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Abstract
A synthetic approach to model the analytical complexity of biological proteolytic digests has been
developed. Combinatorial peptide libraries ranging in length between nine and twelve amino acids
that represent typical tryptic digests were designed, synthesized and analyzed. Individual libraries
and mixtures thereof were studied by replicate liquid chromatography-ion trap mass spectrometry
and compared to a tryptic digest of Deinococcus radiodurans. Similar to complex proteome
analysis, replicate study of individual libraries identified additional unique peptides. Fewer novel
sequences were revealed with each additional analysis in a manner similar to that observed for
biological data. Our results demonstrate a bimodal distribution of peptides sorting to either very
low or very high levels of detection. Upon mixing of libraries at equal abundance, a length-
dependent bias in favor of longer sequence identification was observed. Peptide identification as a
function of site-specific amino acid content was characterized with certain amino acids proving to
be of considerable importance. This report demonstrates that peptide libraries of defined character
can serve as a reference for instrument characterization. Furthermore, they are uniquely suited to
delineate the physical properties that influence identification of peptides which provides a
foundation for optimizing the study of samples with less defined heterogeneity.

Introduction
Whole organism or blood serum proteomes are complex - both in terms of total number of
proteins and dynamic range.1–3 Current analytical platforms, such as the liquid
chromatography-mass spectrometry (LC-MS) commonly employed in proteomic analyses,
are challenged to deal with these two features, motivating the development of improved
instrumentation. Reference or standard samples would be valuable for this purpose, but a
suitable model has remained elusive. Biological samples are inherently diverse; even the
best-characterized organisms vary their protein expression based on diet, growth conditions,
age, and disease. Attempts have been made to model proteome complexity,4–7 however
these model systems lack the desired complexity, are prone to contamination, and are costly
and tedious to produce. A robust standard that closely mimics proteome complexity and can
be produced at a reasonable cost would enable platform comparison, further the
understanding of variables and limitations associated with proteome analysis, and potentially
serve as an internal or external standard for routine proteomics analysis.

Here, we propose to use combinatorial libraries of synthetic peptides to mimic a bottom-up
proteomic sample. This approach has many advantages. First, the experimenter can define
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the diversity in a library, establishing sample complexity. One can also define the amino
acid composition of peptides in a library, which allows access to a wide range of chemical
properties. Even some typical post-translational modifications can be introduced through
derivatization or incorporation of modified amino acid residues. Known composition also
enables efficient database searching to interpret MS/MS spectra for peptide identification.
Lastly, peptide libraries can be mixed in precise ratios to establish the dynamic
concentration range of a sample. Given these advantages, peptide libraries may potentially
be valuable in proteomic analyses as a reference or standard sample from which the
capabilities of analytical platforms can be characterized. This approach also complements
recent inter-laboratory efforts to develop a yeast standard8 for the investigation of
performance metrics regarding separation, ionization, precursor sampling, and peptide
identification in LC-MS analyses.9

As a first step, we have carefully designed and synthesized four peptide libraries to closely
resemble a generic proteome digest. We have performed replicate LC-MS analyses of
individual libraries and library mixtures to characterize their analytical complexity. For
comparison to biological samples, analogous experiments were performed on a tryptic digest
of the Deinococcus radiodurans bacterial proteome. Probabilistic theoretical simulations
were performed to model detectability distributions for complex mixtures. Briefly, peptide
detectability refers to the probability that a peptide is detected in a standard shotgun
proteomics analysis. Probability of detection is likely influenced by peptide abundance,
matrix effects, sample preparation, instrumental sensitivity, and identification method;
standard peptide detectability, however, is taken to be an intrinsic property of the peptide
sequence and, for biological samples, its protein of origin.10 These simulations successfully
predict a bimodal distribution of standard peptide detectability for individual libraries.
Furthermore, our results suggest preferential detection of longer peptide sequences, an
interesting result that likely has implications in quantitative proteomics studies and might be
addressable by implementation of peptide libraries as internal standards. Lastly, we
demonstrate the potential role of combinatorial libraries as ideal models to systematically
probe chemical and structural features of peptides and the possible impact such specific
changes have on peptide identification.

