

NIH Public Access

Author Manuscript

J Med Virol. Author manuscript; available in PMC 2011 September 1

Published in final edited form as:

J Med Virol. 2010 September ; 82(9): 1586–1593. doi:10.1002/jmv.21864.

Confirmation of Choclo Virus as the Cause of Hantavirus Cardiopulmonary Syndrome and high serum antibody prevalence in Panama

Randin Nelson^{1,*}, Raul Cañate^{2,*}, Juan Miguel Pascale², Jerry W. Dragoo³, Blas Armien², Anibal G. Armien⁴, and Frederick Koster^{1,5,†}

¹Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM

²The Gorgas Memorial Institute, Panama City, Panama

³Department of Biology, University of New Mexico

⁴Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN

⁵Lovelace Respiratory Research Institute, Albuquerque, NM

Abstract

Choclo virus (CHOV) was described in sigmodontine rodents, *Oligoryzomys fulvescens*, and humans during an outbreak of hantavirus cardiopulmonary syndrome (HCPS) in 1999 to 2000 in western Panama. Although HCPS is rare, hantavirus-specific serum antibody prevalence among the general population is high suggesting that CHOV may cause many mild or asymptomatic infections. The goals of this study were to confirm the role of CHOV in HCPS and in the frequently detected serum antibody and to established the phylogenetic relationship with other New World hantaviruses. CHOV was cultured to facilitate the sequencing of the small (S) and medium (M) segments and to perform CHOV-specific serum neutralization antibody assays.

Sequences of the S and M segments found a close relationship to other *Oligoryzomys*-borne hantaviruses in the Americas, highly conserved terminal nucleotides, and no evidence for recombination events. The maximum likelihood and maximum parsimony analyses of complete M segment nucleotide sequences indicate a close relationship to Maporal and Laguna Negra viruses, found at the base of the South American clade. In a focus neutralization assay acute and convalescent sera from 6 Panamanian HCPS patients neutralized CHOV in dilutions from 1:200 to 1:6400. In a sample of antibody-positive adults without a history of HCPS, 9 of 10 sera neutralized CHOV in dilutions ranging from 1:100 to 1:6400. Although cross-neutralization with other sympatric hantaviruses not yet associated with human disease is possible, CHOV appears to be the causal agent for most of the mild or asymptomatic hantavirus infections, as well as HCPS, in Panama.

Keywords

hantavirus; phylogeny; neutralizing antibody; Bunyaviridae

[†]Address correspondence to: Frederick Koster, Lovelace Respiratory Research Institute, 2425, Ridgecrest Dr., Albuquerque, NM 87108, Phone: (505) 348-9614, Fax: (505) 348-8567, fkoster@LRRI.org.

^{*}RN and RC contributed equally to this work.

INTRODUCTION

Hantavirus cardiopulmonary syndrome (HCPS) is a severe and often fatal infection of the lung and other tissues, caused by one of at least 16 hantaviruses (Family *Bunyaviridae*, Genus *Hantavirus*) distributed throughout most of the Americas [Schmaljohn and Hjelle, 1997] [Koster and Hjelle, 2004]. Hantaviruses are negative-strand RNA viruses containing three segments, a small (S), medium (M), and large (L) segments encoding nucleocapsid (N), glycoproteins GPC, and RNA-dependent RNA polymerase, respectively. Most hantaviruses in the Americas, including the Sin Nombre virus (SNV) in North America and the Andes virus (ANDV) in South America, are associated with mortality rates of 20 to 35% and are contrasted with low levels of seroprevalence in endemic regions, usually below 2%. One exception is the Laguna Negra virus (LNV) in the Gran Chaco of western Paraguay, where indigenous peoples uncommonly experience symptomatic infection and mortality yet seroprevalence to hantavirus infection exceeds 20% in many communities [Ferrer et al., 1998; Williams et al., 1997].

The other exception is Choclo virus (CHOV), the only virus ascribed to human disease in Panama [Bayard et al., 2004; Vincent et al., 2000]. CHOV was identified by RT-PCR from samples taken from the host *Oligoryzomys fulvescens*, a common peridomestic sigmodontine rodent in Panama. More than 140 cases of HCPS, including 28 fatalities, have been recorded in Panama since 2000. All hospitalized patients tested by RT-PCR and amplimer sequencing were shown to have CHOV infections (Pascale et al., unpublished data). HIgh serum antibody prevalence [Armien et al., 2004] may be due to infection exclusively with CHOV or may be due in part to infections with other hantaviruses. Hantaviruses in Panama not associated with human disease include Calabazo virus (CALV) [Hjelle et al., 1995; Salazar-Bravo et al., 2004; Vincent et al., 2000] and an unnamed hantavirus in *Sigmodon hirsutus* [Armien et al., 2009]. Extensive cross-reactivity to nucleoproteins of the American hantaviruses prevents the use of EIA or Western blot technologies when assigning an infecting strain [Hjelle et al., 1997]. Studies utilizing neutralizing antibody specificities, on the other hand, may permit tentative assignment [Chu et al., 1994]

This study was undertaken to culture CHOV, obtain a complete sequence of the viral S and M segments, identify phylogenetic relationships, and develop a focus neutralization assay in order to implicate CHOV in the high antibody prevalence among Panamanians.

