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Abstract
Photoreceptors are highly specialized sensory neurons in the retina, and their degeneration results
in blindness. Replacement with developing photoreceptor cells promises to be an effective
therapy, but it requires a supply of new photoreceptors, because the neural retina in human eyes
lacks regeneration capability. We report efficient generation of differentiating, photoreceptor-like
neurons from chick retinal pigment epithelial (RPE) cells propagated in culture through
reprogramming with neurogenin1 (ngn1). In reprogrammed culture, a large number of the cells
(85.0 ± 5.9%) began to differentiate towards photoreceptors. Reprogrammed cells expressed
transcription factors that set in motion photoreceptor differentiation, including Crx, Nr2E3,
NeuroD, and RXRγ, and phototransduction pathway components, including transducin, cGMP-
gated channel, and red opsin of cone photoreceptors (equivalent to rhodopsin of rod
photoreceptors). They developed inner segments rich in mitochondria. Furthermore, they
responded to light by decreasing their cellular free calcium (Ca2+) levels and responded to 9-cis-
retinal by increasing their Ca2+ levels after photobleaching, hallmarks of photoreceptor
physiology. The high efficiency and the advanced photoreceptor differentiation indicate ngn1 as a
gene of choice to reprogram RPE progeny cells to differentiate into photoreceptor neurons in
future cell replacement studies.
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Introduction
Photoreceptors in the vertebrate retina are specialized primary neurons that are responsible
for initiating the visual process. Upon capturing photons, photoreceptors generate
electrophysiological signals that are modulated and transmitted to the brain through
secondary neurons of the retina. Like other neurons, photoreceptors are terminally
differentiated and do not re-enter the cell cycle for regeneration. Thus, photoreceptors that
die due to various causes cannot be replenished, leading to irreversible vision loss. The
importance of vision to quality of life has spurred a spectrum of investigations ranging from
photoreceptor rescue (for review, see Adler et. al., 1999; Lavail, 2001; Bennett, 2004) to cell
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replacement by retinal regeneration (Otteson, 2003; Raymond, 1991; Stenkamp and
Cameron, 2002) or by cell transplantation (Aramant and Seiler, 2002; Young, 2005).
Replacement through transplantation of developing photoreceptor cells has been shown to
be effective in restoring vision in blind mice (MacLaren et al., 2006). This promising
intervention presents a need for a source of new photoreceptors (Bennett, 2007).

Cells of the retinal pigment epithelial (RPE) could be a potential source of photoreceptor
cells. Unlike retinal neurons, RPE cells from many species, including mouse, rat, and
human, can re-enter the cell cycle to proliferate. Further, the progeny cells may adopt a fate
other than RPE. For example, embryonic chick and rodent RPE can be stimulated by basic-
fibroblast growth factor to transdifferentiate into a neural retina (Park and Hollenberg, 1989;
Pittack et al., 1991; Zhao et al., 1995; Sakami et al., 2008). However, employing this “RPE
→ neural retina” transdifferentiation mechanism for photoreceptor production remains
challenging, because the process does not occur with dissociated cells nor in embryos older
than day 4.5 (E4.5) in chick or E13 in rodents (Pittack et al., 1991; Zhao et al., 1995; Sakami
et al., 2008).

A different approach has been taken to guide RPE to give rise to photoreceptor cells. A key
component of this approach is to initiate photoreceptor differentiation with regulatory genes
playing instrumental roles in retinal photoreceptor production. Previous studies showed that
RPE progeny cells can differentiate towards photoreceptors when guided by ash1, ath5,
neuroD, and ngn2, genes homologous to Drosophila proneural genes and encoding
transcription factors in the basic Helix-Loop-Helix (bHLH) family. Nonetheless,
photoreceptor-like cells are present in small numbers and do not represent the major product
of programming by ash1 (Mao et al., 2008) or by ath5 (Ma et al., 2004; Xie et al., 2004).
The yield improves with ngn2, but significant amount of other types of retinal cells are also
generated (Yan et al., 2001). In neuroD-reprogrammed culture, photoreceptor-like cells are
the major products (Yan and Wang, 1998), and they closely resemble developing
photoreceptors at the molecular, cellular, and physiological levels (Yan and Wang, 2000b;
Liang et al., 2008). When grafted into embryonic chick eyes, the cells migrate into the
photoreceptor layer and emanate axonal arborization into the outer plexiform layer (Liang et
al., 2006). An issue remains, though, that the yield is rather low: less than 30% of the total
cells in neuroD-reprogrammed cultures display signs of photoreceptor differentiation (Liang
et al., 2008). This low efficiency could be related to neuroD’s function in the retina. In the
retina, neuroD promotes the differentiation and the survival of photoreceptors (Yan and
Wang, 1998; 2004; Pennesi et al., 2003; Liu et al., 2008). Theoretically, a gene upstream of
neuroD and able to steer multipotent progenitor cells to the photoreceptor path would be a
better choice to reprogram RPE for photoreceptor production. A search for such an upstream
gene has recently identified ngn1 (Yan et al., submitted), a member of the neurogenin
subfamily of bHLH genes with proneural activities.

In this study, we tested ngn1’s ability to reprogram cultured chick RPE cells to differentiate
towards photoreceptor cells. We report efficient generation of photoreceptor-like neurons
with ngn1, outperforming neuroD and ngn2. Further analyses at the molecular, cellular, and
physiological levels showed that ngn1-reprogrammed cells expressed an array of
photoreceptor genes and exhibited photoreceptor morphologies. Physiologically, they
responded to light by decreasing their cellular free calcium (Ca2+) levels. Further, light-
bleached, reprogrammed cells responded to 9-cis-retinal by increasing Ca2+ levels,
reminiscent of visual recovery. Our results indicate ngn1 as a gene of choice to reprogram
RPE progeny cells to differentiate towards photoreceptors.
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Materials and Methods
Chick embryos

Fertilized, pathogen-free White Leghorn chicken (Gallus gallus) eggs were purchased from
Spafas and incubated in a Petersime incubator. All use of animals adhered to the procedures
and policies set by the Institutional Animal Use and Care Committee at the University of
Alabama at Birmingham (UAB).

Generation of retroviruses
Replication Competent Avian Splice (RCAS) retrovirus (Hughes et al., 1987) was used to
drive the expression of genes in cultured RPE cells. The coding sequences of homeodomain
genes chx10 (NCBI accession # AF178671), crx (NCBI accession # AF28517), pax6 (NCBI
accession # NM_205066), rax/rx (NCBI accession # AB015750), raxL (AF420601), six3
(NCBI accession # AY373324), and six9 (NCBI accession # AJ011786), and proneural
bHLH gene ath3 (NCBI accession # Y09597) were RT-PCR amplified based on publicly
available sequence information. After cloning into pGEM-T and sequence verification, the
coding region of each gene was subcloned into RCAS, via shuttle vector Cla12Nco (Hughes
et al., 1987). To rule out frame-shift or stop mutations, recombinant RCAS proviral DNA
was sequenced at the UAB Genomics Core Facility. All recombinant DNA procedures
followed the National Institutes of Health guidelines. Recombinant RCAS proviral DNA
was transfected into chick embryonic fibroblast cells for the production of viral particles, as
previously described (Yan and Wang, 1998). RCAS expressing ash1 (Mao et al., 2009),
ath5 (Ma et al., 2004), NSCL1 (Li et al., 1999), NSCL2 (Li et al., 2001), neuroD (Yan and
Wang, 1998), ngn1 (Yan et al., submitted), ngn2 (Yan et al., 2001), ngn3 (Ma et al., 2009),
and sox2 (Ma et al., 2009) were produced as described. The titers of concentrated viral
stocks ranged 1 - 3 × 108 pfu/ml.