Experimental
Library Design

This study focuses on four libraries of peptides ranging between 9 and 12 residues in length.
These libraries are designated as BB9A through BB12A, respectively, and their composition
is shown in Table 1. Tryptic peptides detected in previous experiments were selected as
templates for each library to increase the resemblance of a proteome digest. The original
sequences are shown in the top rows in Table 1. The sequences SAVTALWGK and
FLASVSTVLTSK, both identified in direct-infusion ESI-IMS-MS analysis of a human
hemoglobin digest,11 were selected as templates for BB9A and BB12A, respectively.
NTMILEICTR from complement component C3 and ATEHLSTLSEK from apolipoprotein
A-I were identified in SCX-RPLC-IMS-MS mapping of a human plasma digest12 and
chosen as templates for BB10A and BB11A, respectively. Permutations for each position
(shown as columns) were assigned such that the hydrophobicity distribution of each library
was similar to that for tryptic peptides of the same length in the human proteome.13 Also,
the distribution of amino acids in the four libraries matches the relative abundance of amino
acids in a collection of more than 1,150 proteins from several organisms within ±0.5%.14
Lastly, the possible permutations in the different libraries were scaled to produce similar
numbers of unique sequences; 3,888 peptides in BB9A, 5,184 peptides in the BB10A, 4,608
peptides in BB11A, and 4096 peptides in BB12A.
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Peptide Synthesis
Combinatorial libraries of peptides were created following typical solid phase synthesis and
split and mix techniques.15 Reagents were purchased from Midwest Biotech (Indianapolis,
IN) except where noted. In this scheme, the C-terminal residue is anchored to
phenylacetamidomethyl (PAM) resin beads and the growing peptide chain is constructed by
addition of N-tert-butoxycarbonyl (Boc) protected amino acids and 3-(Diethoxy-
phosphoryloxy)-3H-benzo[d][1,2,3] triazin-4-one (DEPBT, purchased from National
Biochemicals, Twinsburg, OH) as a coupling reagent. For the purpose of synthesizing
tryptic-like peptides, the synthesis began with a mixture of PAM resin beads preloaded with
arginine or lysine residues. Coupling reactions were performed in separate vessels for each
residue with the Boc-protected amino acid and DEPBT present at 10-fold molar excess. By
adding each amino acid in a separate vessel with 10-fold molar excess of reagent, equimolar
incorporation of each amino acid at a give position is ensured. In order to incorporate two or
more amino acids at a given position, beads were dried, divided equally by mass, and
redistributed among the reaction vessels prior to the next coupling step. Upon cleavage and
side-chain deprotection with hydrofluoric acid, the retrieved peptides were purified via
lyophilization. The efficiency of peptide synthesis was verified using LC-MS data. A larger
database containing all possible peptide sequences that arise from omission of a single
amino acid residue was constructed for each library and observed to identify very few
deletion peptides. Chemical stability of the peptide libraries appears to be robust; samples
stored at −20°C (as solid or in solution) yield similar results to solutions stored in an
autosampler at 10°C over the course of 3 months.

Biological Sample Preparation
For the D. radiodurans digest, proteins were extracted by four passes through a French press
at 16000 psi and cleared by centrifugation at 13000 g for 45 minutes. Replicate 250
microliter protein extracts (estimated protein concentration of 10.3 mg/mL) were digested
overnight with trypsin in the presence of 0.05% RapiGest SF (Waters, Milford, MA) acid-
labile surfactant and 25 mM ammonium bicarbonate after reduction and alkylation with
dithiothreitol and iodoacetamide. Trypsin was deactivated and the acid-labile surfactant was
cleaved with the addition of five microliters of 90% formic acid followed by incubation at
37° C for 2 hours and centrifugation at 13000 g for 10 minutes. The peptide samples were
cleaned by solid phase extraction using a Waters OASIS HLB cartridge and the
manufacturer’s protocol. After removing the solvent by speed-vac at 45° C for 2 hours, the
digest was suspended in 200 microliters of solvent A.

LC-MS Analysis
All data reported here were recorded on an LCQ DecaXP Plus (Thermo Scientific, Waltham,
MA) ion trap mass spectrometer. For synthetic libraries, sample sizes between 1 fmol and
1pmol per peptide (based on average molar mass of the library) were tested for optimal LCQ
performance (Figure 1). The optimum loading amount (100 fmol per peptide, or 410, 592,
564, and 528 ng of BB9A, BB10A, BB11A, and BB12A, respectively) was then used to
collect ten replicate analyses for each library using a 120-minute gradient from 97% to 60%
solvent A (97% water, 3% acetonitrile with 0.1% formic acid) at 250 nL/min using an
Eksigent nanoLC 2D (Dublin, CA). Solvent B is acetonitrile with 0.1% formic acid. The
sample is first loaded on a 15 mm × 0.1 mm i.d. fritted trapping column packed in-house
with 5 micron, 200 Å pore MAGIC C18AQ particles (Michrom Bioresources, Auburn, CA).
Separation occurs in a 150 mm × 75 micron i.d. pulled-tip capillary column packed in-house
with 5 micron, 100 Å pore MAGIC C18AQ particles. Eluting peptides are electrosprayed
directly into the source of the LCQ Deca XP ion trap mass spectrometer where they are
analyzed by a recurring sequence of one mass spectrum from m/z 300 to 1500 followed by
two tandem mass spectra of the two most intense ions. A dynamic exclusion protocol is
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employed such that each precursor mass is analyzed only twice before it is excluded for 45
seconds. The D. radiodurans digest was analyzed under LC-MS conditions identical to
those used for the synthetic libraries with an injected mass of 1.29 μg, assuming quantitative
recovery from solid-phase extraction sample clean-up.