METHODS

Viral Isolation

Virus was obtained from the spleen of a rodent, *O. fulvescens* (specimen voucher no. NK101588, UNM MSB 96073), captured on 6 March 2000 in Las Tablas, Los Santos Province, Panama. The virus is named for a cantina 'El Choclo' of interesting reputation in the neighborhood Barriada 8 Noviembre near Las Tablas. One-hundred mg of tissue was homogenized by a bead beater using 2.5-mm zirconium/silica beads in phosphate buffered saline (PBS) and diluted 1:50, 1:200, and 1:1000 in 1.0 ml complete Vero media (Eagle's minimal essential medium [EMEM] containing 10% fetal bovine serum (FBS), gentamicin (50 µg/mL), and 20 mM glutamine). Vero E6 cells (Vero C1008, ATCC CRL 1586, passage 8) were grown to confluency in 25-cm² flasks in Vero complete media. Media was removed from the monolayer and the diluted homogenates were added, incubated on a slow plate rocker at room temperature for 2 h, then the tissue homogenate was removed. Fresh media with 2.5% FBS was added and the monolayers were incubated at 36°C in a 5% CO₂ atmosphere, with media changed twice weekly. Passage of the monolayer to fresh flasks after trypsinization (0.5% trypsin/5 mM EDTA) was accomplished after 4 weeks (first

passage) and thereafter every 2 to 2.5 weeks. All experiments involving infectious viruses were performed in a biosafety level 3 laboratory.

RT-PCR

A nested reverse transcriptase-polymerase chain reaction (RT-PCR) was used to detect viral RNA in culture supernatants from each passage. Typically 170-µL aliquots (approximately 2 µg total RNA) of supernatant media were extracted using the QIAampViral RNA kit (Qiagen Inc, Valencia, CA) according to the manufacturer's directions. RT-PCR was initiated using AMVrt and Amplitaq LD with the outer antisense primer for 1 h at 42°C. Subsequent reaction conditions were 94°C for 5 min, followed by 8 cycles consisting of 10 s at 94°C, 20 s at 50°C, and 60 s at 72°C, and finally by 28 cycles with the annealing temperature of 55°C. The outer primers at the 5' end of the segment were 5'-ACTGCACGGCAAAAGCTTAAA-3' (58F) and 5'-GGATATAAGCACCAATTGACCT-3' (379R) producing a 320-bp amplimer. The inner pair was 5'-GGACCCGGATGAAGTTAACAA-3' (102F) and 5'-AATTTTTGAGCTGCCACCAA-3' (222R) producing a 120 bp amplimer. The products were visualized on agarose gel, purified and sequenced to confirm specificity to CHOV.

Focus and Neutralization Assays

Replicating virus was titered using a focus assay as published [Bharadwaj et al., 2000]. Vero E6 cells were seeded onto 48-well plates and incubated until confluent. Ten-fold dilutions (1:10 through 1:10⁷) of virus-containing culture supernatant were added to the monolayers in a 200- μ L volume of viral culture medium (EMEM, HEPES buffer, 2.5% FBS, and 50 mg/mL gentamicin) and incubated for 2 h at 37°C. After adsorption, the supernatant was aspirated and 1 mL/well of viral overlay media (VCM and 1.2% methylcellulose) was added and incubated for 7 days. After 7 days the overlay media was removed; the monolayer was washed once with PBS. Ice cold methanol containing 0.5% H₂O₂ was added and incubated at room temperature for 30 min; fixative then was aspirated and PBS added for storage until immunoperoxidase assay.

For the immunoperoxidase assay, fixed cell monolayers were washed twice with PBS, and 200 μ L/well of 1:1000-diluted rabbit anti-SN virus serum was incubated for 1 h at 37°C. After aspiration and washing twice with PBS, 200 μ L of peroxidase-conjugated AffinPure Goat anti-rabbit IgG (H+L) (Pierce Immunochemicals, Rockford, IL) diluted 1:1000 in PBS was added and incubated for 1 h at 37°C. Following aspiration and washing, 200 μ L of DAB/metal concentrate diluted with 1x peroxidase substrate buffer was added to the monolayers and incubated until brown foci appeared, usually 15 to 30 min. Foci/well were enumerated with a 20x inverted scope ocular.

Neutralizing antibody was measured in human serum using diluted test sera in the focus titration assay. Serum samples containing anti-hantavirus antibody were collected from family members and neighbors of HCPS patients in the community of San Jose, Los Santos Province from 2001 to 2003. Serum was diluted (1:20, 1:100, 1:200, 1:400, 1:800, 1:1600, 1:3200, 1:6400, and 1:12800 dilutions) was incubated for 2 h at 37°C with stock virus diluted to a concentration of 35 to 50 focus-forming units (FFU)/well prior to incubation on Vero cell monolayers. Neutralizing antibody titers were expressed as the reciprocal of the highest serum dilution that results in an 80% reduction in the number of foci compared to virus controls. Discrepant results were resolved by two additional focus neutralization assays. Stock CHOV used was E6 passage 3, with a titer of 4.3 log₁₀ FFU/mL. Stock SNV and ANDV demonstrated approximately the same titer in the focus assay titration as was documented by the originating laboratory.

Viral Sequencing

To sequence complete S and M segments, nested primers were designed from consensus sequences of ANDV and LNV viruses in GenBank. To sequence the 5' and 3' termini of each segment, dephosphorylated terminal nucleotides were ligated with T4 ligase and appropriately sized amplimers were cloned into pCRII vector (Invitrogen, Carlsbad, CA). The resulting clones were sequenced by the dideoxy method. Sequences were acceptable only if forward and reverse sequencing results agreed. Multiple overlapping amplimers were sequenced to achieve an 80% duplication of the entire genome.

Phylogenetic Analysis

Sequences of the N protein gene of four strains of ANDV and one strain each of 20 other hantaviruses were compared to the sequence of the CHOV. The sequence of the GPC gene of the CHOV was compared to sequences of 4 strains of ANDV and 20 other hantaviruses (Table 1). The accession numbers of closely related viruses were Maporal virus (MAPV) (N, AY267347; GPC, AY363170) and LNV (N, AF005727; GPC, AF005728). Sequences were aligned using ClustalX [Thompson et al., 1994] followed by visual inspection using MacClade 4 [Maddison and Maddison, 2003]. The N protein and GPC gene sequences were 1302 (with stop codon) and 3465 characters in length, respectively.