RPE cell culture
Primary RPE cell culture was established with RPE isolated from E6 and E15 chick eyes
after dissociation with trypsin/EDTA and gentle trituration (Yan and Wang, 1998). An
equivalent of 1/3 of an E6 RPE (or 1/5 of an E15 RPE) was seeded in a 35-mm culture dish
for a density that covered roughly 5% of the surface. Cells were cultured with Knockout D-
MEM supplemented with 20% serum replacement (Invitrogen). For experiments with
trophic factors, dissociated RPE cells were cultured in the presence of 10 - 20 ng/ml of
brain-derived neurotrophic factor (BDNF; Sigma), ciliary neurotrophic factor (CNTF;
Sigma), basic FGF (bFGF; Sigma), glia derived neurotrophic factor (GDNF; Sigma), and
nerve growth factor (NGF; Sigma). Otherwise, dissociated RPE cells were first cultured for
3 - 4 days to reach approximately 50% confluence. At this point, 10 - 20 μl of concentrated
recombinant RCAS retrovirus was added to each culture dish. RCAS-GFP (Yan and Wang,
1998) was used as a negative control. Cultures were maintained for an additional 10 - 12
days with Medium 199 (M199) supplemented with 10% fetal calf serum (FCS) changed
every other day. Cells were subjected to Ca2+ imaging, or they were fixed for
immunostaining, in situ hybridization, or electron microscopy.

Retinal cell culture
E16 (and E18) retinas were isolated and their cells were dissociated with trypsin/EDTA.
Dissociated retinal cells were seeded onto polyornithine-treated substratum, cultured for 6
days with M199 plus 10% FCS.

Antibody characterization
Please see Table 1 for a list of all antibodies used.
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Rabbit polyclonal antibody against AP2 recognized AP-2α and, to a lesser extent, AP-2β
and AP-2γ of AP2 proteins (Data Sheet from Santa Cruz Biotechnology). The antibody
specifically recognized a 50 kDa protein (corresponding to AP2α) on a Western blot of
nuclear extract from Hela cells engineered to express AP2α. Immunohistochemical analyses
of the chick retina carried out in different laboratories (including our own) show that the
antibody specifically labels amacrine and horizontal cells, with all other cell types being
immuno-negative (Bisgrove and Godbout, 1999; Li et al., 2001; Mao et al., 2009). A mouse
monoclonal antibody against AP2α (clone 3B5) also specifically labels amacrine and
horizontal cells in the chick retina (Bisgrove and Godbout, 1999; Li et al., 2001; Fisher et
al., 2007; Mao et al., 2009; Ma et al., 2009). Monoclonal antibody against Brn3A
specifically recognized Brn3A, with no reactivity to Brn3B or Brn3C by Western blots and,
and showed no reactivity to Brn3A knockout mice (Data Sheet from Chemicon/Millipore).
In the mammalian retina, the anti-Brn3A antibody specifically labels ganglion cells, with all
other retinal cells being immuno-negative (Xiang et al., 1995). Consistent with the results,
our experiments using the chick retina showed specific labeling of retinal ganglion cells by
the anti-Brn3A antibody (Ma et al., 2009; Mao et al., 2009). Rabbit polyclonal antibody
against calretinin recognized a 29 kDa protein that corresponded to calretinin (Data Sheet
from Chemicon/Millipore). The antibody reacted with both the calcium-bound and calcium-
unbound conformations of calretinin. In retinal sections, the antibody labels amacrine,
ganglion, and horizontal cells, but not other cells (Ellis et al., 1991; Fischer et al., 2007).
Monoclonal antibody against Islet-1 recognized a 36 kDa protein (corresponding to Islet-1)
on a Western blot (Data Sheet from the Developmental Studies Hybridoma Bank (DSHB;
Iowa University). In the retinal sections, the antibody identifies ganglion cells during early
phase of chick retinal development (Austin et al., 1995; Li et al., 2001; Ma et al., 2009) and
subsequently also in bipolar cells (our unpublished observation). Monoclonal antibody
against LIM recognizes both LIM 1 and LIM 2 proteins (Data Sheet from DSHB).
Examination of retinal sections by others (Liu et al., 2000) and our laboratory (Li et al.,
2001; Mao et al., 2009; Ma et al., 2009) showed that the antibody recognizes specifically
horizontal cells, with all other cells in the retina lacking immunostaining. Preparation of
affinity purified rabbit polyclonal antibody against chick NeuroD and its specificity have
been previously described (Yan and Wang, 2004). In essence, Western blot analysis showed
that the anti-NeuroD antibody recognized a single protein band of 40 kDa (corresponding to
the NeuroD protein) of nuclear extracts of the chick retinal cells, and no reactivity was
observed in the control (nuclear extract of heart cells). Immunocytochemical analysis gave
showed specific, nuclear staining of RPE cells transduced to express neuroD, but not in
control RPE cells. Immunohistochemistry gave a staining pattern consistent with the pattern
delineated with in situ hybridization. Rabbit polyclonal antibody against red opsin
recognized red/green opsin with band of ~40 kDa, but not blue and other opsins (Data Sheet
from Chemicon/Millipore). In the rabbit (MacNeil and Gaul, 2008) and the chick (Liang et
al., 2009) retina, the antibody labels cone photoreceptors specifically, while cells of all other
types lack immunostaining signals. Polyclonal antibody against RCAS viral protein p27
specifically recognized the viral protein (27 kDa; Data Sheet from Spafas). The antibody
produces immunostaining in chick tissues and cells infection by RCAS virus, but gives no
staining in tissues and cells lacking the viral infection (Yan and Wang, 1998; 2004; Li et al.,
2001; Ma et al., 2009; Mao et al., 2009). Monoclonal antibody against Pax6 identifies
predominantly amacrine cells, along with progenitor cells and ganglion cells in the chick
retina (Belecky-Adams et al., 1997; Fischer et al., 2007). Generated from immunizing
mouse with E10 tectal homogenate, monoclonal antibody RA4 recognizes a microtubule
associated protein of long-projecting axons (Mcloon and Barnes, 1989). The antibody
recognized only a 140 kDa protein with no additional RA-4-positive bands detected in
Western blots of cell lysates prepared from retinas at various stages, from E4 to adult. In
immunostaining of chick retinal sections, RA-4 specifically labels ganglion cells,
particularly their axons, and does not label other types of cells (Waid and McLoon, 1995).
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This pattern of staining has also been observed in our studies (Ma et al., 2009). Monoclonal
antibody against vimentin recognized chick vimentin (52 kDa; Data Sheet from DSHB) and
labels Muller glia in the chick retina (Hunt and Davis, 1990; Herman et al., 1993; Li et al.,
2001). Anti-visinin labels predominantly photoreceptor cells and, to a much less extent,
some cells in the amacrine cell layer in the developing chick retina (Hatakenaka et al., 1985;
Yan and Wang, 1998; 2004; Mao et al., 2009).