Data Analysis
For database searching, all possible sequences within a library were concatenated and
treated as a single protein in a custom database. Mascot version 1.9 was used to query the
custom database by setting the enzyme specificity to trypsin and allowing for zero missed
cleavages and variable modification of oxidized methionine. The precursor mass tolerance
was set to ±1.5 Da and the fragment ion tolerance to ±0.8 Da using monoisotopic masses. A
peptide score threshold of 25 was chosen for parsing the results as it produced as few as zero
matches to the reverse sequence for the respective synthetic libraries in the database.
Searches of the D. radiodurans data against the reverse D. radiodurans database as a decoy
resulted in a FDR of 3.9% using a Mascot score threshold of 25. Three different methods of
estimating the FDR for the synthetic libraries are explained in the Supporting Information.
The first method used the D. radiodurans proteome as a decoy database and resulted in FDR
values ranging from 1.9% to 4.4% depending on the library (see Supporting Table S-1). The
other two methods used searches that included decoy sequences with one deletion, two
consecutive deletions, or one amino acid insertion and produced less conservative FDR
values ranging from 1.89% to 2.14% or highly conservative FDR values ranging from
4.07% to 9.44% (see Supporting Table S-2). These combined estimates confirm that a
reasonable estimate of FDR for the synthetic library database searches is less than 5%.

Results and Discussion
Optimizing Synthetic Library Injection Amount

Several experimental parameters, such as nano-LC gradient length, dynamic exclusion
settings, and the mass of peptides loaded onto the instrument, were optimized prior to
replicate analyses. The optimal injection amount for each peptide library was expected to be
important for two reasons. Insufficient mass would generate little usable data due to
instrumental sensitivity limits, whereas excessive amounts of sample can overload the
column and impair chromatography performance. Optimal injection amounts for each
library were determined by triplicate injections of each library from 1 fmol to 1 pmol per
peptide, as shown in Fig. 1. At lower injection amounts, below 10 fmol, the number of
identifications decreases for all peptides with the shorter-length libraries exhibiting a more
dramatic reduction. This result indicates the sensitivity limit of the mass spectrometer,
which apparently varies for these libraries in a seemingly length-dependent manner. At
larger injection amounts, increasing the injection amount beyond 100 fmol results in fewer
peptide identifications for all four libraries. Investigation of the data in more detail illustrates
that broadened peaks in the chromatogram likely leads to selection of fewer unique
precursor ions compared to the optimal 100 fmol injection amount. It should be noted that
these data were acquired over a period of several weeks and that varied tuning conditions of
the mass spectrometer and different nanoLC columns were used.

Hydrophobicity Distributions of Libraries
Hydrophobicity is a simple metric that can describe similarity between peptide library
models and proteomic samples. Not only is it desirable for our model system to adhere to the
naturally observed hydrophobicity distribution, it is also important to consider potential
biases that occur if the distribution for the libraries falls outside of a practical range.
Peptides that are too hydrophobic might fail to be detected due to insufficient solubility,
whereas peptides that are too hydrophilic might not be retained sufficiently on the trapping
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column of the nano-LC system. Figure 2 compares the hydrophobicity distribution of 6000
random length-matched tryptic sequences from the human proteome13 (thick lines) to that of
the designed libraries (thin lines). Median and quartile values for these distributions are
reported in Supporting Table S-3. The hydrophobicity scale used here corresponds to that
developed by Eisenberg et al.;16 other scales produced similar results. The hydrophilic
portion of the distribution for the human sequences is slightly more populated than libraries
BB11A and BB12A, but overall widths and ranges of distributions for peptide libraries are
in good agreement with their proteome counterpart. The dashed lines in Figure 2 show the
distribution of identified peptides from ten replicate analyses of the libraries. Identifications
are obtained across the libraries’ distributions and show no significant bias. This result
reaffirms the widespread use of reversed-phase liquid chromatography in shotgun
proteomics, although the ability to identify extremely low or high hydrophobicity peptides
by this approach may be problematic and deserves further investigation.

