
A self-calibrated angularly continuous 2D GRAPPA kernel for
propeller trajectories

Stefan Skare1, Rexford D Newbould1, Anders Nordell1,2, Samantha J Holdsworth1, and
Roland Bammer1

1 Lucas MRS/I Center, Department of Radiology, Stanford University, California, USA
2 Karolinska MR Center, Department of Clinical Neuroscience, Stockholm, Sweden

Abstract
The k-space readout of propeller-type sequences may be accelerated by the use of parallel imaging
(PI). For PROPELLER, the main benefits are reduced blurring due to T2 decay and SAR
reduction, while for EPI-based propeller acquisitions such as Turbo-PROP and SAP-EPI, the
faster k-space traversal alleviates geometric distortions. In this work, the feasibility of calculating
a 2D GRAPPA kernel on only the undersampled propeller blades themselves is explored, using
the matching orthogonal undersampled blade. It is shown that the GRAPPA kernel varies slowly
across blades, therefore an angularly continuous 2D GRAPPA kernel is proposed, in which the
angular variation of the weights is parameterized. This new angularly continuous kernel
formulation greatly increases the numerical stability of the GRAPPA weight estimation, allowing
the generation of fully sampled diagnostic quality images using only the undersampled propeller
data.
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Introduction
With a parallel imaging (PI) reconstruction technique such as GRAPPA (1), k-space lines
can be synthesized from neighboring acquired lines using the fact that the spatially localized
coil sensitivities make the data locally dependent on each other in k-space, allowing for a
reduction in the amount of acquired data. Besides a general reduction in acquisition time, for
EPI-based propeller sequences like SAP-EPI(2), GRAPPA further reduces both TE and
geometric distortions, the latter in proportion to the reduction factor. For example, at the
288×288 target resolution with 64×288 SAP-EPI blades and R=2, the geometric distortions
become about five times lower compared to a conventional ss-EPI (3). For FSE-based
propeller trajectories on the other hand, parallel imaging allows for a direct reduction in
SAR, scan time, less T2 related blurring, and better phase navigation - the latter due to wider
blades.

For regularly undersampled Cartesian acquisitions, the distances as well as the orientation
between the missing datum and its local neighborhood of acquired data (defined by the 2D
GRAPPA kernel (4,5)) are constant throughout k-space. Therefore, a single GRAPPA kernel
(or ‘set of weights’) can be used to fill in the missing data in the entire k-space. For propeller
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trajectories (Fig. 1a), the above applies to a single blade since the blade itself is Cartesian.
However, the coil geometry as seen from each blade space varies with blade angle.
Therefore, GRAPPA weights will also vary across blades. Traditionally, GRAPPA
acquisitions acquire a fully sampled strip, which is typically located around the center of k-
space while the rest of k-space is R times undersampled along the phase encoding direction.
This is not particularly suitable for propeller trajectories for the following reasons: For
conventional propeller trajectories whereby the readout direction is oriented along the long-
axis of the blade (PROPELLER(6), Turbo-PROP(7), propeller-EPI(8), Fig. 1a, left panel),
the limited number of phase encoding lines (typically 16-32 lines) would make the
accelerated portion of each blade very limited, significantly reducing the net acceleration
factor. Moreover, for any EPI based sequence (including long-axis (“LAP”) (8) and short-
axis (SAP) (2) readout propeller-EPI), a dual density k-space sampling scheme introduces
another challenge originating from the different sensitivities to off-resonance distortions for
the fully sampled and accelerated portions of k-space (9).

Given the above, the use of external R=3 GRAPPA calibration scans and acquiring each
blade at full R-fold acceleration would be desirable in a propeller acquisition. In the context
of propeller trajectories, GRAPPA has been reported with PROPELLER (10), LAP-EPI (11)
and SAP-EPI (3). For an R=3 accelerated SAP-EPI blade like in Fig. 1b, the best image
quality is obtained if the calibration scan has the same off-resonance level as the accelerated
scan. This means that three interleaves per blade should ideally be used for GRAPPA
calibration as shown in Fig. 1c, right. For comparison, using GRAPPA kernels derived from
either a high SNR SE calibration scan (free of geometric distortions) or a three times higher
distorted single-shot EPI calibration scan leads to more residual aliasing (Fig. 1c, left,
middle panels). The downside of an R-shot scan on the other hand — if needed for an N-
blade propeller scan — is the lengthy calibration time, which becomes R times longer than
the GRAPPA accelerated scan itself. Furthermore, any motion that occurs between the shots
in the calibration scan will cause ghosting in the calibration data, which will propagate into
subsequent GRAPPA reconstructions.

