSBP are not plotted because they cannot handle
WCSPs.
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Figure 35.
Results on Promedas networks. EPIS is not plotted because it cannot handle Promedas
benchmarks, which are Markov networks.
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