Phylogenetic analyses of DNA sequences were conducted using Maximum Parsimony (MP) and Maximum Likelihood (ML) in the software package PAUP* 4.0b10 [Swofford, 2002]. Fulhorst et al. (2004) excluded third base positions from their MP and ML analyses. Third base positions were included but only for transversion changes. Transversion changes continued to increase as genetic distance increased, suggesting that a phylogenetic signal may still be present for these changes at the third position, yet transition changes plateau, suggesting saturation of substitutions has occurred for transitions at the third base position. In the MP analysis all characters were weighted based on their rescaled consistency index (RCI). A heuristic search option with 100 replications of random addition of taxa and TBR branch swapping was used to generate parsimony trees. Bootstrap support [Felsenstein, 1985] for results of MP analyses were based on 1000 repetitions of resampling data using the heuristic search option, with 10 replications of random addition of taxa.

Modeltest (v 3.06) [Posada and Crandall, 1998] was used to calculate the appropriate model for ML analyses. The GTR + G + I (0.6787 and 0.3440 for G and I, respectively) was used to construct phylogenies for the S segment and the GTR + G (0.3439) model was used to construct the M segment phylogeny based on the results of the Modeltest analysis.

RESULTS

Isolation of the Virus

RT-PCR of serial supernatants from blind passages identified the appearance of detectable viral RNA from animal #588 by the fourth blind passage in both tissue inocula diluted 1:50 and 1:1000. Virus was first detected by focus titration assay from the third passage at <100 focus forming units (FFU)/mL, and the highest level of virus was found in the sixth passage with a titer of 5×10^4 FFU/mL. Viral RNA was extracted from sixth passage supernatants, or third passage of virus-positive supernatants, for subsequent genomic sequencing.

Nucleotide Sequence Analysis

The S segment of CHOV isolate 588 (Accession No. DQ285046) was 1516 nt in length, of which 1302 bases encode a predicted nucleocapsid protein 434 amino acids in length, beginning at nt 43. The S segment also contains a potential second ORF (open reading frame) beginning at nt 122, with a predicted protein of 63 amino acids in length. Terminal

nucleotides were conserved as seen in other hantaviruses [Chizhikov et al., 1995] with the 32- and 28-nt equivalent to the 5' and 3' ends, respectively, being identical to those of ANDV and LNV. The 20-nt differences between the CHOV and SNV in the S segment coding region included 16 nonsynonymous changes.

Comparison of the CHOV S segment sequences with those of other hantaviruses indicates the highest degree of identity with South American viruses (78.3 to 79.8% nt; 89.4 to 91.2% aa) (Table 2). Nucleotide similarity between CHOV and the North American viruses was close to that of the South American viruses and ranged from 75.9 to 79.3 % (83.2 to 89.2% aa). Comparison of deduced N protein amino acid sequences shows an 89.9% identity to MAPV, an 88.5% identity to SNV, and a 90% identity to ANDV.

Sequence Analysis of the M Segment

The complete M segment (Accession No. DQ285047) is 3465 nt in length, encoding a glycoprotein precursor of 1155 amino acids. Again, CHOV is more similar to the South American viruses (73.4 to 74.9% and 82.6 to 83.8% nt and aa, respectively) (Table 3). CHOV and North American viruses had nucleotide similarity ranging from 70.8 to 72.3% and amino acid similarity from 76.1 to 79.6%. Comparison of amino acid sequences shows that MAPV has an 83.6% identity to, a 79.6% identity to SNV, and a 83.7% identity to ANDV.

The tree topologies for the MP and ML analyses were similar. CHOV was basal to the South American viruses in the ML analyses for the S segment, whereas it formed a polytomy with MAPV and the remaining South American viruses in the MP analyses (Figure 1a and 1b). The relationship of CHOV to the South American viruses also was found in both the ML and MP analyses using the M segment (Figure 1c and 1d). However, the bootstrap support for this relationship was stronger than in the analysis of the S segment. The differences in tree topologies between this study and that of Fulhorst et al. (2004) can be explained by low bootstrap support of two nodes (compare Figure 1 to their Fig. 1 [p. 141]). Because bootstrap support is low in analyses from both studies, it is difficult to reject either hypothesis. In both studies the North American viruses are paraphyletic with respect to the South American viruses.

Neutralization of Choclo Virus by Human Sera

The presence of neutralizing antibody was detected by the focus reduction assay in sera from all 6 individuals with RT-PCR-confirmed CHOV infection and typical HCPS. Three adults with 3 to 5 days of symptomatic acute disease and who required intubation had lower serum titers (1:200 to 1:1600) than the 3 individuals with milder disease who did not require intubation and who were tested 30 to 60 days after hospitalization (Table 4). Among 10 individuals with IgG antibody, as detected by EIA and strip immunoblot, and who denied previous hospitalization for respiratory infection, 9 had significant neutralizing antibody to CHOV, with titers ranging from 1:100 to 1:6400. One individual in this group did not have a detectable CHOV-neutralizing antibody, as determined in four independent assays. Seronegative controls from Panama did not have neutralizing antibody to CHOV, and no subject from Panama had neutralizing antibody to either SNV or ANDV. Two patients with mild HCPS in New Mexico had neutralizing antibody to SNV isolate 777 but not to CHOV. The hantaviruses identified by RT-PCR in Z. brevicauda (CALV) and in S. hirsutus (unnamed virus) could not be grown in Vero cell culture despite multiple blind passages in two different laboratories, and therefore neutralizing antibody to these viruses is not reported.