In the interest of reduced scan time and a more efficient use of propeller imaging, we
propose in this paper to eliminate the acquisition of GRAPPA calibration data altogether and
retrieve the missing calibration information from undersampled blades themselves (self-
calibration). While this paper presents results for SAP-EPI trajectories (Fig. 1a, right), the
same sparsity pattern and arguments hold for all propeller trajectories. Potential sequence
specific artifact issues aside, the bulk of the results in this paper are therefore also applicable
to PROPELLER, Turbo-PROP, and long-axis propeller (“LAP”) EPI acquisitions.

The basic element in the new GRAPPA estimation procedure proposed in this work is a pair
of two orthogonal, R-times undersampled blades (Fig. 2a). Since the blades are
undersampled, the 2D GRAPPA kernel of one of the blades needs to be estimated by using
target points from the other blade. We will show that this is feasible and can result in robust
GRAPPA reconstructions, provided that enough training data locations exist for the weight-
estimation and that the blades are properly aligned with each other in k-space. However,
with thinner blades and/or increased reduction factors, this method can become numerically
unstable, producing unacceptable reconstructions. We hypothesize that GRAPPA weights
may vary smoothly with blade angle, potentially allowing for a reduction in the total number
of independent GRAPPA kernel weights to be estimated for all blades. A detailed account
for how to reduce the number of unknowns in relation to the available training data will be
presented.
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Theory
GRAPPA estimation on two orthogonal undersampled blades

In Fig. 2a, a small GRAPPA kernel of size Nr×Np = 2×3 is shown, with the source lines (o)
taken from one blade and the target lines (×), taken from the other. As seen in Fig. 2a (blue
markers), the number of k-space locations that can be used to make the linear system
involving Np×Nr×Ncoils unknown GRAPPA weights overdetermined is much smaller than if
a fully sampled blade would have been used. This is due to two reasons. Firstly, only the
square area defined by the overlapping region of the two blades may be used for the
calibration. Secondly, the GRAPPA kernel needs to “jump” on the intersections arising from
the crossing of the acquired lines, leaving only 1/R2 (e.g. 1/9th for 3-fold acceleration) of the
locations compared to a fully sampled blade. Therefore, it is helpful to keep the size of the
GRAPPA kernel small in order to reduce the number of unknowns. We will refer to a
GRAPPA kernel estimated from fully sampled blades as Gref (golden standard, see Fig. 2c)
and our proposed GRAPPA estimation on undersampled data as Gx (where ‘x’ symbolizes
the intersection of two blades).

Blade alignment
In addition to the issue of fewer training locations, the k-space peaks of the two orthogonal
blades may be misaligned due to phase shifts in the image domain, causing inconsistencies
between the target lines and the surrounding source lines included in the GRAPPA kernel
estimation. The standard procedure for echo-centering the blades in k-space for propeller
acquisitions is to use an image domain phase correction technique (6). Alternatively, one can
remove the image phase completely for each blade prior to Fourier transformation back to k-
space before gridding the blades together to get the final image (2). However, both
approaches only work on fully sampled data, which is why we propose another solution.