Comparison between Synthetic and Biological Samples
Individual peptide libraries were subjected to ten replicate LC-MS analyses to assess the
depth of analysis this platform can achieve in regard to the complexity of our model system.
Because each library contains thousands of peptides at approximately equal abundance,
competitive ionization was expected to result in peptide identifications that are fairly
random, causing significant additional unique identifications to be obtained with each
replicate. Alternatively, biological samples typically contain peptides present at abundances
varying by several orders of magnitude. In this circumstance, one would suspect that the
most abundant components are detected redundantly and additional unique identifications
obtained from replicate analyses correspond to inconsistent detection of less abundant
peptides. Experimental results from replicate analyses of peptide libraries and the D.
radiodurans sample are shown in Figure 3. The cumulative peptide identifications for the
BB12A, BB11A, and BB10A libraries seem to scale similarly with each replicate, with
slightly fewer identifications in the libraries of shorter lengths. This trend may be explained
by the tendency for longer peptides to receive higher Mascot scores. Also, BB10A contains
more components than BB11A, which contains more components than BB12A. Thus, it
could also be reasoned that increased complexity may lead to increased co-elution,
competitive ionization, and convoluted MS/MS spectra. The results from BB9A appear
slightly different. In a single analysis, it ranks second to BB12A for identified peptides, yet
it quickly intersects the curves for BB11A and BB10A to yield the fewest identifications of
the libraries after 6 replicates. Initially, this shallow curve was thought to be the result of
exhaustive analysis of the library, as BB9A contains the fewest number of components.
However, when these data are plotted to show the percent of each library identified per
replicate (see Supporting Figure S-1), only ~60% of BB9A can be assigned after ten
replicates, which is within the range observed for the other libraries (49%, 56%, and 72%
for BB10A, BB11A, and BB12A, respectively). It is possible that our choice of template
peptide and permutations for the BB9A library has introduced some unanticipated properties
and is an ongoing point of interest in this study. The replicate curve for an equimolar
mixture of these peptide libraries (open black diamonds) displays the opposite trend of
BB9A. The increased complexity in the library mixture exacerbates the effect of competition
in the sample, yielding fewer identifications in a single analysis than any of the individual
libraries. Identifications also become more random, leading to a greater number of unique
identifications upon replicate analysis.

The LC-MS results for the D. radiodurans digest (open black squares) show significantly
fewer identifications for a single LC-MS/MS analysis as well as after 10 replicates than for
any of the synthetic libraries for similar amounts loaded on column. This is consistent with
the dynamic range of peptide abundance in the biological sample; the D. radiodurans digest
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is anticipated to contain over 50,000 peptides present across 5 orders of magnitude in
abundance.17 Consequently, the peptides from the most abundant proteins are repeatedly
detected while lower-abundance species are detected less consistently or not at all. The
average length of peptides identified in the D. radiodurans digest was 12.5 residues (data
not shown), which suggests the lengths of the peptide libraries are appropriate to model
tryptic peptides. In general, the replicate curves for our peptide libraries and D. radiodurans
sample appear similar to other reports that involve extensive replicate analyses of proteomic
samples.18 The curvature of these lines appears to depend not only on complexity, but also
on composition or length as well (as observed for BB9A). These results demonstrate that
model libraries can be created that produce replicate curves resembling biological systems
of interest.

Proteome digests typically contain several peptides at high abundance that may be readily
identified in every replicate. Peptides detected in only one replicate are thought to be less
abundant (or possibly false positives). While identification of many peptides from a
biological digest in all ten replicates would be expected for mainly those peptides from
higher abundance proteins, most identified peptides should presumably be detected in one
(or at most, a few) replicates. For synthetic libraries in which all sequences are present at
equimolar concentrations, co-elution and competitive ionization likely result in a smaller
fraction of peptides detected in ten of ten replicates as compared to a biological digest where
peptides from the highest concentration proteins should be favored. In Figure 4, results for
these samples are plotted as the number of unique peptides identified in an exact number of
replicates. The data point at one replicate represents the peptides detected in exactly one of
the ten LC-MS replicates, whereas the data point at ten replicates represents peptides
detected in all ten LC-MS analyses. For the D. radiodurans digest, the observed bimodal
distribution was anticipated given the dynamic range of biological samples. The distribution
is also remarkably symmetric with nearly as many peptides detected in every analysis as are
in only one of the ten replicates. Curiously, the synthetic libraries also give rise to bimodal
distributions. Although this result may not be intuitive, it appears to be consistent with a
simple theoretical model discussed below. This bimodal distribution can also result from
peptides with different precursor ion intensities (probably related to relative gas-phase
basicity) where readily ionized peptides can be identified in all replicates while poorly
ionized peptides are identified less frequently. Indeed, plots of average precursor ion peak
areas and apex peak intensities for peptides found in different number of replicates show an
increasing trend from peptides identified in one replicate to those identified in all ten (see
Supporting Figure S-2). It is also curious that in the case of the BB9A library, more peptides
are identified in every replicate than are identified in exactly one replicate. This is consistent
with the data for BB9A in Figure 3, which shows a large number of identifications for
BB9A in the first replicate and fewer additional identifications in subsequent replicates
compared to other libraries.