DISCUSSION

The first goal of the study was to culture the virus and facilitate accurate identification of phylogenetic relationships. The complete genomic sequence of the S and M segments permitted the conclusion that CHOV is distinct from all other hantaviruses, according to established criteria [Elliott et al., 2000]. Even though CHOV and MAPV share the same host, *O. fulvescens*, these two strains are approximately 10% distinct at the amino acid level of the N protein. This distinction is likely due to independent evolution permitted by the extensive ecologic and physical separation between western Panama and western Venezuela. Rodents in the sigmodontine genus *Oligoryzomys* are natural hosts for at least 6 hantaviruses [Bharadwaj et al., 1997; Bohlman et al., 2002; Gonzalez Della Valle et al., 2002; Medina et al., 2009; Meissner et al., 2002; Powers et al., 1999]. The oryzomine rodent-borne viruses in the Argentina/Chile clade of hantaviruses show little amino acid diversity ([Bohlman et al., 2002; Medina et al., 2002; Medina et al., 2009], suggesting recent divergence. The greater diversity of CHOV from other oryzomine hantaviruses suggests its more remote divergence from the common ancestor.

The second goal of the study was to use the specificity of the neutralization assay to indicate whether the high serum antibody prevalence was due to previous CHOV infection. The focus neutralization assay of sera from CHOV-positive PCR-confirmed HCPS patients demonstrated the presence of neutralizing antibody titers of levels similar to other published reports [Bharadwaj et al., 2000]. As expected, there was no cross-neutralization between CHOV, ANDV, and SNV, but cross-neutralization studies with more closely related viruses, including CALV [Vincent et al., 2000] and MAPV, a hantavirus isolated from *O. fulvescens* in Venezuela [Fulhorst et al., 2004; Milazzo et al., 2002], is needed for definitive specificity.

In five communities in the Azuero peninsula investigators found antibody prevalence ranging from 3% to 45% [Armien et al., 2004]. Antibody was detected in samples from children as young as 4 years of age and increases steadily to highest prevalence in the 40- to 50-year-old cohort, suggesting that steady exposure and infection occurs throughout life in rural areas. From this cohort data it is estimated that among the 250,000 people of the Azuero peninsula there may be more than 10,000 individuals with serum anti-hantavirus antibody. Questionnaires indicated that none of the 275 antibody-positive individuals tested had given a history compatible with an HCPS-like illness, although histories of febrile respiratory illnesses not requiring hospitalization were common [Armien et al., 2004]. An ongoing clinical trial in four clinics during two years of observation has identified 110 individuals with fever and anti-hantavirus antibody detected by IgM-ELISA. CHOV RNA was detected in acute blood samples by RT-PCR, yet no progression to symptomatic pulmonary disease was found (B. Armien, unpublished data).

If the majority of antibody positive individuals were infected with CHOV, as suggested by neutralization assays, and if the reported 140 cases of HCPS is a good estimation of total cases, the ratio of mild or asymptomatic CHOV infection to HCPS may be as high as 50:1 in Panama. LNV may also be associated with a high ratio of mild to severe infection, although strain-specific neutralization titers have not been published [Chu et al., 2006]. In regions where multiple hantaviruses co-circulate in rodent populations, such as Panama, Paraguay [Chu et al., 2006] and Brazil [Figueiredo et al., 2009; Raboni et al., 2009], neutralization assays studies can identify the dominant hantaviruses that infect humans. Since each rodent host has habitat preferences [Armien et al., 2009; Chu et al., 2003], the identification of hantavirus species causing human disease can have useful public health implications.

Acknowledgments

We acknowledge the support of Karl M. Johnson, and sequencing support from the Center for Genomic Medicine at the University of New Mexico. We thank Brian Hjelle for providing the virus stocks of SNV and ANDV.

Funding for this work was obtained from a Gorgas Memorial Institute Research Award to R.C.; an Opportunity Pool Award and Supplements to the ICIDR Program, NIH-U19 45452; the RCE program U54 AI057156; support from the Ministry of Health, Republic of Panama (B.A. and J.M.P); and a grant from DARPA under grant no. DARPA-N00014-1-0900 (J.W.D).