Immunocytochemistry
Cells in culture were fixed with ice-cold 4% paraformaldehyde in PBS (pH 7.4) for 30
minutes at room temperature and subjected to standard immunocytochemistry with primary
antibodies listed in Table 1 and described in the previous paragraph and with alkaline
phosphatase-, horseradish peroxidase- (Vector Laboratories), or fluorophore-conjugated
(Molecular Probes) secondary antibodies, following the procedures provided by the
manufacturers.

In situ hybridization
Sequences (500-800 base pairs) corresponding to the C’ region of Crx, RXRγ (NCBI
accession # X58997), Nr2e3 (NCBI accession # NM-204594), and RaxL were PCR
amplified from chick retinal cDNA. PCR products were cloned into pGEM-T. All cloned
DNAs were sequenced for verification. Linearized plasmids harboring the sequences were
used to synthesize digoxigenin (dig)-labeled antisense RNA probes using the Genius kit
(Roche Molecular Biochemicals) following the manufacturer’s instructions. Dig-labeled
antisense RNA probes against the cone type α-subunit of transducin (ALT), the α-subunit of
cone cGMP-gated channel (CNGA3), and the α-subunit of rod cGMP-gated channel
(CNGA1) were prepared as described (Liang et al., 2008). In situ hybridization was carried
out as previously described (Yan and Wang, 2000b).

Statistical analysis
Cell numbers were counted under a 40 x objective for samples with a large number positive
of cells, or under a 20 x objective when the fewer positive cells were present. The cell
numbers under different magnifications were normalized to an area of 242 mm2. The means
and SDs of the numbers from at least 3 independent images were calculated using Origin 7.0
(OriginLab Corp.). One-way ANOVA of Origin 7.0 was used for statistical significance
analysis at 0.05 (*) and 0.01 (**) levels.

Electron microscopy
E17 chick eye and RPE cell cultures were processed as described (Liang et al., 2008).
Ultrathin sections (70-90 nm thick) were examined with a JEOL 1200 EX II transmission
electron microscope.

Calcium imaging of light response
Calcium imaging of cells in culture was carried out using Fluo-4 AM (Molecular Probes), as
previously described (Liang et al., 2008). Briefly, the cells were dark adapted overnight and
incubated with Fluo-4 AM (4 μM in M199), followed by fluorescent photomicrography
under a 40x objective using a Nikon TE300 inverted microscope equipped with a 100 W-
HBO mercury light source. Images were captured with a Q-Imaging MicroPublisher 5.0
digital camera (2-s exposure) using a filter set with maximal excitation of 488 nm and
emission at 517 nm. For light response, an image was captured before subjecting the cells to
visible light. After the initial image was captured, cells in the dish were subjected to visible
light (set at the maximum) on the microscope for various lengths of time. Immediately
following the light exposure, another fluorescent image was captured. All steps were
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performed with room lights off. To quantify fluorescent intensity, the integrated optical
density (IOD) was measured using LabWorks™ (version 4.0, UVP Inc.). The means and
SDs of IODs from 3-15 cells in one or more images were calculated with Origin 7.0.

For molecular identification after Ca2+ imaging, cells were fixed with 4% paraformaldehyde
and subjected to immunostaining with specific antibodies against photoreceptor proteins
visinin and red opsin. For experiments with CNG channel blockers, cells were incubated
with Fluo-4 AM as described above, and then incubated with 2 ml of M199 containing 3 μM
each of dichlorobenzamil and l-cis-diltiazem (Sigma). They were then subjected to light
exposure and imaging, as described above.

Calcium imaging of responses to 9-cis-retinal
Cells in a primary RPE cell culture infected with RCAS-ngn1 were trypsinized and reseeded
onto polyornithine-treated coverslips at low density to obtain isolated cells. The reseeded
cells were incubated with Fluo-4 AM. After 1-3 min of light exposure, the cells were
subjected to either vehicle control (50 μl of 1:100 dilution of DMSO with M199), 9-cis-
retinal (50 μl of 0.5 mM in M199; stock solution: 50 mM in DMSO), or sequentially with
vehicle control first and then 9-cis-retinal after replacement of the solution in the dish (to
minimize changes in DMSO concentration). Images were captured at various time points.

Photomicrograph production
Results of immunocytochemistry and in situ hybridization were captured with Q-Imaging
MicroPublisher 5.0 digital camera attached to the Nikon TE300 inverted microscope, and
the images were saved without modification. For production of photomicrographs, the data
were retrieved with Adobe Photoshop (San Jose, CA) and corrected for brightness and
contrast with Photoshop. For photomicrographs on calcium imaging, data images were
retrieved with Photoshop and corrected for brightness and contrast at the same degree (a
fixed setting) with the program.

Results
Massive amount of visinin+ cells in ngn1-reprogrammed RPE cell culture

We first used E6 chick RPE cell cultures to test ngn1’s ability to reprogram the otherwise
non-neural RPE cells propagated in culture to differentiate towards photoreceptors. The RPE
cells were dissociated and seeded at a density covering about 5% of the culture substratum.
Replication-competent retrovirus RCAS expressing ngn1 (RCAS-ngn1) was added to the
culture when it reached ~50% confluency. The culture was later examined for the presence
of photoreceptor-like cells with commensurate morphologies and the expression of visinin, a
calcium-binding protein present in cone photoreceptors (Yamagata et al., 1990), which are
the dominant photoreceptor type in the chick retina.

During the initial culture period, RPE cells proliferate and lose their dark pigmentation. As
the culture ages and become confluent (~ 9 days), RPE cells become re-pigmented (Liang et
al., 2006). Morphologically, chick RPE cells in culture display hexagonal or fibroblast-like
appearances and form monolayer upon confluency (Liang et al., 2006; Fig. 1A). However,
cultures infected with RCAS-ngn1 contained large numbers of clusters (aggregates) of cells
with compact cell bodies and processes (Fig. 1B), characteristic of development
photoreceptor neurons in culture. Cells in the clusters remained un-pigmented. A previous
RT-PCR analysis has shown that infection of E6 RPE cell culture with RCAS-ngn1
represses the expression of mmp115 and mitf, genes important to maintaining RPE
properties (Li et al., 2009). The clusters, along with cells displaying neuron-like
morphologies but in isolation, emerged 4 days after the addition of RCAS-ngn1. During the
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initial 4 days, cells with neuron-like morphologies were scarce, likely due to that it takes a
few days for the culture to become thoroughly infected by RCAS (Yan and Wang, 1998)
and that expression of a transgene from the virus becomes apparent 21-24 hours after
infection (Reddy et al., 1991; Fekete and Cepko, 1993). Scoring the numbers of cells in the
clusters against the total in five view areas showed that those neuron-like cells accounted for
82.2 ± 4.1% of the total present. As the culture aged, the clusters enlarged, and those cells
that maintained RPE-like eventually covered the remaining surface of the culture dish.
Immunostaining showed massive amount of visinin+ cells, some of which showed weaker
staining than the rest (Fig. 1C). Cell clustering and the weak staining made it difficult to
score the exact number of visinin+ cells in large clusters. Scoring cell numbers in 8 view
areas at places with small clusters and individual cells showed that visinin+ cells accounted
for 85.0 ± 5.9% of the total cells present. In sharp contrast to the hexagonal RPE cells,
visinin+ cells resembled photoreceptors, with an elongated cell body, an axon-like process,
an inner segment-like compartment, and a structural feature reminiscent of the lipid droplet
(Fig. 1D,E).