Library Mixtures at Varying Relative Abundance
To more closely resemble a biological sample, peptide libraries can be mixed in different
ratios to establish a dynamic range of abundance. From injection optimization experiments
(Figure 1), we know the ion trap mass spectrometer is sensitive to individual libraries at
abundances between one femtomole and one picomole, with the greatest sensitivity from 10
to 100 femtomoles. Therefore, analysis of library mixtures in this range of abundance should
not be limited by instrumental sensitivity, but rather the competition related to the
concentration profile for a particular mixture. Analysis of individual libraries shows
evidence that each library differs at least slightly in terms of the number of identifications
that can be achieved. Varying the relative abundance of these libraries will almost certainly
result in further bias, but to what extent is not obvious. Figure 5 shows the results of
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replicate analyses of mixtures of peptide libraries BB9A, BB10A, BB11A, and BB12A. In
these data, each cluster of bar graphs corresponds to LC-MS results for different library
mixtures. The composition of each mixture is denoted along the x-axis as femtomoles
BB9A, BB10A, BB11A, and BB12A, respectively. The hollow bars indicate the relative
abundance of each library in the prepared mixture and the solid bars reflect the fraction of
total identifications that correspond to a particular library upon LC-MS analysis. The equal
abundance mixture, which contained 50 femtomoles per peptide for each library, suggests
peptides of increasing chain length account for a much higher proportion of peptide
identifications. At each extreme, BB12A accounts for nearly 50% of assignments while
BB9A falls below 2%. Equimolar mixtures with 20 and 100 femtomoles per peptide gave
similar results (data not shown). It also seems unlikely that choice of template peptide and
library design would cause such a large difference in response, especially given the
similarities of the data when each library is analyzed individually.

One possible interpretation of the length dependence result is that under these competitive
conditions, peptides are ionized preferentially due to differences in apparent gas-phase
basicity.19–22 For doubly-charged tryptic-like peptides in linear conformations, increased
chain length would result in greater separation of charged sites (N-terminus and C-terminal
basic residue) and thus less destabilization through Coulombic repulsion. Because the
electrostatic interaction follows an inverse-square law, this effect might be sensitive to
relatively small changes in length. When the libraries are analyzed individually, chain length
is fixed and the limited number of excess charges in the electrospray droplet would ionize
the peptides based on other properties. In competition among peptides of different size,
however, length may become a significant parameter and contribute to the results seen here.
Extracted precursor peak intensities for the experiments used for Figure 5 were compared
among the four libraries and clearly demonstrate that longer peptide sequences resulted in
larger average peak intensities and the trend was length dependent (see Supporting Figure
S-3). This interpretation is consistent with another report which determined length to be a
feature positively correlated with peptide detectability in a machine learning model.10

The middle two plots of Figure 5 show results for mixtures where the peptide libraries are
present at concentrations differing by factors of two. The 12.5:25:50:100 mixture contains
BB12A as the most abundant library, and considering the bias favoring longer peptides, it is
not surprising that over 85% of the peptides identified from this mixture are from BB12A. In
addition, the other libraries are effectively suppressed with 0.4% and 13.9% of
identifications attributed to BB10A, and BB11A, respectively, and zero identifications from
BB9A. In the 100:50:25:12.5 mixture, nearly the same number of peptides are identified
from BB9A and BB10A, even though BB10A is present at half the abundance of BB9A.
Also, the suppression of other libraries is not as significant here, with BB11A accounting for
22% of identified peptides and, curiously, BB12A’s relative response is approximately
reflective of its solution-phase relative abundance. Lastly, 200:80:60:40 cluster of bar graphs
represents an effort to create a mixture that yields equal response across all four libraries. In
this mixture, >100 peptides can be assigned from each library. Also, each library accounts
for at least 10% of identifications and no single library contributes more than 45% of
identifications. Results for these mixtures demonstrate the number of peptide identifications
in a mixture does not relate to solution-phase abundance in a straightforward manner. While
the results from these mixtures might seem nightmarish for quantitation in biological
samples, protein digests will produce peptides of various lengths and it is possible that this
effect will be mitigated to some degree.

Replicate Analyses of an Equimolar Mixture of Peptide Libraries
Two scenarios can be used to envision the dynamics involved in detecting peptides in the
more complex mixtures of libraries, such as those for which the results are shown in Figure
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5. First, because some subset of each library can be detected in ten of ten replicate analyses
of that library, it may be possible that these peptides will still be favored for detection versus
the remaining, less detectable peptides. In the second scenario, the roughly four-fold
increase in sample complexity reduces the likelihood of each peptide being selected for MS/
MS so that even the most detectable peptides are identified less frequently. Because a
comparable number of peptides can be detected in a single analysis for single libraries and
library mixtures (Figure 3), one or both of these scenarios (or a suitable alternative) must be
invoked.