BIBLIOGRAPHY

- Armien AG, Armien B, Koster FT, Pascale JM, Avila M, Gonzalez P, de la Cruz M, Zaldivar Y, Mendoza Y, Gracia F, Hjelle B, Lee S-J, Yates TL, Salazar-Bravo J. Hantavirus infection and habitat associations among rodent populations in agroecosystems of Panama: implications for human disease risk. Am J Trop Med Hyg. 2009; 81(1):59–66. [PubMed: 19556568]
- Armien B, Pascale JM, Bayard V, Munoz C, Mosca I, Guerrero G, Armien A, Quiroz E, Castillo Z, Zaldivar Y, Gracia F, Hjelle B, Koster F. High seroprevalence of hantavirus infection on the Azuero peninsula of Panama. Am J Trop Med Hyg. 2004; 70(6):682–687. [PubMed: 15211014]
- Bayard V, Kitsutani PT, Barria EO, Ruedas LA, Tinnin DS, Munoz C, de Mosca IB, Guerrero G, Kant R, Garcia A, Caceres L, Gracia F, Quiroz E, de Castillo Z, Armien B, Libel M, Mills JN, Khan AS, Nichol ST, Rollin PE, Ksiazek TG, Peters CJ. Outbreak of hantavirus pulmonary syndrome, Los Santos, Panama, 1999-2000. Emerg Infect Dis. 2004; 10(9):1635–1642. [PubMed: 15498167]
- Bharadwaj M, Botten J, Torrez-Martinez N, Hjelle B. Rio Mamore virus: genetic characterization of a newly recognized hantavirus of the pygmy rice rat, Oligoryzomys microtis, from Bolivia. Am J Trop Med Hyg. 1997; 57(3):368–374. [PubMed: 9311652]
- Bharadwaj M, Nofchissey R, Goade D, Koster F, Hjelle B. Humoral immune responses in the hantavirus cardiopulmonary syndrome. J Infect Dis. 2000; 182(1):43–48. [PubMed: 10882580]
- Bohlman MC, Morzunov SP, Meissner J, Taylor MB, Ishibashi K, Rowe JE, Levis S, Enria D, St. Jeor SC. Analysis of hantavirus genetic diversity in Argentina: S segment-derived phylogeny. J Virol. 2002; 76(8):3765–3773. [PubMed: 11907216]
- Chizhikov V, Spiropoulou CF, Morzunov S, Monroe M, Peters CJ, Nichol ST. Complete genetic characterization and analysis of isolation of Sin Nombre virus. J Virol. 1995; 69(12):8132–8136. [PubMed: 7494336]
- Chu YK, Milligan B, Owen RD, Goodin DG, Jonsson CB. Phylogenetic And Geographical Relationships Of Hantavirus Strains In Eastern And Western Paraguay. Am J Trop Med Hyg. 2006; 75(6):1127–1134. [PubMed: 17172380]
- Chu YK, Owen RD, Gonzalez LM, Jonsson CB. The complex ecology of hantavirus in Paraguay. Am J Trop Med Hyg. 2003; 69(3):263–268. [PubMed: 14628942]
- Chu YK, Rossi C, LeDuc JW, Lee HW, Schmaljohn CS, Dalrymple JM. Serologic relationships among viruses in the Hantavirus genus, family Bunyaviridae. Virol. 1994; 198(1):196–204.
- Elliott, RM.; Bouloy, M.; Calisher, CH.; Goldbach, R.; Moyer, JT.; Nichol, ST.; Pettersson, RF.; Plyusnin, A.; Schmaljohn, CS. Family Bunyaviridae. In: van Regenmortel, MHV.; Fauquet, CM.; Bishop, DH.; Carstens, EB.; Estes, MK.; Lemon, SM.; Maniloff, J.; Mayo, MA.; McGeoch, DJ.; Pringle, CR.; Wickner, RB., editors. Viral Taxonomy: classification and nomenclature of viruses Seventh report of the international committee on taxonomy of viruses. Academic Press; 2000. p. 599-621.
- Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution. 1985; 39:783–791.
- Ferrer JF, Jonsson CB, Esteban E, Galligan D, Basombrio MA, Peralta-Ramos M, Bharadwaj M, Torrez-Martinez N, Callahan J, Segovia A, Hjelle B. High prevalence of hantavirus infection in Indian communities of the Paraguayan and Argentinean Gran Chaco. Am J Trop Med Hyg. 1998; 59(3):438–444. [PubMed: 9749641]
- Figueiredo LTM, Moreli ML, de Sousa RLM, Borges AA, de Figueiredo GG, Machado AM, Bisordi I, Nagasse-Sugahara TK, Suzuki A, Pereira LE, de Souza RP, de Souza LTM, Braconi CT, Harsi

CM, de Andreade Zanotto PM. Hantavirus pulmonary syndrome, central plateau, southeastern, and southern Brazil. Emerging Infectious Diseases. 2009; 15(4):561–564. [PubMed: 19331732]

- Fulhorst CF, Cajimat MNB, Utrera A, Milazzo ML, Duno GM. Maporal virus, a hantavirus associated with the fulvous pygmy rice rat (Oligoryzomys fulvescens) in western Venezuela. Virus Research. 2004; 104(2):139–144. [PubMed: 15246651]
- Gonzalez Della Valle M, Edelstein A, Miguel SD, Martinez V, Cortez J, Cacace ML, Jurgelenas G, Sosa Estani S, Padula P. Andes virus associated with hantavirus pulmonary syndrome in northern Argentina and determination of the precise site of infection. Am J Trop Med Hyg. 2002; 66(6): 713–720. [PubMed: 12224579]
- Hjelle B, Anderson B, Torrez-Martinez N, Song W, Gannon WL, Yates TL. Prevalence and geographic genetic variation of hantaviruses of New World harvest mice (Reithrodontomys): identification of a divergent genotype from a Costa Rican Reithrodontomys mexicanus. Virology. 1995; 207(2):452–459. [PubMed: 7886948]
- Hjelle B, Jenison S, Torrez-Martinez N, Herring B, Quan S, Polito A, Pichuantes S, Yamada T, Morris C, Elgh F, Lee HW, Artsob H, Dinello R. Rapid and specific detection of Sin Nombre virus antibodies in patients with hantavirus pulmonary syndrome by a strip immunoblot assay suitable for field diagnosis. J Clin Microbiol. 1997; 35(3):600–608. [PubMed: 9041397]
- Koster, FT.; Hjelle, B. Hantaviruses. In: Gorbach, SL.; Bartlett, JG.; Blacklow, NR., editors. Infectious Diseases. Third ed.. Lippincott Williams & Wilkins; Philadelphia: 2004. p. 2023-2031.
- Maddison, DR.; Maddison, WP. MacClade 4: analysis of phylogeny and character evolution. Version 4.06. Sinauer Associates; Sunderland, Massachusetts: 2003.
- Medina RA, Torres-Perez F, Galeno H, Navarrete M, Vial PA, Palma RE, Ferres M, Cook JA, Hjelle B. Ecology, genetic diversity and phylo geographic structure of Andes Virus in human and rodents in Chile. J Virol. 2009; 83(6):2446–2459. [PubMed: 19116256]
- Meissner JD, Rowe JE, Borucki MK, St. Jeor SC. Complete nucleotide sequence of a Chilean hantavirus. Virus Res. 2002; 89:131–143. [PubMed: 12367756]
- Milazzo ML, Eyzaguirre EJ, Molina CP, Fulhorst CF. Maporal viral infection in the Syrian Golden Hamster: A model of hantavirus pulmonary syndrome. J Infect Dis. 2002; 186(10):1390–1395. [PubMed: 12404153]
- Posada D, Crandall KA. Modeltest: testing the model of DNA substitution. Bioinformatics. 1998; 14(9):817–818. [PubMed: 9918953]
- Powers AM, Mercer DR, Watts DM, Guzman H, Fulhorst CF, Popov VL, Tesh RB. Isolation and genetic characterization of hantavirus (Bunyaviridae: *Hantavirus*) from a rodent, *Oligoryzomys microtis* (Muridae), collected in northeastern Peru. Am J Trop Med Hyg. 1999; 61:92–98. [PubMed: 10432063]
- Raboni SM, Hoffmann FG, Oliveira RC, Teixeira BR, Bonvicino CR, Stella V, Carstensen S, Bordignon J, D'Andrea PS, Lemos ERS, Duarte dos Santos CN. Phylogenetic characterization of hantaviruses from wild rodents and hantavirus pulmonary syndrome cases in the state of Parana (southern Brazil). J Gen Virol. 2009; 90:2166–2171. [PubMed: 19439554]
- Salazar-Bravo J, Armien B, Suzan G, Armien A, Ruedas LA, Avila Diaz M, Zaldivar Y, Pascale JM, Gracia F, Yates TL. Serosurvey of wild rodents for hantaviruses in Panama, 2000-2002. J Wildlife Dis. 2004 in press.
- Schmaljohn C, Hjelle B. Hantaviruses: a global disease problem. Emerg Infect Dis. 1997; 3(2):95–104. [PubMed: 9204290]
- Swofford, DL. Phylogenetic analysis using parsimony (PAUP and other methods). Version 4.0b10. Sinauer Associates; Sunderland, Massachusetts: 2002.
- Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choices. Nucl Acids Res. 1994; 22:4673–4680. [PubMed: 7984417]
- Vincent MJ, Quiroz E, Gracia F, Sanchez AJ, Ksiazek TG, Kitsutani PT, Ruedas LA, Tinnin DS, Caceres L, Garcia A, Rollin PE, Mills JN, Peters CJ, Nichol ST. Hantavirus pulmonary syndrome in Panama: Identification of novel hantaviruses and their likely reservoirs. Virol. 2000; 277:14–19.