To comparatively analyze ngn1’s efficiency and to search for an optimal molecular trigger
to induce RPE cells to differentiate towards photoreceptors, we assayed additional
regulatory genes shown or implicated to be important for retinal progenitor and/or
photoreceptor development, along with 5 neurotrophic factors (BDNF, CNTF, bFGF,
GDNF, and NGF). These regulatory genes included (i) those known to be important for
retinal progenitor cells: sox2 (Taranova et al., 2006), chx10 (Burmeister et al., 1996), pax6
(Marquardt et al., 2001), rax/rx (Mathers and Jamrich, 2000), six3 (Zhu et al., 2002), and
six6/six9/Optx2 (Toy et al., 1998); and (ii) those shown to be essential for photoreceptor
development: crx (Chen et at., 1997; Furukawa et al., 1997) and raxL (Chen and Cepko,
2002). For comparison, we included proneural bHLH genes involved in retinal
neurogenesis: ash1 (Tomita et al., 1996), ath3 (Tomita et al., 2000), ath5 (Brown et al.,
1998; Wang et al., 2001), NSCL1 (Li et al., 1999), NSCL2 (Li et al., 2001), neuroD (Yan
and Wang, 1998; Pennesi et al., 2003; Liu et al., 2008), and ngn2 (Marquardt et al., 2001;
Yan et al., 2001), and ngn3 (Ma et al., 2009), the third member of the neurogenin family. As
previously reported, visinin+ cells were absent in RPE cell culture infected with RCAS-GFP
(Yan and Wang, 1998; Fig. 2A) but were present in cultures infected with RCAS-ash1 (Mao
et al., 2009), RCAS-ath5 (Ma et al., 2004; Fig. 2B), RCAS-neuroD (Yan and Wang, 1998;
Fig. 2C), or RCAS-ngn2 (Yan et al., 2001; Fig. 2D). Cultures infected with RCAS-ngn3
gave rise to large numbers of visinin+ cells (Fig. 2E), similar to that with RCAS-ngn1 (Fig.
2F). Cell number scoring showed that ngn1 induced the highest number of visinin+ cells
(Fig. 2I). Comparatively, the number of visinin+ cells in ash1- or ath5-reprogramed culture
was <2% of that in ngn1-reprogramed culture (Fig. 2J). In neuroD- or ngn2-reprogramed
cultures, the number of visinin+ cells was ~20 and 30%, respectively, of that in ngn1-
reprogramed culture. The number of visinin+ cells in ngn3-reprogramed cultures was ~82%
of that in ngn1-reprogramed culture. Nonetheless, the difference in the number of visinin+

cells between ngn1 and ngn3 was not statistically significant (p=2.03), while the two genes
induced significantly (p<0.01) higher numbers of visinin+ cells than did ash1, ath5, neuroD,
and ngn2. Overall, there seemed an order of ngn1 ≈ ngn3 > ngn2 > neuroD > ash1 > ath5.
No visinin+ cells were produced by treatment with the growth factors or by the rest of the
regulatory genes included in the test (data not shown).

We then tested RPE cell cultures derived from embryos at day 15, when the RPE is
molecularly and physiologically close to maturity (Rizzolo et al., 2007). Ngn1 outperformed
ngn2 and induced more visinin+ cells (Fig. 2G,H). On the other hand, neuroD became
ineffective with few visinin+ cells generated (data not shown). Thus, ngn1 remained as the
frontrunner in inducing E15 RPE cells to differentiate towards photoreceptor cells.
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Expression of photoreceptor genes
Because visinin expression alone does not necessarily reflect an RPE → photoreceptor
reprogramming event, RPE cell cultures infected with RCAS-ngn1 were examined for the
expression of photoreceptor genes. For differentiation, photoreceptors employ
transcriptional factors that set in motion their differentiation program. Key regulators
include crx (Chen et al., 1997; Furukawa et al., 1997), neuroD (Yan and Wang, 1998; Yan
and Wang, 2004; Liu et al., 2008), nr2e3 (Mears et al., 2001; Milam et al., 2002), raxL
(Chen and Cepko, 2002), and RXRγ (Roberts et al., 2005). Immunostaining with a specific
antibody against NeuroD showed a large number of cells (271,752 ± 38,834 per 242 mm2)
to be immuno-positive (Fig. 3A; Table 2). In situ hybridization and RT-PCR detected the
induction of RXRγ (Fig. 3B), crx (Fig. 3C,D), raxL (Fig. 3E,Q), and nr2e3 (Fig. 3Q).

Photoreceptors are highly specialized cells devoted to capturing photons and initiating the
visual pathway. For their unique functions, photoreceptors synthesize a set of specific
proteins that participate in the phototransduction pathway, converting light into electro-
physiological signals. To determine whether the reprogrammed cells could be capable of
phototransduction, we examined the expression of additional phototransduction components
(besides visinin). Immunocytochemistry with a specific antibody against red opsin showed
immunopositive cells in the reprogrammed culture (Fig. 3F-N), but not in the control (data
not shown). The sub-cellular patterns of red opsin immunostaining were of two types. One
was the immunostaining as dot-like (Fig. 3G, arrowhead), similar to anti-red opsin
immunostaining observed with the retina, in which red opsin localizes to the outer segment.
Under a 100x objective, the dots appeared to be cellular apices (Fig. 3K-N, arrowhead).
Double immunostaining showed red opsin at the apices of some individual visinin+ cells
(Fig. 3O, inset). The other type was immunostaining of the cytoplasmic compartment (Fig.
3F,H-J, O), a deviation from the typical localization of red opsin in intact, mature
photoreceptors. This mis-localization of opsin is not unexpected, because studies have
shown similar mis-localization when retinal photoreceptors are separated from their native
environment (Bok, 1993). In a reseeded culture, red opsin+ cells displayed cellular
compartments resembling a membranous expansion at the tip (Fig. 3H-J, arrowhead) and an
elongated inner-segment. Expression of the α-subunits of cone (A3) and rod (A1) CNG
channels (Fig. 3P) and cone α-transducin (Fig. 3Q) were also detected in the reprogrammed
culture. Compared with visinin, an early marker for cone differentiation, genes associated
with advanced differentiation were expressed in fewer cells in the reprogrammed cultures
(Table 2). This is attributed to the restrictive effects of culture conditions on photoreceptor
differentiation and maturation. Previously experiments with RPE explants show that
prolonging culture period to 16 day results in red opsin+ cells accounting for >50% of
visinin+ cells (Li et al., 2009). In the chick retina, red cones predominate cone population,
which accounts for >90% of photoreceptors.