To discern which of these mechanisms dominates, ten LC-MS replicates were performed on
the equimolar library mixture (50 fmol each). The results are shown in Figure 6 and plotted
similarly to Figure 4, giving the number of peptides that are identified in an exact number of
up to 10 replicates. In Figure 6A, the unique peptide identifications have been sorted
according to library of origin and we observe a strong bias toward longer peptides similar to
Figure 5. A strong peak at 10 replicates is not observed in Figure 6A, and thus no bimodal
distribution. This invokes the second scenario above involving increased competition,
causing highly detectable peptides within each library to be suppressed by the presence of
three other libraries of similar complexity at equal abundance. As a result, identifications are
obtained more randomly and most peptides are identified in only one or two replicates.
Nevertheless, some peptides from the BB12A, BB11A, and BB10A libraries are detected in
all ten replicates, indicating the first scenario involving highly detectable peptides
contributes slightly in these data. Figure 6B shows the same data normalized to the total
number of identifications for a given library. It is interesting to note that for the fraction of
peptides identified in exactly one replicate, the ordering of the libraries roughly inverts, with
>60% of peptides identified from BB9A occurring in only one of ten replicates, compared to
~40% for the other three libraries. The fraction of peptides identified in a given number of
replicates for BB9A correspondingly decreases with additional replicates more rapidly than
the other libraries. These features of the data from BB9A appear to be consistent with those
when the BB9A library is analyzed individually.

Theoretical Model Considerations
We have employed a probabilistic approach with a few simple assumptions to generate
hypothetical results for a reasonable number of replicate analyses of complex mixtures.
Assume that there are n copies of a peptide in a given sample admitted into the LC-MS
system, and that the probability of ionizing a single copy of the peptide is p. Further, assume
that the analytical platform can identify this peptide if its ion count (i.e. its number of
ionized peptides) is greater than or equal to some threshold c. Obviously, p and c values are
determined by the peptide sequence and experimental protocol. Given these assumptions,
the detectability of the peptide, i.e. the probability that this peptide is detected, at quantity n
can be expressed as

(Eq. 1)

where k is the number of peptides reaching the detector. In the limit, and for large n, this
truncated sum of binomial distributions can be approximated by the integration of a
Gaussian distribution. Thus, the detectability of a peptide at quantity n can be expressed as
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(Eq. 2)

where Φ(x) is the standard Gaussian cumulative density function. Using this relationship, we
can estimate the distribution of peptide detectability f(d) as

(Eq. 3)

where ϕ(x) is the standard Gaussian probability density function. Note that the denominator
here is independent of n, p, and c, while the numerator is the density function of a random
variable. Quantity c-1/2 was introduced to provide more accurate integration. For standard
detectability, peptide number n will be a constant. Thus, if the variability of p and c is not
very large, we can assume that the random variable in the numerator of Eq. 3 is uniformly
distributed within a certain range of parameters. From this, Eq. 3 can be simplified to

(Eq. 4)

which is a symmetric “U”-shaped distribution (Figure 7A).

Using a Monte Carlo simulation, we further investigated whether this theoretical model can
also explain the “L”-shaped distribution of effective peptide detectabilities (i.e. the
probability of detection of peptides in non-equimolar mixtures). First, we assumed a power
law distribution (r = −2.0) for protein quantity n, and Gaussian distributions for peptide
ionization probability p and detection cutoff c. We sampled 2000 proteins as the protein
mixture. Each protein was assumed to have exactly 30 peptides, with one same quantity n
sampled from the power law distribution, and different p and c values sampled from uniform
and Gaussian distributions, respectively. Effective peptide detectability can then be
computed using Eq. 2 for each peptide in each protein. Protein identification protocol was
simulated using Bernoulli trials with the success probabilities equaling effective peptide
detectabilities as parameters for each of the 2000 proteins. Only proteins with ≥2 identified
peptides were retained. Finally, we collected effective detectabilities of the peptides from
these proteins only and obtained the histogram of detectabilities as an approximation of the
distribution. Surprisingly, we found that the distribution of effective detectabilities obtained
by this theoretical analysis was “L”-shaped (Figure 7B) or a left-skewed “U”-shape (data not
shown). This result was robust to the parameters used in the simulation and even choice of
probability distributions. For example, using Gaussian or Beta distributions for p and
keeping c as constant resulted in a similar conclusion.