Our approach is outlined in Fig. 2b, with the common nominal k-space points for the two
blades marked with black circles. If the two blades are aligned, the difference between the
values from the two blades at each of these locations should be minimal. To achieve this,
each blade may be shifted along the fully sampled readout dimension of each blade by an
amount Ω1 and Ω 2, respectively, without violating the Nyquist sampling criterion. We may
drive this linear registration of the two blades (B1 and B2) by minimizing the sum of the
absolute differences of the log-intensities of the blades over all intersecting points according
to:

[1]

The log-intensity is essential here to make all intersecting k-space points contribute
significantly to the cost function O(Ω1,Ω2). Furthermore, to find the parameter vector Ω =
[Ω1,Ω2], it was found necessary to temporarily take the magnitude of the k-space prior to the
minimization procedure. For this low-dimensionality minimization problem the simplex
method (Nelder-Mead) algorithm was used (12).

The angularly continuous GRAPPA kernel
The number of training locations for the GRAPPA kernel (Fig. 2a) will decrease by the
square of both the reduction factor R and the blade width, which leads to a greatly increased
uncertainty in the weight estimation due to the lack of training data. At some point, the
number of training locations would be less than the number of weights in the kernel, leading
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to an underdetermined GRAPPA estimation (inversion) problem. Furthermore, when thinner
blades are used, more blades are needed to fill k-space, yielding to smaller blade angle
differences and, thus, to smaller changes in apparent coil geometry between blades. Using
the same GRAPPA kernel for a certain range of azimuthal angles (‘wedges’) in k-space for
GRAPPA estimation has been done before for both spiral and radial data, with reasonable
results (13,14). Therefore, we hypothesize that it is possible to construct an angularly
continuous GRAPPA kernel, Gxc, (index ‘c’ for continuous), where each of the
Nr×Np×Ncoils complex GRAPPA weights are parameterized as a smooth complex function
over the entire blade sweep. The smooth functions are modeled by some basis set, defined in
a matrix C, consisting of Norder columns and Nb rows. Each of the Norder columns of C
represents one term in the basis set and the GRAPPA estimation problem is reformulated
such that the optimal coefficients for these terms (‘hyper-weights’) are estimated rather than
the GRAPPA weights directly. Provided that the number of terms in the basis set, Norder,
can be kept smaller than the number of blades involved without increasing the GRAPPA
model fit error, this would make the entire problem more overdetermined, potentially
leading to a more numerically stable solution.

The relation between the source lines (shuffled into A), the “missing” (target) lines (shuffled
into Y) and the GRAPPA kernel, G, which is a matrix of size [Np×Nr×Ncoils] ×[Ncoils×(R-1)]
is given by

[2]

where the multiple columns of Y and G come from the standard GRAPPA estimation,
whereby independent weights are used for each target coil and each of the R-1 target lines.
To simplify the following derivation, we can formulate a continuous kernel for a particular
target line i, and target coil j. For blade 1, we get

[3]

where “†” denotes the Moore-Penrose inverse of A1, and where x1 (of size [Np×Nr×Ncoils]
×1) contains the GRAPPA weights for target line i and target coil j. Also note that A1 only
needs to be inverted once for all Ncoils×(R-1) GRAPPA weight sets forming the complete
GRAPPA kernel. Now, still assuming independent GRAPPA weights across blades, we can
extend Eq. [3] to include all Nb blades (again for only one target line i and target coil j) by
the creation of a block diagonal matrix, Abig:

[4]

where X is a matrix of size [Np×Nr×Ncoils]×Nb and the “vec” operator unravels the matrix X
into a single column, [x1,..., xNb]T. Equation [4] does not provide any computational benefits
itself, but to reduce the total number of unknowns in X and to make the GRAPPA kernel a
continuous function over the blade angles, X may be constrained by a basis set C of size
Nb×Norder across the columns of X, that is X = (CH)T (for a more graphical and intuitive
description, please refer to Fig. 3). In this work we have arbitrarily used an orthogonal
cosine basis set discretely defined as (15)
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[5]

where the first column is a constant value modeling the average value of X per column (Fig.
3). Given the basis set C, the task is no longer to estimate the GRAPPA weights in X
directly, but rather the elements or ‘hyper-weights’ in H. Using the following algebraic rule:

vec(XY) =  vec(X), the elements of H can be calculated from Abig and ybig directly
via