Williams RJ, Bryan RT, Mills JN, Palma RE, Vera I, De Velasquez F, Baez E, Schmidt WE, Figueroa RE, Peters CJ, Zaki SR, Khan AS, Ksiazek TG. An outbreak of hantavirus pulmonary syndrome in western Paraguay. Am J Trop Med Hyg. 1997; 57(3):274–282. [PubMed: 9311636]

Figure 1.

A. Maximum likelihood analysis of 1302 nt of the S segment of 25 hantaviruses. Tree based on the GTR + G (0.6787) + I(0.3440) model of nucleotide evolution. Numbers associated with node are Bayesian posterior probabilities. Model for Bayesian analyses is the same used for Maximum Likelihood (topologies were identical). B. Single most parsimonious tree based on 675 informative of 1302 total base pairs of the N protein. Characters were weighted based on a rescaled consistency index. Third base positions were analyzed using transversions only. Tree length = 587.794; RCI = 0.5148. Numbers above branches represent percentage of 1000 bootstrap replications supporting each node. Nodes with less than 50% support are collapsed. C. Maximum likelihood analysis of 3465 nt of the M segment of 16 hantaviruses. Tree based on the GTR + G(0.3439) model of nucleotide evolution. Numbers associated with node are Bayesian posterior probabilities. Model for Bayesian analyses is the same used for Maximum Likelihood (topologies were identical). D. Single most parsimonious tree based on 2077 informative of 3465 total base pairs of the GPC gene. Tree length = 6307; CI = 0.4635. Third base positions were analyzed using transversions only.

Numbers above branches represent percentage of 1000 bootstrap replications supporting each node. Nodes with less than 50% support are collapsed.

Table 1

Virus sequences used in this study. Accessions numbers are for N protein (top) and GPC gene (bottom of the pair – when present)

Virus	Genba	ank No.	General locality	Host
	S segment	M segment		
CHOV	DQ285046	DQ285047	Panama	Oligoryzomys fulvescens
ANDV	AF324902	AF324901	Argentina	Homo sapiens
ANDV	AF291702	AF291703	Chile	Oligoryzomys longicaudatus
ANDV	AF325966		Argentina	Oligoryzomys chacoensis
ANDV	AF482712		Argentina	Homo sapiens
BAYV	L36929	L36930	USA	Homo sapiens
BCCV	L39949	L39950	USA	Sigmodon hispidus
BMJV	AF482713		Argentina	Oligoryzomys chacoensis
ELMCV	U11427	U26828	USA	Reithrodontomys megalotis
HNTV	M14626	M14627	Korea	Apodemus agrarius
LECV	AF482714	AF028022	Argentina	Oligoryzomys flavescens
LNV	AF005727	AF005728	Paraguay	Calomys laucha
MACV	AF482716		Argentina	Necromys benefactor
MAPV	AY267347	AY363179	Venezuela	Oligoryzomys fulvescens
MONV	U32591		USA	Peromyscus maniculatus
MULEV	U54575		USA	Sigmodon hispidus
NYV	U09488	U36801	USA	Peromyscus leucopus
ORNV	AF482715	AF028024	Argentina	Oligoryzomys longicaudatus
PHV	M34011	X55129	USA	Microtus pennsylvanicus
PUUV	M32750	M29979	Russia	Clethrionomys glareolus
PRGV	AF482717		Argentina	Akodon azarae
RIOMV	U52136		Bolivia	Oligoryzomys microtis
RIOSV	U18100		Costa Rica	Reithrodontomys mexicanus
SEOV	M34881	M34882	Japan	Rattus norvegicus
SNV	L37904	L37903	USA	Peromyscus maniculatus

Nelson et al.