These theoretical simulations successfully predict the detectability curves for the libraries
when analyzed individually (Figure 4). Due to equal abundance of peptides within a library,
libraries were not expected to contain many peptides that would be identified in all ten
replicates. Each library presented here shows evidence for a significant number of highly
detectable peptides, however, as predicted by this model. The BB9A library even shows a
roughly symmetrical distribution with slightly more highly detectable peptides relative to
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less detectable peptides. Other peptide libraries show evidence for left-skewed bimodal
distributions. Replicates from an equimolar peptide library mixture (Figure 6) do not exhibit
a local maximum for highly detectable peptides. This might be due to competition between
these highly detectable peptides across libraries, or perhaps the high detectability is
insufficient given the increased total number of peptides in the mixture and the analytical
platform capacity. Although Figure 6 strongly resembles the “L”-shaped distribution from
Figure 7B, it is important to note that this trend is observed for different reasons. Libraries
are mixed at equimolar ratios, albeit with a length-dependent detection bias, to generate the
data shown in Figure 6, while the model used to generate the data in Figure 7B relies on
protein abundances that follow a power law distribution.

Peptide Library Model Application: Amino Acid Preference
Combinatorial libraries of peptides offer a unique opportunity to study specific and
systematic changes in peptide composition. What effect, for example, does a single mutation
in a peptide sequence have on its detection in a complex mixture? Biological systems are not
well-suited to study this phenomenon as the number of peptides that differ only by a single
amino acid substitution is quite low within the proteome of a single organism. In contrast,
peptide libraries synthesized combinatorially as described here result in hundreds of sets of
peptides for which only one residue is different. Figure 8 illustrates how the point mutation
question might be addressed using combinatorial libraries of peptides. At each position, the
fractional abundance of the possible amino acids is shown in four bar graphs. The possible
amino acids can be thought of as different mutations, and the bar height reflects the fraction
of identified peptides with that particular amino acid. The leftmost bar represents amino
acids at equal abundance, which the libraries should approximate within the precision of the
split-and-mix steps of the synthesis. The second bar from the left shows the fractional
abundance of each amino acid for all peptides identified in five replicate LC-MS analyses.
The third bar shows the amino acid abundance observed for peptides identified in a single
random replicate, and the rightmost bar represents amino acid abundance for peptides that
are observed in all five replicates. In this format, one can readily discern the effect of a
mutation on detection and the identity of preferred or disfavored amino acids by whether the
size of an amino acid’s respective bar changes from left to right. Furthermore, the observed
effect of a mutation is expected to become more exaggerated as the identification criteria
become more stringent, and this trend is observed in most cases.

Fractional abundances for many sites change very little and remain representative of equal
abundance. Not only does this result confirm the robustness of the synthetic approach, but
also suggests these mutations have little impact on detectability. One might anticipate a
mutation involving similar amino acids to show little preference, as in the case of valine and
isoleucine in site 3 of BB9A which vary only by a methylene group. Lack of preference can
also be observed, however, for mutations that differ more significantly. Site 4 in BB10A
varies between tyrosine, isoleucine, and aspartic acid, yet there is only slight preference
(<5% fractional abundance) for the former two at the expense of the latter. Some trends
appear to be general; for example, cysteine, histidine, and methionine residues appear to
hinder identification. In the case of cysteine and histidine, oxidation arising either during the
electrospray ionization or as a result of drying during split-and-mix steps of the synthesis
was evaluated to determine if it contributes to this observation. Variable modification of
methionine by oxidation was included in all searches, so other than spreading the signal
from methionine-containing peptides into multiple MS peaks, which may be significant, this
modification is addressed. Database searches with oxidation as a variable modification for
cysteine and histidine increased peptide identifications by as much as 10%, though typical
levels appear to be only 2% (data not shown). Thus, we conclude that oxidation of cysteine
and/or histidine is not the main cause of their disfavor. Histidine may potentially be
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disfavored because it introduces a basic site in the peptide, increasing the charge state from
two to three. The tendency of doubly-charged peptide ions to produce fragmentation spectra
with higher Mascot scores might explain the detrimental effect of histidine on identification.
Some mutations are preferred in some contexts while disfavored in others. Proline, for
instance, is disfavored in competition with alanine at site 5 in BB9A, but is preferred over
isoleucine at site 7 in BB10A. Still, little if any preference for proline is observed over
serine at site 6 in BB11A. These cases are expected to be the result of more complex
mechanisms, such as pair-wise interactions with other amino acids or altered fragmentation
pathways. Lastly, it is worth noting that although trends observed in these data might be
specific to these libraries, systematic design and analysis of a sufficient number of libraries
could elucidate more general interpretations.