Next, we examined the reprogrammed culture for the expression of markers that identify
other types of retinal cells. We found a small number of calretinin+ cells (Fig. 4B; Table 2),
which in the retina include horizontal, amacrine, and ganglion cells. The number of
calretinin+ cells was very low, 5,203 ± 960 per 242 mm2 and equaling <2% of visinin+ cells
(Table 2). Double labeling showed that a few visinin+ cells were calretinin+ (Fig. 4A,B).
Notably, some of the calretinin+ cells exhibited typical photoreceptor morphologies with a
lipid-droplet-like structure (Fig. 4C,D). It is unclear whether these double-labeled cells
represent “mixed” cell type, or a transient stage in their differentiation and maturation. A
small number of RA4+ cells (524 ± 185 per 242 mm2 and equivalent to 0.2% of visinin+

cells) were present in reprogrammed cultures (Fig. 4E,F). This could be due to the presence
of basic fibroblast growth factor in serum used in the culture medium (Yan and Wang,
2000a), or to ngn1’s reprogramming effect. In the chick retina, RA4+ cells belong to the
ganglion population. Vimentin+ cells with thin, long processes, reminiscent of Muller glia or
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progenitor cells, were also present, but only at places of large neural clusters (Fig. 4G,H).
Overall, in ngn1-reprogrammed RPE cell culture, the number of cells expressing early
photoreceptor markers far surpassed the number expressing early markers of other retinal
cell types (Table 2), indicating that differentiating, photoreceptor-like cells were the major
product of ngn1-induced reprogramming.

Because ngn3 also induced the production of a large amount of visinin+ cells from RPE cell
culture (Fig. 2) and because ngn3 in the retina promotes ganglion cell production (Ma et al.,
2009), we analyzed RPE cell cultures infected RCAS-ngn3 to determine whether
photoreceptor-like cells were the major product. RPE cell cultures infected with RCAS-ngn3
contained numerous clusters of neuron-like cells and often failed to reach confluency (Fig.
5A,B). These neuron-like cells began to die off 8 days after the administration of the virus.
Immunostaining showed that 50-60% of the cells in the clusters are visinin+ (Fig. 5C), and a
significant portion (5-10%) were RA4+ (Fig. 5D), indicating retinal ganglion-like cells
constituted a significant portion of the reprogramming product.

Ultrastructural features resembling developing photoreceptors
The structural hallmarks of mature photoreceptors include an inner segment rich in
mitochondria and an outer segment containing electron-dense membrane discs. However,
when cultured as dissociated cells, developing photoreceptor cells rarely form the typical,
elaborate outer segment with numerous discs stacked precisely (Saga et al. 1996). Instead,
they develop ciliary expansions on the apex of the inner segment (Adler et al., 1984), and
these ciliary expansions contain membranous, disc-like structures often irregularly arranged
(Saga et al. 1996). Transmission electron microscopy showed that reprogrammed cells
displayed cellular compartments densely populated with mitochondria (Fig. 6C,D), and
closely resembling the inner segments of photoreceptor cells in E17 chick retina (Fig.
6G,H). These mitochondria-rich regions were not observed with control RPE cells, which
contained characteristic pigment granules (Fig. 6A,B). On the apex of the inner segment,
reprogrammed cells displayed ciliary expansions (Fig. 6C,D, black arrowhead), reminiscent
of the developing outer segments of photoreceptors in E17 retina (Fig. 6G,H, black
arrowhead) or in culture as described (Saga et al., 1996). The ciliary expansions contained
membranous, disc-like structures (Fig. 6E,F, black arrowhead) that appeared similar to the
developing outer segments of retinal photoreceptors in vivo (Fig. 6H,I).

Physiological traits of photoreceptors
One critical aspect to the prospect of the reprogrammed cells functioning as photoreceptors
is whether they could develop the highly specialized physiological traits distinctive to
photoreceptors. A well-known physiological trait of photoreceptors is light response. In the
dark, photoreceptors are depolarized, and their intracellular Ca2+ levels are high. Upon
exposure to light, photoreceptors become hyperpolarized, and their Ca2+ levels decrease as a
result of continuing extrusion of calcium by the ion-exchangers after the light-driven closure
of cGMP-gated channels (Yau and Nakatani, 1985). We used calcium imaging with fluo-4
AM and fluorescent photomicrography to monitor Ca2+ levels before and after light
exposure. Due to their relatively low Ca2+ levels, RPE progeny cells in the control culture
(infected with RCAS, Fig. 7A-C) and those lacking noticeable reprogramming in the
experimental culture (Fig. 7D-J) were invisible. In contrast, reprogrammed cells (i.e., those
displaying neural morphologies) were clearly visible with the fluorescent photomicrography.
Upon a 10-second light exposure, the fluorescence intensities of reprogrammed cells
decreased (Fig. 7D-F), indicating reductions in their Ca2+ levels. Reductions in fluorescent
indentifies occurred in 20-40% of the cells. Computer-assisted calculation of integrated
optical density (IOD) showed a reduction of ~30% in the fluorescent intensities after this
brief light exposure (Fig. 7O). Prolonging the light exposure to 60 seconds produced a
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further, but mild reduction in Ca2+ levels (Fig. 7G-J,P), thus ruling out the possibility that
the Ca2+ level decrease was due to leakage over time. The dynamics of the Ca2+ level
reductions are consistent with the reported high velocity activity of the Ca2+ extrusion mode
of the exchanger during the initial 30 seconds (Schnetkamp, 1995).

As a reference, light responses by developing photoreceptor cells derived from E16 retina
and cultured for 6 days (6 DIV) were similarly tested. The developing photoreceptor cells,
identified by the presence of a lipid droplet (Fig. 7N, black arrowhead), responded to light
by decreasing their Ca2+ levels in a manner that was similar to that of reprogrammed cells.
Variations in the extent of Ca2+ reduction were observed with both reprogrammed and
retinal cell populations (Fig. K-N,Q). This is expected, since these cells were not uniform in
their levels of differentiation, and varied light responses have been reported among
developing photoreceptors (Solessio et al., 2004).

To confirm the photoreceptor-like identity of reprogrammed cells showing light responses,
post-Ca2+-imaging immunostaining was carried out. Double-labeling showed that
responding cells expressed red opsin and/or visinin (Fig. 8A-D,H). To address the question
of whether the reduction in Ca2+ upon light exposure in reprogrammed cells was a light
response, we carried out Ca2+ imaging in the presence of CNG channel blockers
dichlorobenzamil and l-cis-diltiazem. We found no reductions in the Ca2+ levels of
reprogrammed cells after exposure to light for 1 min in the presence of the blockers (Fig.
8E-G,I).