[6]

where “⊗” denotes the Kronecker product (16). For the entire GRAPPA reconstruction, we
have (R-1) ×Ncoils different ybig column vectors, which can be stacked together into another
matrix, Ybig. The final expression for the continuous GRAPPA kernel, now for all target
lines and target coils, becomes:

[7]

Note that Gxc,hyper is shown here in its compact form, where elements in the matrix are the
hyper-weights. The ‘unpacked’ GRAPPA weights themselves are easily obtained by
multiplication with Q

[8]

In summary, all the source and target points (for a given slice location) from all blades are
put into Abig and Ybig, respectively, and only Eq. [8] is needed to estimate the GRAPPA
weights for all blades, target lines and target coils simultaneously. Thus the number of
unknowns to be estimated has been reduced by a factor of Nblades / Norder.

Materials & Methods
Phantom and human brain data were acquired on a healthy volunteer using a SAP-EPI
sequence on a 1.5T GE Excite whole body unit (GE Healthcare, Waukesha, WI). All study
protocols were conducted within the guidelines from the Institutional Review Board and
consent was obtained from the participant. RF excitation was applied with the body coil, and
signal reception was performed with an eight-channel head array (Invivo Corporation,
Pewaukee, WI). Parameter settings for the phantom experiment included four 5 mm thick
axial slices with TE/TR = 17/2000 ms, FOV = 22×22 cm. Sixteen propeller blades of size
64×288 (freq.×phase) were acquired, yielding a target resolution of 288×288. For the
phantom data, each blade was acquired with 36 interleaves (with 8 phase encoding lines per
excitation) to increase the phase encoding bandwidth along the phase encoding dimension
enough to avoid interaction between the GRAPPA kernel estimation and off-resonance
effects. From this acquisition, three datasets were created: i) with blade widths of 64 (using
every second blade, only just fulfilling Nyquist at the k-space perimeter), ii) 32 and iii) 24
(using all 16 blades). From the fully sampled SAP-EPI datasets, GRAPPA weights were
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calculated independently on each fully sampled blade to serve as the gold standard (Gref).
Then, for all three datasets, only every Rth (= 2 & 3) phase encoding line from each blade
was kept from which Gx and Gxc kernels were calculated using the methods described
above. Using all sixteen 64×288 blades, the richness of the cosine basis set, Norder, was
varied from 1 to 12 to investigate how rapidly the weight-functions need to vary over blade
angles to not introduce increased model fit errors.

A healthy volunteer was scanned twice, with the head positioned in slightly different
orientations between the two scans. The same acquisition parameters as the phantom
experiment were used, except with TE/TR = 72/4000 ms and with 2 shots (instead of 36
used for the phantom data). With the 2-shot acquisition, the geometric distortions and tissue
contrast became equivalent to a real R=2 scan. For the Gref method, both shots were used for
GRAPPA estimation, whereas for the Gx and Gxc kernels proposed in this work, only the
first shot was used for the GRAPPA estimation. The two data sets were also mixed in two
ways to effectively generate two types of motion; a) motion between different blade pairs;
and b) motion between shots and blade pairs. After mixing, both Gref and Gxc were
calculated again. In-plane rigid body motion correction between the blades was performed in
the image domain for the volunteer data by minimizing the sum-of-squares differences
between the blades using a quasi-Newton search algorithm (17).

After GRAPPA reconstruction and motion correction, each blade was corrected using a
triangular windowing filter (6) in order to echo-center the data in k-space prior to gridding.
All blades were gridded together on a 2x grid, using a Kaiser-Bessel kernel (width=4, β=9),
followed by apodization correction. A GRAPPA kernel size of 2×3 was used throughout,
except for data presented in Fig. 2 which also show results from a 2×5 size kernel. The
benefits of using two instead of four source lines in the phase encoding direction have been
demonstrated earlier (18), thus GRAPPA kernels with more than two source lines have not
been investigated.

Results
GRAPPA reconstructions (Gref) of one blade from the 36-shot phantom scan is shown in
Fig. 2c for two different kernel widths and for acceleration factors R=2 and 3. This figure
suggests that the image reconstruction is not hampered per se by the use of a small 2×3 over
a 2×5 GRAPPA kernel — neither in terms of residual aliasing nor noise, defending the use
of smaller kernel widths in this work.