2
e
ab
F

ب	
en	
Ĕ	
60	
Š	
S	
he	
rt	
fo	
S	
ISC	
E	
2	
lta	
ıaı	
fF	
0	
ILS	
Jai	
1	
ē	
še	
31.	
ď,	
na	
Ö	
ag	
q;	
je	
6	
ab	
\sim	
ĕ	
ğ	
ц.	
Εfe	
dij	
σ	
. <u>5</u>	
) a	
ŭ	
.Ē	
aı	
ц	
aı	
Ę,	
na	
8	
iag	
q	
A	
Sic	
ق,	
s (
ö	
ŭ	
ЭГĆ	
ĮĮ	
di	
<u>e</u>	
tid	
30	
ငျ	
Įn	
\mathbf{Z}	

	LUV	114	114	115	115	113	112	114	115	114	111	108	116	117	116	119	114	109	110	115	107	112	160	163	86	0
DITIX	FUUV	123	123	124	123	123	123	123	124	127	121	123	124	124	127	123	129	128	128	124	121	126	161	166	0	347
		151	151	151	151	149	149	150	155	152	151	155	156	156	164	164	162	159	158	160	155	156	75	0	510	486
CEOU	SEC V	157	157	162	157	161	161	161	159	159	155	165	161	163	163	167	167	166	162	168	162	162	0	343	475	484
1000	DUCV	57	57	58	56	58	59	57	57	59	57	62	56	61	70	76	67	58	09	41	33	0	481	474	408	403
DAVV	DAIV	49	49	47	50	47	48	46	52	48	50	49	50	54	65	69	54	48	51	30	0	248	512	461	425	398
	MULE	59	59	62	60	62	63	61	60	59	59	65	58	61	73	80	72	68	68	0	248	251	508	482	415	408
		52	52	53	52	52	53	52	54	52	55	47	56	54	65	71	27	16	0	304	286	311	484	497	425	394
		52	52	53	53	50	51	52	57	53	57	47	58	58	65	73	27	0	198	314	292	311	504	491	432	395
CNIT		59	59	56	60	53	54	55	62	59	59	50	65	62	64	70	0	217	213	314	294	317	494	484	417	396
3010	CON	76	76	78	LL	75	74	LL	LL	79	69	73	LL	81	38	0	311	324	332	351	322	342	506	509	416	414
UN LA	ELMU	71	71	72	72	71	72	71	70	71	67	68	72	74	0	268	297	298	294	312	303	317	491	486	417	405
T NIV		41	41	43	42	43	44	42	50	44	45	51	29	0	321	316	301	315	299	305	285	294	489	476	416	396
MOID	MUUM	38	38	41	39	41	40	40	45	43	36	47	0	226	297	324	303	295	292	290	286	291	503	478	424	405
AOHO	CHUY	41	41	43	41	38	39	42	46	44	44	0	280	270	314	320	304	294	299	310	305	301	490	484	433	394
M A DV		36	36	40	35	37	36	39	42	40	0	281	234	281	301	308	314	294	289	296	279	285	487	465	418	390
	LING	21	21	18	22	18	19	17	17	0	265	275	264	276	309	323	305	291	294	310	297	307	487	476	442	418
MACT	MACV	26	26	24	26	24	25	23	0	218	285	281	276	284	313	329	285	307	285	307	304	296	476	468	418	415
MNGO		14	14	1	15	S	9	0	227	216	256	263	244	267	283	317	292	279	293	303	274	301	474	472	427	398
AU AL	LECV	15	15	٢	16	-	0	165	228	216	262	274	251	259	294	320	288	291	292	291	292	277	475	481	424	402
DATTY	DIVIJ	14	14	9	15	0	110	164	231	231	279	274	259	266	292	321	288	289	302	299	293	273	478	479	427	399
A NIDVA	AUDV4	1	1	16	0	209	202	209	240	239	252	283	246	269	303	328	305	282	283	307	297	313	477	475	427	398
A NIDV2	CAUNE	15	15	0	213	163	166	8	227	216	260	263	244	272	285	322	294	283	295	301	274	301	476	473	427	400
A NIDY?	AND V2	0	0	210	6	205	202	206	241	237	254	279	245	266	301	326	300	281	284	307	295	313	480	475	421	391
	TATIN	0	74	209	62	203	197	207	241	237	257	267	258	267	300	328	305	276	294	293	296	301	480	469	409	395
		ANDVI	ANDV2	ANDV3	AND4	BMJV	LECV	ORNV	MACV	PRGV	MAPV	CHOV	RIOM	LNV	ELMC	RIOS	SNV	MONV	NYV	MULE	BAYV	BCCV	SEOV	NNTH	PUUV	VHY