Visual recovery is another hallmark of photoreceptor physiology. In this process, light
bleached photoreceptors, if provided with chromophore 11-cis-retinal or its analog 9-cis-
retinal, recover their visual pigments. Visual recovery can be measured by an increase in
Ca2+ level. To test whether the reprogrammed cells developed this trait, we monitored the
Ca2+ levels of light-bleached, reprogrammed cells before and after the administration of 9-
cis-retinal, and compared the response with that of developing photoreceptor cells in culture.
To minimize the potential complication from RPE cells’ ability to regenerate chromophore
and to promote neural differentiation, cells from a primary culture infected with RCAS-ngn1
were reseeded at low density on polyornithine-treated coverslips. Once at lower density, the
photoreceptor-like morphologies of the reprogrammed cells became more pronounced, with
the lipid droplet-like feature clearly discernible (Fig. 9A,L, black arrowhead). We found that
2 minutes after the administration of 9-cis-retinal, Ca2+ levels in light-bleached,
reprogrammed cells began to show noticeable increases (Fig. 9A-E,B1). This response
occurred only in cells with advanced photoreceptor morphology, such as displaying a lipid
droplet-like feature. Cells lacking conspicuous photoreceptor-like morphologies showed no
response to 9-cis-retinal (Fig. 9A-E,B1, white arrowhead). Furthermore, response was more
pronounced in cells with low Ca2+ levels after bleaching, presumably having responded
strongly to the light during the bleaching as a result of advanced photoreceptor
differentiation.

To verify that the increase was not due to vehicle (DMSO) or lapse of time, we subjected the
same cells first to DMSO for 10 minutes and then to 9-cis-retinal for another 10 minutes.
During the 10 minutes of treatment with only DMSO, Ca2+ levels remained essentially
constant (Fig. 9F-K,C1). On the other hand, 2 minutes after the application of 9-cis-retinal,
Ca2+ levels in cells displaying a lipid droplet-like feature showed detectable increases (Fig.
9L-Q,C1), while Ca2+ levels in cells lacking this conspicuous morphological feature
remained unchanged (Fig. 9L-Q,C1, white arrowhead). The responses were similar in
cultured developing photoreceptor cells derived from E19 chick retina (Fig. 9R-A1,D1).
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Discussion
High efficiency of ngn1-induced reprogramming of RPE cells

The proliferative nature and plasticity of progeny cells make RPE a possible source of new
photoreceptor cells. Key to this unconventional approach is to provide appropriate guidance
to direct the progeny cells to the photoreceptor path. Among a number of genes and factors
tested, a handful of bHLH proneural genes exhibited such a guiding activity. None of the
homeodomain genes assayed was effective, despite of their important roles for the
development of the retina and the photoreceptors. This, nonetheless, does not undermine
their importance in retinal neurogenesis, because RPE progeny cells differ from retinal
progenitors in many aspects. It is possible that either those competent bHLH proneural
genes are better suited for the context of progeny cells, or the appropriate homedomain
factor(s) remains to be identified.

Among the competent genes, ngn1 (along with ngn3) ranked at the top by inducing the
highest number of visinin+ cells. When E15 RPE cells were used, neuroD became
ineffective, indicating further its limited power in driving RPE progeny cells towards the
photoreceptor pathway. Ngn3 was similarly effective in inducing the production of visinin+

cells. However, like with ngn2, reprogramming with ngn3 resulted in significant amount of
ganglion-like cells. Additionally, neuron-like cells in ngn3-reprogrammed culture died off,
suggesting a detrimental effect of prolonged ngn3 expression. Embryonic lethality has been
observed with over- or mis-expression of ngn3 (Ma et al., 2009). Overall, ngn1 appears to be
a better choice to reprogram RPE progeny cells to differentiate towards photoreceptors.

The order of potency of the bHLH genes seems consistent with their known or implicated
roles in retinal neurogenesis. In the retina, ngn2 is expressed throughout retinal neurogenesis
in progenitor cells that may differentiate into all major types of retinal cells, including
photoreceptors, rods and cones (Marquardt et al., 2001; Ma and Wang, 2006). NeuroD is
predominantly expressed in postmitotic cells undergoing differentiation into photoreceptors,
cones and rods (Yan and Wang, 1998; Yan and Wang, 2004; Liu et al., 2008). Expression of
ngn3 is switched off early, when retinal neurogenesis is still active and the expression ath5,
ngn2, and ash1 remains high (Ma et al., 2009). Temporally, expression of ngn3 precedes the
expression of ngn1. Spatially, expression of ngn3, but not ngn1, was also detected on the
vitreal side, the prospective location of ganglion cells. Gain-of-function experiments showed
a linear inductive relationship of ngn3→ngn1 (Ma et al., 2009; Yan et al., submitted). Based
on current information, ngn1 seems best suited to be a major player in guiding a progenitor
cell to the path of differentiating as a photoreceptor neuron. In the chick retina, ngn1
expression coincides spatially and temporally with photoreceptor genesis and precedes
neuroD expression (Yan et al., submitted). Overexpression of ngn1 in retinal cells reduces
the ganglion population, expands the photoreceptor population, and increases the number of
cells expressing neuroD. SiRNA against ngn1 reduces the photoreceptor population
specifically (Yan et al., submitted). In Xenopus retina, the ngn1-related gene, ngnr1,
specifically increases the photoreceptor population (Perron et al., 1999). In zebrafish retina,
ngn1 is expressed both in development and during photoreceptor regeneration after light-
induced photoreceptor degeneration (Thummel et al., 2008).

Advanced photoreceptor differentiation
The induction of visinin expression in a large number of cells was concomitant with the
generation of neural-like clusters in RPE cell cultures retrovirally transduced to express
ngn1. The emergence of neural-like clusters from an otherwise non-neural cell culture
suggests that ngn1 not only induced a single gene, visinin, but also had initiated a
reprogramming event. Reprogramming was further evidenced by the induction of several
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transcription factors known to regulate photoreceptor differentiation, including crx, neuroD,
nr2e3, RaxL, and RXRγ. The induction of these key regulators could have provided the
molecular foundation for the reprogrammed cells to develop advanced photoreceptor traits,
including the expression of phototransduction components, the formation of morphological
characteristics, and acquiring hallmark physiological properties.

Photoreceptors develop unique structural and functional properties for their specific function
in capturing photons and initiating the visual cascade. Structurally, photoreceptors contain
inner segments that are rich in mitochondria and outer segments that consist of stacks of
membranous discs. An inner segment-like structure packed with mitochondria was well
formed in ngn1-reprogrammed cells. Some of the reprogrammed cells showed rudimentary
outer segments, such as membranous expansion and electron-dense discs. Compared to inner
segments, outer segment-like structures were observed at a much reduced frequency. This
could be due to the non-permissive in vitro conditions for outer segment formation. It is
known that even retinal photoreceptor cells rarely form outer segments in culture and can
only develop irregularly arranged, membranous structures (Saga et al., 1996), as separating
photoreceptors from the RPE prevents normal assembly of disk membranes (Kaplan et al.,
1990). Under the conditions of our experiments, the reprogrammed cells were not expected
to develop well-formed outer segments like those typically observed with mature
photoreceptors immediately after isolation from an adult retina.