Figure 2d shows the same blade reconstructed with GRAPPA weights obtained from the
fully sampled data, Gref (left panel), and the Gx method (middle & right panels). The middle
and right panels of Fig. 2d show the reconstructed blade without and with the k-space echo
centering approach proposed in this work (see Fig. 2b), respectively. Even on this phantom
data, free from geometric distortions and motion, aliasing can be observed in the
reconstructed blade, due to minor misalignments between the blades. Using the echo
centering leads to a better reconstruction (Fig. 2d, right).

The top row of Figure 4a shows the reconstruction of the R=2 undersampled blades without
the use of GRAPPA. The second row of Fig. 4a show the same blades reconstructed with the
proposed Gxc method using a very limited basis set of Norder=2 (i.e. C has two columns, see
Fig. 3), which largely unalias the object but leaves some residual ghosting in the image. An
acceptable image quality can be obtained when using a Gxc,4 (Norder=4) kernel for R=2
(third row), and is quite comparable to the Gref kernel (bottom row) based on fully sampled
2-shot data. Corresponding data for R=3 is given in Fig. 4b, but where the third row show
reconstructions using a and Gxc,6 (Norder=6) kernel. Norder= 4 and 6 were the lowest number
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of terms (i.e.. Norder) deemed acceptable by visual inspection for R=2 and R=3, respectively.
This trend is also supported in Fig. 4c, showing the root-mean-square (RMS) error summed
over all blade images vs. Norder. Fig. 4c demonstrates the model fit error of the angularly
continuous Gxc kernel using a different number of terms, Norder, in the basis set C (for the
remainder of the paper, the order of the basis set will be indicated by Gxc,Norder). Certainly,
the threshold for Norder can not be generalized and depends on a multitude of parameters,
such as the number, size, and location of coil elements, blade angles, reduction factor, et
cetera, but from Fig. 4c it becomes evident that Gxc kernels with a modest Norder achieve a
sufficiently good reconstruction.

Gridded images from blades that have been reconstructed using GRAPPA variants Gref, Gx,
and Gxc are depicted in Figs. 5a (R=2) and 5b (R=3). With wide blades for R=2 (Fig. 5a, top
row), the amount of training locations for the two orthogonal blades are enough to make the
weight estimation problem well overdetermined, yielding similar apparent image quality for
all three methods; although the RMS difference between the GRAPPA reconstructed data
and the fully sampled data is three times lower for Gref. The corresponding R=3
reconstruction (Fig. 5b, top tow) shows a minor, but measurable, noise enhancement for Gx
compared to Gxc (right) and Gref (left). However, as the blade width is reduced, the number
of training locations for the Gx kernel is reduced - leading to an increased noise
enhancement and eventually to a complete reconstruction failure as seen for the example
with a blade width of 24 and R=3 (Fig. 5b, bottom row). In this case, the number of training
locations became exactly equal to the number of parameters in the GRAPPA kernel. Even
for a blade width of 32, the increased GRAPPA noise for Gx is evident for a higher
acceleration factor R=3 (Fig. 5b). On the contrary, for the angularly continuous GRAPPA
kernel, Gxc, the increased number of blades that are required for narrow blades helps to
avoid this problem. Compared to the reference method, the Gxc method shows acceptable
image reconstructions in all cases, with no residual aliasing and acceptable image noise
penalty.

Figure 6 shows four gridded slices from the 2-shot SAP-EPI volunteer scan. Being a 2-shot
scan, one has now the same T2 and off-resonance effects as a real R=2 scan. Hence, this
figure also encompasses potential effects of distortions, blurring and physiological noise into
the GRAPPA kernel estimations. Fig. 6a shows the first shot reconstructed with Gref,
calculated from both shots, whereas the Fig. 6b shows the same data unaliased with Gxc,4
solely using information from the first interleave. Despite the moderate off-resonance effects
present in this acquisition, the Gxc,4 reconstruction shows no streaks and has - compared to
the phantom case earlier - a much lower RMS error elevation relative to the image unaliased
with Gref.