NIH-PA Author Manuscript

	ANDV1	ANDV2	ORNV	LECV	MAPV	LNV	CHOV	NVS	NYV	BAYV	BCCV	ELMC	SEOV	HTNV	ΛНΔ	PUUV
ANDV1	0	6	85	72	168	142	188	238	257	262	267	291	512	506	476	524
ANDV2	184	0	81	71	166	146	187	242	259	267	272	295	511	507	478	524
ORNV	711	708	0	51	174	150	194	246	256	269	267	299	507	505	486	533
LECV	713	718	629	0	161	146	187	238	252	269	266	290	505	497	483	527
MAPV	835	841	842	827	0	205	189	257	267	278	283	302	521	500	490	534
LNV	820	832	807	812	876	0	201	257	267	269	268	288	512	508	485	535
CHOV	870	874	879	895	889	922	0	236	258	245	260	276	522	512	484	532
SNV	953	096	968	947	026	970	961	0	58	212	222	226	521	505	462	512
NYV	965	974	986	666	965	955	987	647	0	234	237	240	523	508	471	512
BAYV	971	971	966	995	026	1003	964	911	947	0	130	259	509	503	477	526
BCCV	959	961	995	1007	988	965	975	893	915	752	0	264	517	510	488	527
ELMC	1044	1050	1035	1057	1061	1019	1013	939	960	986	963	0	509	487	475	522
SEOV	1418	1410	1410	1413	1454	1413	1421	1414	1410	1371	1355	1358	0	258	594	621
HTNV	1400	1402	1432	1417	1392	1400	1407	1401	1376	1374	1382	1377	937	0	587	619
VHY	1375	1385	1397	1392	1365	1360	1396	1327	1325	1375	1378	1333	1545	1512	0	314
PUUV	1452	1471	1487	1469	1462	1454	1477	1422	1452	1463	1451	1454	1600	1590	1061	0

Nelson et al.

Table 4

Neutralization titers of Panamanian sera to CHOV isolate 588

Acute HCPS 15355 fatal 1:400 <1:20	Clinical Group	Pt#	Clin. Severity	Neut. CHOV	Neut. SNV	Neut. ANDV
(day 5-8 of sx ^d) 16617 moderate 1:200 <1:20 <1:20 15467 moderate 1:1600 <1:20	Acute HCPS	15355	fatal	1:400	<1:20	<1:20
13467 moderate 1:1600 <1:20	(day $5-8$ of sx^{d})	16617	moderate	1:200	<1:20	<1:20
Convalescent HCPS 1843 mild 1:3200 <:20 <:20 $(day 15-20 \text{ of } sx^d)$ 15586 mild 1:6400 <:20		15467	moderate	1:1600	<1:20	<1:20
	Convalescent HCPS	18483	mild	1:3200	<1:20	<1:20
I7644 mild I:3200 <i:20< th=""> <i:20< th=""> Seropositive/no resp hxb 384 No resp hx 1:100 <i:20< td=""> <i:20< td=""> 390 No resp hx 1:1600 <i:20< td=""> <i:20< td=""> <i:20< td=""> 401 No resp hx 1:1600 <i:20< td=""> <i:20< td=""> <i:20< td=""> 401 No resp hx 1:1600 <i:20< td=""> <i:20< td=""> <i:20< td=""> 401 No resp hx 1:400 <i:20< td=""> <i:20< td=""> <i:20< td=""> 402 No resp hx 1:400 <i:20< td=""> <i:20< td=""> <i:20< td=""> 703 No resp hx 1:600 <i:20< td=""> <i:20< td=""> <i:20< td=""> 703 No resp hx 1:600 <i:20< td=""> <i:20< td=""> <i:20< td=""> 717 No resp hx 1:600 <i:20< td=""> <i:20< td=""> <i:20< td=""> 713 No resp hx 1:600 <i:20< td=""> <i:20< td=""> <i:20< td=""> 8 7 sera No resp hx 1:600 <i:20< td=""> <i:20< td=""> 8 No resp hx 1:600 <i:20< td=""> <i:20< td=""></i:20<></i:20<></i:20<></i:20<></i:20<></i:20<></i:20<></i:20<></i:20<></i:20<></i:20<></i:20<></i:20<></i:20<></i:20<></i:20<></i:20<></i:20<></i:20<></i:20<></i:20<></i:20<></i:20<></i:20<></i:20<></i:20<></i:20<></i:20<></i:20<></i:20<></i:20<></i:20<></i:20<></i:20<></i:20<>	(day 15–20 of sx^d)	15586	mild	1:6400	<1:20	<1:20
Beropositive/no resp hxb 384 No resp hx 1:100 <1:20 <1:20 390 No resp hx 1:1600 <1:20		17644	mild	1:3200	<1:20	<1:20
390 No resphx 1:1600 <1:20	Seropositive/no resp hx^b	384	No resp hx	1:100	<1:20	<1:20
		390	No resp hx	1:1600	<1:20	<1:20
407 No resphx 1:400 <1:20		401	No resp hx	1:200	<1:20	<1:20
		407	No resp hx	1:400	<1:20	<1:20
412 No resp hx 1:1600 <1:20		409	No resp hx	1:400	<1:20	<1:20
703 No resp hx 1:6400 <1:20 <1:20 705 No resp hx <1:20		412	No resp hx	1:1600	<1:20	<1:20
705 No resp hx <1:20		703	No resp hx	1:6400	<1:20	<1:20
717 No resp hx 1:1600 <1:20 <1:20 733 No resp hx 1:3200 <1:20		705	No resp hx	<1:20	<1:20	<1:20
733 No resp hx 1:3200 <1:20 <1:20 Seronegative/neg hx 7 sera No resp hx <1:20		717	No resp hx	1:1600	<1:20	<1:20
Seronegative/neg hx 7 sera No resp hx <1:20 <1:20 <1:20 Acute HCPS, USA NM 1 Mild <1:20		733	No resp hx	1:3200	<1:20	<1:20
Acute HCPS, USA NM 1 Mild <1:20 1:800 <1:20 NM 2 mild <1:20	Seronegative/neg hx	7 sera	No resp hx	<1:20	<1:20	<1:20
NM 2 mild <1:20 1:1600 <1:20	Acute HCPS, USA	NM 1	Mild	<1:20	1:800	<1:20
		NM 2	mild	<1:20	1:1600	<1:20

J Med Virol. Author manuscript; available in PMC 2011 September 1.

 \boldsymbol{b} seropositive and no history of a cute respiratory infection requiring hospitalization.