Physiologically, photoreceptors become hyperpolarized with decreased cytosolic Ca2+ upon
light exposure. Another hallmark of photoreceptor physiology is visual recovery upon the
administration of the chromophore to light-bleached photoreceptors. Both physiological
hallmarks were displayed by reprogrammed cells generated from RPE cell cultures under
the induction of ngn1. First, the reprogrammed cells reduced their Ca2+ levels upon light
stimulation in a manner similar to cultured photoreceptor cells derived from developing
chick retina. Second, administration of 9-cis-retinal to light-bleached, reprogrammed cells
increased their Ca2+ levels. The increases were comparable to those observed with light-
bleached, cultured developing photoreceptor cells derived from the retina. The physiological
resemblances indicate advanced photoreceptor differentiation of the reprogrammed cells.

Reprogramming RPE with ngn1 as an effective approach to produce photoreceptor-like
cells

Because of the great potential of photoreceptor-replacement in saving sight, much attention
has been directed at identifying source of new, differentiating photoreceptor cells. Retinal
stem cells would be one of the ideal sources of new photoreceptor cells. However, their
presence in the mammalian retina remains controversial. Early reports indicated that the
ciliary epithelium (CE) in the mammalian eye contains retinal stem cells (Tropepe et al.,
2000; Ahmad et al., 2000), but a recent study shows that CE-derived spheres consist of
proliferating pigmented CE cells rather than retinal stem cells (Cicero et al., 2009). Muller
glial cells in various species, including mammals, have recently been shown to posses
certain retinal progenitor cell properties, but their capabilities to efficiently give rise to
photoreceptors remain to be demonstrated (for a review, see Ohta et al., 2008). Outside the
neural retina, various cells/tissues of the mammalian eye are also investigated, including the
iris pigment epithelium, the ciliary body, and limbal epithelium. These cells/tissues of the
eye give minute amounts, if any, of photoreceptor-like cells (Ohta et al., 2008). The low
yield reflects may reflect the biological nature of those specific tissues, or the experimental
approaches used, as none of the studies have used ngn1 to initiate photoreceptor
differentiation program in those non-neural cells/tissues of the eye. Mammalian stem cells of
various origins (brain, bone marrow, and embryos) have been intensively explored
(Takahashi et al., 1998; Kicic et al., 2003; Chen et al., 2006; Meyer et al., 2006; Banin et al.,
2006; Lamba et al., 2006; Osakada et al., 2008; Lamba et al., 2009). Significant progress has
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been reported in guiding embryonic stem cells to differentiate into photoreceptors (Osakada
et al., 2008; Lamba et al., 2009). Nonetheless, challenges remain, such as the efficiency at
which photoreceptors are produced (Reh, 2006; MacLaren and Pearson, 2007; Klassen and
Reubinoff, 2008) and the mode of action of the donor (stem) cells (Gaillard and Sauve,
2007).

We have tested a different approach of producing differentiating, photoreceptor-like cells,
and our data show that ngn1 induced as high as 80% of the cells present in areas of an RPE
cell culture to begin differentiation towards photoreceptor cells. The reprogrammed cells
expressed transcription factors regulating photoreceptor differentiation and functional
components of the phototransduction pathway. They displayed similarities with developing
photoreceptor cells in ultrastructure, subcellular localization of red opsin, and in
physiological responses to light and to 9-cis-retinal. The advanced photoreceptor
differentiation and the high efficiency support RPE reprogramming by ngn1 as an attractive
approach to generate new, differentiating photoreceptor cells.
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Fig. 1.
RPE cell cultures reprogrammed by ngn1. A,B: Bright-field views of a control culture
infected with retrovirus RCAS-GFP (A) and a reprogrammed culture infected with RCAS-
ngn1 (B). Red asterisks (*) in B mark cells clusters, which are absent in the control. C: Epi-
fluorescence of visinin immunostaining of a ngn1-reprogrammed culture. D,E: Morphology
of visinin+ cells viewed with bright-field (E) and epi-fluorescence (D). Arrows point to the
cell body, and arrowheads point to a structural feature reminiscent of the lipid-droplet
typically present in chick photoreceptors. Scale bars: 50 μm. A magenta-green copy is
available as supplementary data.
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Fig. 2.
Prevalence of visinin+ cells in RPE cell cultures subjected to reprogramming by various
factors/genes. A-F: Representative images of immunodetection of visinin in E6 RPE cell
cultures infected with retrovirus RCAS expressing GFP (A; a negative control), ath5 (B),
neuroD (C), ngn2 (D), ngn3 (E), and ngn1 (F). G,H: Immunostaining for visinin in an E15
RPE cell culture infected with RCAS-ngn2 (G) or RCAS-ngn1 (H). I: Calculated numbers
of visinin+ cells per 242 mm2 area in E6 RPE cell cultures reprogrammed with the different
genes as shown. J: Calculated percentage of visinin+ cells in E6 RPE cell cultures
reprogrammed with the different genes as shown against ngn1-reprogrmaed culture. Scale
bars: 100 μm.
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Fig. 3.
Expression of photoreceptor-specific genes in RPE cell cultures infected with RCAS-ngn1.
A-E: Induction of transcription factors important for photoreceptor differentiation in ngn1-
reprogrammed cultures. A: Immunostaining for NeuroD. B: In situ hybridization for RXRγ
mRNA. C,D: In situ hybridization for crx mRNA in primary culture (C) and in re-seeded
culture (D). E: In situ hybridization for raxL mRNA. F-K: Expression of phototransduction
components in ngn1-reprogrammed cultures. F,G: Anti-red opsin immunostaining of the cell
body (F) and dot-like structures at places (of the culture) where more pigmented RPE cells
were present (G). H-N: Morphologies of red opsin+ cells in a re-seeded culture under a 40x
objective (H-J) or in a primary culture under a 100x objective (K-N). Arrows point to cell
bodies. Arrowheads point to cells’ apices decorated by anti-red opsin immunostaining. O:
Double-staining with antibodies against visinin (in red) and red opsin (in blue). Inset: A
higher magnification view of a double-labeled cell showing its cell body (arrow) and its
apex decorated by anti-red opsin (arrowhead). P: In situ hybridization detection of the α-
subunits of cone and rod CNG channels (cngA1/3). Q: RT-PCR detection of the expression
of two transcription factors (nr2e3 and raxL), one phototransduction component (α-
transducin, alt), and a control gene (s17) in cultures expressing RCAS-ngn1, RCAS-neuroD,
or RCAS-GFP. Scale bars: 25 μm. A magenta-green copy is available as supplementary
data.
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Fig. 4.
Detection of markers of various retinal cell types in ngn1-reprogrammed cultures. A,B:
Double-labeling for visinin (A) and calretinin (B) in a primary, reprogrammed culture.
Arrows point to double-labeled cells. C,D: Morphologies of calretinin+ cells in a reseeded
culture, viewed with bright field (C) or epi-fluorescence (D). The arrow points to a
calretinin+ cell displaying a lipid-droplet-like structure. E,F: An RA4+ cell (arrow) with a
long process in a reseeded culture viewed with bright field (E) or epi-fluorescence (F). G,H:
Vimentin+ cells in a primary, reprogrammed culture viewed with bright field (G) or epi-
fluorescence (H). Note: Long processes that were immuno-positive were present only at
places occupied by cell clusters (outlined). Scale bars: 50 μm. A magenta-green copy is
available as supplementary data.
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Fig. 5.
Ngn3-reprogrammed E6 RPE cell cultures. A,B: Bright-field views of a control culture
infected with RCAS-GFP (A) and a culture infected by RCAS-ngn3 (B). C,D: Anti-visinin
(C) and RA4 (D) immunostaining of cultures infected with RCAS-ngn3. Scale bars: 50 μm.
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Fig. 6.
Ultrastructures examined with electron micrography. A-B: Cells in a control RPE cell
culture. C-F: ngn1-reprogrammed cells. D-I: Developing photoreceptors in E17 chick retina.
Arrows: Inner segment; arrowheads: membranous expansion atop inner segments; white
arrowheads: mitochondria. The scale bars are in μm.
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Fig. 7.
Light responses examined with Ca2+ imaging. A-C: Images before (A) and after 10 seconds
(10 s, B) of light exposure of a control RPE cell culture infected with RCAS. D-J: Images of
RPE cell cultures infected with RCAS-ngn1 before (D,G) and after 10 seconds (E,H) and 60
seconds (I) of light exposure. K-N: Images of E16 chick retinal cells after 6 days in culture
[E16 Ret (6DIV)]. C,F,J,N: Bright field images. Arrows: cells with noticeable reductions in
fluorescence intensities. Arrowheads: lipid-droplet-like structures. O-Q: Calculated IOD
ratios (IODt / IOD0) shown as means and SDs of 13-15 cells including those within the
image of D,E, G-I, K-M, respectively. Scale bars: 50 μm.
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Fig. 8.
Post-Ca2+ imaging immunostaining and effect of CNG channel blockers on light response.
A-D: Double immunocytochemistry with antibodies against red opsin and visinin post Ca2+