The final figure shows how the reference GRAPPA method as well as the continuous
GRAPPA kernel responds to different types of motion. Fig. 7a depicts the difference image
obtained by mixing the two fully-sampled datasets acquired with head orientated slightly
different between these two acquisitions. These datasets were mixed in such a way that they
simulated either motion between shots and blades, or motion between blade pairs. The
former is particularly relevant if a full R-shot calibration is performed for each blade (i.e.
Gref). As shown in Fig. 7b-c, intra-blade pair motion leads to poor image quality for the
continuous kernel, however this is also true for the reference method due to motion also
between shots for each blade (shading in frontal part of the brain). However, when motion
only occurs between blade pairs, the reconstruction using both methods renders an artifact-
free image after motion correction (Fig. 7d,e).

Comparisons of computational speed for the most relevant steps in the reconstruction are
shown in Table 1 for the three GRAPPA kernels, Gref, Gx and Gxc,4. As seen in this table,
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there is practically no speed penalty associated with the newly proposed technique, and the
computational bottle-neck is the gridding (despite this part being compiled C-code). This
can be considered a significant advantage when comparing this technique to potential
alternatives such as conjugate gradient reconstruction or methods that would grid the
overlapping area of all blades to generate a fully sampled region of k-space for GRAPPA
weight determination.

Discussion & Conclusion
Under ideal circumstances with no scan time restrictions and no motion during the
calibration scan, it is clear from Fig. 1b and previous work on Cartesian EPI data (9) that a
distortion matched calibration scan produces the best GRAPPA kernel. For SAP-EPI, this
would mean an R-shot calibration and for PROPELLER this would correspond to fully
sampled blades. For both sequence types, the calibration will take R times longer than the
actual scan, which can only be defended for time series data where the calibration phase is
either just a small fraction of the entire scan or is made part of the time series.

Hence, for propeller trajectories there is a great need to reduce the calibration time, and in
this work we have shown that it is possible to eliminate the need to acquire extra calibration
data altogether. Although the amount of training data per blade becomes substantially
reduced without additional calibration information, it has been shown here that the use of
small kernels with the angularly continuous GRAPPA representation can produce acceptable
reconstructions. This is particularly important for the narrower blades often used in the RF-
refocused PROPELLER sequence. We have shown that even a 2×3 GRAPPA kernel
produce images of comparable image quality compared to the more common 2×5 sized
kernel, and that even a very limited basis set with 4-6 terms is enough to model angular the
angularly continuous GRAPPA kernel. Increasing the number of terms does not reduce the
GRAPPA model fit error to the data used in this work (Fig. 4c). While the cosine basis set is
a general purpose orthogonal set, it is subject to future work to prove that this basis set is the
most optimal choice for all coil geometries or even the coil geometry used in this paper. The
appearance of GRAPPA reconstruction artifacts for a blade is similar to that of conventional
Cartesian imaging (Fig. 4), while in the gridded image (Fig. 5) these artifacts primarily
manifest as increased noise.

Using this technique for time series data, such as fMRI, perfusion MRI or multiple ‘b=0’
images for DTI, would be quite beneficial as the amount of training locations goes up
linearly with the number of time frames, which will further suppress noise in the Gxc
reconstruction. While inter-volume motion can occur within a time series, the use of the
continuous GRAPPA kernel is expected to be robust since the training locations are built up
from pairs of orthogonal blades consecutively over time.

As the GRAPPA estimation is performed on two orthogonal blade pairs it is both important
that their k-space peaks are overlapping and that the blades indeed are orthogonal. An even
number of blades must therefore be used, with blade angles chosen such that every blade has
an orthogonal counter part. The conventional image phase correction that is performed prior
to gridding in propeller imaging addresses the k-space echo centering well for fully sampled
blades, but we have found this does not work for undersampled data prior to GRAPPA
estimation. Therefore, we have here presented (Fig. 2b) a new method that is able to echo
center two undersampled orthogonal blades relative to each other without violating the
Nyquist criterion, by moving each blade only along its fully sampled direction until their
difference is minimized (Eq. [1]). However, this procedure only performs linear shifts in k-
space. In the event of large non-linear image phase differences between the two blade pairs,
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inconsistencies between the blade pairs could occur, leading to suboptimal GRAPPA
weights.