Conclusions
We have described our approach to design combinatorial libraries of peptides as a robust
and reproducible standard to model the analytical complexity of biological samples. Four
libraries of different chain lengths, each containing a few thousand peptides, were adjusted
to closely resemble the hydrophobicity distribution and amino acid composition of a typical
proteome. Preliminary data from an LCQ ion trap mass spectrometer suggest this sample is
sufficiently complex to reproduce some features of a proteome digest sample. When
analyzed individually, each library appears to contain a subset of peptides that are repeatedly
detected in every replicate analysis, as would the peptides from abundant proteins in a
biological sample. Upon combining these four libraries at equal abundance, we observe a
chain-length dependence on peptide identification that we tentatively attribute to increased
gas-phase basicity of longer peptides. Further work is aimed at determining the extent to
which amino acid composition may influence this trend. As a model system, the peptide
libraries presented here can be used to determine all 13 chromatography metrics, all 6
sampling metrics, 5 of the 6 ion source metrics (lack of +4 ions), all 11 MS1 signal metrics,
all 7 MS2 signal metrics, and 4 of the 5 peptide identification metrics (lack of semi-tryptic
peptides) described in a recent CPTAC study.9 Although not investigated in this study, other
analytical platforms with different separation techniques, ionization sources, mass analyzers,
and data analysis algorithms are expected to produce other limits of detection and optimal
injection amounts, especially with more sensitive ion trap instruments. We demonstrate here
that even with instruments of modest sensitivity and simple data analysis tools, peptide
libraries are useful proteomics models.

Combinatorial libraries are also superb models for probing specific properties relevant to
peptide identification (such as those regarding chromatographic retention times or
fragmentation patterns) in a systematic fashion. An example of such a study is reported here,
which examines the effect of amino acid composition on likelihood of detection in a
complex mixture. Some effects seem to be general, such as the bias against detection of
cysteine-, methionine-, or histidine-containing sequences. Other amino acid substitutions
show varying effects in different contexts, which will likely require additional libraries and
more sophisticated data analysis to investigate sufficiently.

Overall, it appears that synthetic peptide libraries provide an alternative or at least a
complement to standard biological samples as models of proteome complexity. While
biological standards allow evaluation of sample handling and protease digestion protocols,
the abundance of individual proteins and peptides in these samples is difficult to
characterize. Analytical platform performance can be readily evaluated using well-defined
peptide libraries whose complexity and abundance can be carefully controlled and whose
sequences are known.
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Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Average number of unique peptides identified from each peptide library (analyzed in
triplicate) for injection amounts ranging three orders of magnitude. Results indicate that 100
fmol per peptide is the optimum sample size for this platform for all four libraries.
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Figure 2.
Normalized histograms of the hydrophobicity distributions for 6000 random length-matched
peptides from the human proteome (thick lines), all peptides from the synthetic libraries
(thin lines), and peptides identified from individual libraries (dashed lines).
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Figure 3.
Cumulative unique peptide identifications obtained upon subsequent analyses up to ten
replicates for BB12A, BB11A, BB10A, and BB9A (black, red, blue, and green diamonds,
respectively). Results for a mixture containing 50 femtomoles per peptide from all four
libraries are shown in open diamonds. Data for replicates of a tryptic digest of D.
radiodurans are shown in open squares. The data point at one replicate represents the
average number of unique identifications among all ten replicates, rather than the number in
any one replicate.
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Figure 4.
Number of unique peptides identified in a particular number of replicate analyses. For
example, the data points at 1/10 reflect the number of peptides detected in only one replicate
for its respective sample, whereas 10/10 gives the number of peptides detected in every
replicate.
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Figure 5.
Peptide identifications from triplicate analyses of peptide library mixtures at differing
relative abundance. Hollow bars indicate the solution-phase abundance of each library while
solid bars show the fraction of peptide identifications pertaining to particular libraries upon
triplicate analysis of each mixture. Abundance ratios are given below each bar graph cluster
in femtomoles BB9A:BB10A:BB11A:BB12A, respectively.
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Figure 6.
Peptides identified in exact numbers of replicates (A) for an equimolar mixture of the
BB9A, BB10A, BB11A, and BB12A libraries, each present at 50 femtomoles. The lower
panel (B) shows the same data plotted normalized to the total number of identified peptides
from each library.
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Figure 7.
Results of theoretical modeling of peptide detectability predicting A) a bimodal distribution
of peptide standard detectability for a mixture of peptides in equal abundance and B) the
same treatment on a mixture of peptides whose relative abundances follow a power law
distribution, resulting in a rapidly decaying distribution of effective detectability.
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Figure 8.
Illustration of the influence of choice of amino acid on likelihood of peptide identification.
A set of four bar graphs is assigned to each site for each library. The leftmost bar represents
all peptides at equal abundance in a library. The second bar reflects the preference in
detection for cumulative peptide identifications after five replicates. The third bar is based
on peptides identified in a randomly selected replicate. The fourth bar represents the amino
acid preference observed for peptides identified in all five replicates.
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