imaging. Shown are images before (A) and after 60 seconds (B) of light exposure, a bright
field view (C), and after double-immunostaining (D). Arrows point to cells with noticeable
decreases in fluorescence intensities and positive for visinin (Vis, in blue) and/or red opsin
(Red, in red). E-G: Images before (E) and after 60 seconds (F) of light exposure in the
presence of CNG channel blockers dichlorobenzamil and l-cis-diltiazem (3 μM each).
Arrows point to cells with photoreceptor-like morphologies and without significant
reduction in their fluorescence intensities. H,I: Calculated IOD ratios (IODt / IOD0) shown
as means and SDs of 14 and 10 cells including those in images A,B and E,F, respectively.
Scale bars: 50 μm.
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Fig. 9.
Response to 9-cis-retinal examined with Ca2+ imaging. A-E: Images of reprogrammed cells
(in a reseeded culture) after light bleaching (B) and at 2 (C), 3 (D), and 5 (E) minutes after
administration of 9-cis-retinal (r2′, r3′, r5′). F-Q: Images of reprogrammed cells after light
bleaching (F) and at the indicated number of minutes (2′-10′) after sequential administration
of vehicle control (c, G-K), replacement of medium (L), and then 9-cis-retinal (r, M-Q). R-
A1: images of photoreceptor cells in an E18 retinal cell culture after 6 DIV. Arrows: cells
showing increases in fluorescence intensity. White arrowheads: cells lacking such an
increase. Black arrowheads: lipid droplet-like structure. B1-D1: The calculated IOD ratios
(IODt / IOD0) were shown as means and SDs of 4-8 cells from experiments B-E, F-Q, and
S-A1, respectively. A,L,R: Bright field images. Scale bars: 20 μm.
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Table 1

Primary antibodies used

Antigen (what is being stained for) Immunogen (what the antibody was raised
against; full sequence and species)

Manufacturer, species antibody was
raised in, mono- vs. polyclonal,
catalog or lot number

Dilution used

AP2; Epitope mapped to the C-
terminus of human AP-2α

Human AP-2α protein Santa Cruz Biotechnology; rabbit
polyclonal; affinity purified; Cat. #
SC-184

1:200

AP2α recombinant human AP2α protein; DNA-
binding domain; amino acids 208-414

Developmental Studies Hybridoma
Bank (DSHB; Iowa University);
mouse monoclonal; clone # 3B5;
developed by Dr. T. Williams

1:50

Brn3A (Pou-domain protein) Amino acids 186 - 224 of Brn3A fused to
the T7 gene 10 protein

Chemicon/Millipore; mouse
monoclonal; Cat. # MAB 1585

1:200

Calretinin Full-length, recombinant human calretinin Chemicon/Millipore; rabbit
polyclonal; Cat. # AB 5054

1:500

Islet-1 bacterially expressed C-terminal portion of
rat Islet-1; amino acids 247-349

DSHB; monoclonal; clone 39.4D5;
developed by Dr. T. Jessell

1:100

LIM 1 + LIM 2 Full-length, recombinant rat LIM 2 DSHB; monoclonal; clone 4F2;
developed by Dr. T. Jessell

1:50

NeuroD The C-terminal 102 amino acids of chick
NeuroD fused to the T7 phase gene 10

Our laboratory; rabbit polyclonal;
affinity-purified

1:40

Opsin (red/green) Recombinant human red/green opsin; 364
amino acids

Chemicon/Millipore; rabbit
polyclonal; purified; Cat. # AB 5405

1:200

Viral p27 (27 kDa viral protein) Purified 27 kDa virion protein extracted
from avian myeloblastosis virus

Spafas; rabbit polyclonal; purified
IgG; Cat. # 563301

1:500

Pax6 Recombinant chick Pax6 protein (amino
acids 1 - 233)

DSHB; monoclonal; clone Pax6;
developed by Dr. A. Kawakami

1:100

A 140 kDa microtubule associated
protein of long-projecting axons

E10 chick tectal homogenate Steven McLoon (University of
Minnesota); monoclonal; Clone RA4

1:1,000

Vimentin (52 kDa) E10 chick optic nerve DSHB; monoclonal; clone H5;
developed by Dr. J. Sanes

1:500

Visinin 27 kDa visinin purified from bovine eye DSHB; monoclonal; clone 7G4;
developed by Dr. C. Cepko

1:500

J Comp Neurol. Author manuscript; available in PMC 2011 February 1.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Yan et al. Page 28

Table 2

Calculated numbers (per 242 mm2) of cells expressing retinal neural markers of RPE cell cultures infected
with RCAS-ngn1

Marker Specificity Number % Visinin

NeuroD Pr 271,752±38,834 89.6

crx Pr 58,887±8,499 19.4

raxL Pr 39,849±10,225 13.1

RXRγ Pr 5,163±1,477 1.7

Visinin Pr 303,307±48,722 100.0

Red opsin Pr 4,880±2,059 1.6

cngA1/A3 Pr 968±320 0.3

alt Pr 645±185 0.2

Calretinin Gc, Am, Hz 5,203±960 1.7

RA4 Gc 524±185 0.2

Islet-1 Gc, Bi - 1

Brn3A Gc -

AP2α Am, Hz -

Pax6 Prg, Gc, Am -

LIM Hz -

Vimentin Prg, Mg 645±202 0.2

1
negative. Gc: ganglion cells; Am: amacrine; Bi: bipolar; Hz: horizontal; Pr: photoreceptor; Prog: progenitor. Regular typeface, immunostaining;

Italic, in situ hybridization.

J Comp Neurol. Author manuscript; available in PMC 2011 February 1.