Another issue is rigid body motion. As long as no motion occurs for the data used for
GRAPPA calibration, standard rigid body in-plane motion correction of the GRAPPA
reconstructed propeller blades is trivial. In contrast to Cartesian imaging, robustness to
motion is one of the well known strengths of propeller-type acquisitions, since densely
overlapped blades (although slightly rotated after motion correction) do not introduce
ghosting in the final image. However, we have also shown that motion between shots for
Gref as well as intra-blade-pair motion for Gxc leads to inferior GRAPPA reconstruction.
Nevertheless, for the latter method proposed here, there are two good solutions that we
intend to implement to overcome this: Firstly, we may use a dual-blade SAP-EPI acquisition
(19) where two orthogonal blades are read out following a single excitation. In this case, the
intra-blade pair motion is eliminated and hence the estimation of Gxc will be independent of
the inter-blade pair motion unless it is extremely large. Secondly, the angularly continuous
GRAPPA representation also has another advantage in the context of motion. By observing
the residual error associated with the GRAPPA kernel estimation, it is possible to identify
the blade pairs which have been affected by motion, since — from our experience from
Cartesian GRAPPA — motion and residual error in GRAPPA are very strongly correlated
(unpublished data). After identification of motion hampered blade pairs, the hyper-weights
of the Gxc kernel can be re-estimated without these blades by using a modified Q matrix in
Eq. [7] obtained from a C matrix with the associate rows taken out. Then, the ‘unpacked’
GRAPPA weights for all (including the omitted) blades are obtained by using the nominal Q
matrix.

An alternative approach to the one presented here is to use iterative Conjugate Gradient
reconstruction methods that have recently been very popular for many non-Cartesian
scenarios, not least in the context of parallel imaging and motion (20-22). The advantage
with iterative reconstructions is that it is possible to drive the reconstruction to quite an
artifact free image - provided that the model incorporates the sources of artifacts well and
that the proper amount of regularization is used. Most likely, this can lead to lower noise and
less residual aliasing than presented here using the same data. This has recently in part been
shown as an attractive solution using a pre-calculated GRAPPA kernel and data consistency
constraints (23). Yet, it comes with the price of lengthy reconstruction times (22), in some
cases hours - which ought to be seen in context with the relatively short propeller-
acquisition times of a few minutes or less. Substantial reduction of this computation time for
time series data has recently been presented for SENSE reconstructions using the k-SPA
method (21).

In an early stage of this work, we also tried to use ideas from (24) to generate training data
for each blade using samples from all other blades, solely for the GRAPPA estimation step.
In our experience, this did not improve the GRAPPA kernel for any dataset we have tested
so far - neither in terms of noise or aliasing properties, despite the increased number of
training locations generated after the gridding process.

Finally, with ideas from Ref. (25), which used a discrete set of GRAPPA weights for
different line distances in 1D non-Cartesian imaging, it may be possible to expand the
angularly continuous kernel representation presented here to an angular and radially
continuous kernel, whose weights not only as a function of azimuthal angle but also radial
distance. This could be useful for radial and spiral and other non-Cartesian trajectories.

In conclusion, it has been demonstrated that it is possible to reconstruct undersampled
propeller blades without relying on the acquisition of additional PI calibration data. With the
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use of an angularly continuous 2D GRAPPA kernel (for 1D acceleration), tailored
specifically for propeller trajectories, the numerical stability and accuracy of the GRAPPA
kernel was shown to be very similar to GRAPPA kernels derived from fully sampled data.
This method has here been shown to work adequately for SAP-EPI, but is applicable to
propeller trajectories in general.
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Figure 1.
a) Principle sketch of standard PROPELLER (left) and SAP-EPI (right) k-space trajectories.
b) An image of an R=3 times undersampled SAP-EPI propeller blade on a phantom used as
data for GRAPPA reconstructions using GRAPPA kernels calculated from three different
calibration datasets; Conventional SE, single-shot EPI and R-shot EPI. Resulting images are
shown in c).
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Figure 2.
a) Illustration of how GRAPPA estimation can be done with two R=3 times undersampled
orthogonal blades, using the source points (o) from one blade and the target points (×) from
the other (black markers in inset). Green markers in insets denote the neighboring training
locations, indicating that there is R2 less training locations compared to the case for a fully
sampled dataset. b) Black circles denote common k-space locations for the two blades,
which should ideally contain the same data. Relative blade alignment is performed by
Fourier shifting blades by Ω1 and Ω2 in its fully sampled direction until the overlapping
locations (black circles) have minimal difference. c) GRAPPA reconstructions using a 2D
kernel with Nr=3 and 5 for R=2 and 3, to show that the smaller kernel width can be used
with no or only minor loss in image quality depending on the acceleration factor. d)
GRAPPA reconstructions using the fully sampled data (left) and two orthogonal
undersampled blades, without (middle) and with (right) the use of the relative blade
alignment method in b).
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Figure 3.
Pictorial explanation of how the undersampled blade data is formed for the angularly
continuous kernel estimation in Eqs. [4]-[6]. Only three out of the Nb blades are shown for
clarity. Note that Abig is a sparse block diagonal matrix and that all GRAPPA weights for all
blades are contained in the vector x (“what we want to know”). By reshaping x into a matrix
X with rows being different blades, we can fit a model or basis set C to this matrix with
coefficients contained in H. The product CH forms the GRAPPA weights, constrained to
vary slowly across blades (rows).
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Figure 4.
Eight out of 16 blades reconstructed with a) R=2 and b) R=3. Top row: Undersampled
blades reconstructed without GRAPPA. Second row in a) and b) shows Gxc reconstructions
using a very limited basis set with Norder=2. Residual aliasing (esp. for R=3) indicates that
two basis functions are not enough. Third row in a) Norder=4 (R=2) and b) Norder =6 (R=3)
show improved reconstructions thanks to increased basis set of the continuous kernel. c)
Sum of the RMS errors over all blades w.r.t. fully sampled blades (no GRAPPA) vs. the
richness of the cosine basis set. The RMS values suggest that the Norder values above are
indeed optimal for this data and coil configuration.
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Figure 5.
Gridded phantom data with blade widths 24, 32 and 64 undersampled by R=2 (a) and R=3
(b). The three columns refer to blade reconstructions using Gref, Gx and Gxc,4 (or Gxc,6 for
R=3). The white number denotes the sum of RMS error for all blades involved prior to
gridding.
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Figure 6.
Four axial slices of the volunteer scan using 8 64×288 gridded blades undersampled by R=2
and reconstructed with Gref and Gxc,4. The RMS errors given in the sub-panels show very
little noise amplification in vivo between the proposed Gxc,4 and the gold standard (Gref).
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Figure 7.
Controlled motion experiment. In (a), the extent of motion is shown by the difference image
between the two acquisitions. With datasets mixed such that motion occurs between shots
and intra-blade-pairs, both Gref (b) and Gxc,4 (c) reconstructions lead to inferior weights,
leading to shading and streaks despite that the motion correction itself is able to align the
blades. On the other hand, if motion occurs between only inter-blade pairs, both methods
reconstruct blades accurately and can be realigned prior to gridding like in d-e).
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Table 1

values in seconds Gref Gx Gxc,4

Finding overlap between two undersampled blades - 0.1 0.1

Peak alignment of blades - 2.6 2.6

GRAPPA estimation (all blades) 4.5 0.2 0.7

GRAPPA data synthesization (all blades) 0.6 0.6 0.6

Blade phase correction 1.5 1.5 1.5

Gridding (coil-by-coil) 15.6 15.6 15.6

Total 22.2 20.6 21.1

Values are given in seconds per image slice calculated in Matlab2007a on a 64-bit Linux Xeon 3.2GHz server with R=2, 64×288 blade size and a
kernel size of 2×3
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