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Abstract
Diffusion-weighted MRI has enabled the imaging of white matter architecture in vivo. Fiber
orientations have classically been assumed to lie along the major eigenvector of the diffusion
tensor, but this approach has well-characterized shortcomings in voxels containing multiple fiber
populations. Recently proposed methods for recovery of fiber orientation via spherical
deconvolution utilize a spherical harmonics framework and are susceptible to noise, yielding
physically-invalid results even when additional measures are taken to minimize such artifacts. In
this work, we reformulate the spherical deconvolution problem onto a discrete spherical mesh. We
demonstrate how this formulation enables the estimation of fiber orientation distributions which
strictly satisfy the physical constraints of realness, symmetry, and non-negativity. Moreover, we
analyze the influence of the flexible regularization parameters included in our formulation for
tuning the smoothness of the resultant fiber orientation distribution (FOD). We show that the
method is robust and reliable by reconstructing known crossing fiber anatomy in multiple subjects.
Finally, we provide a software tool for computing the FOD using our new formulation in hopes of
simplifying and encouraging the adoption of spherical deconvolution techniques.
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Introduction
The human brain is a phenomenally complex structure whose primary functional units,
neurons, are estimated to number in tens of billions (Pakkenberg and Gundersen, 1997).
Moreover, this cellular network is highly interconnected, with many neurons receiving tens
of thousands of connections from sites both local and distant (Megías et al., 2001). Axons,
the long cellular projections which form the anatomical basis for this neural connectivity,
are organized into larger-scale fibers and fiber bundles, which are the primary constituents
of the central nervous system white matter. In vivo MR imaging of this connectivity was
restricted for many years to structural images (e.g. T1, T2) which provided robust
discrimination of gray and white matter compartments, but conveyed no information about
fiber orientation within these latter regions.

This deficiency was overcome by Basser et al. (1994a) who first demonstrated that the
effective diffusion tensor at each voxel could be estimated from a series of images acquired
using the pulsed-gradient spin echo (Stejskal–Tanner) sequence for diffusion-weighted
imaging (DWI). The primary eigenvector of this second-order diffusion tensor has been
shown, in white matter voxels, to correspond with the orientation of the fiber axis (Basser et
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al., 1994b). However, at current spatial resolutions, voxels are often contaminated with
significant partial volume effects, and the diffusion tensor model fails to accurately represent
nerve bundle geometry in voxels containing multiple fiber populations (Alexander et al.,
2001; Poupon et al., 2001).

A number of high-angular resolution diffusion imaging (HARDI) approaches have been
proposed which consider multiple underlying fiber orientations at each location. Here, we
will focus primarily on two subsets of these methods: those which estimate the diffusion
orientation distribution function (dODF), i.e., the radial projection of the spin diffusion
propagator (Tuch et al., 2002; Tuch, 2004; Wedeen et al., 2005; Descoteaux et al., 2007;
Aganj et al., 2009), and those for calculating the underlying fiber distribution (FOD). For a
more complete overview of HARDI methods, we suggest Wu and Alexander (2007). The
dODF and associated anisotropy indices (e.g., generalized fractional anisotropy) provide
information about the local displacements of water molecules, which may be valuable in
certain pathological states. However, for purposes of white matter architecture and
tractography, we focus on estimation of the FOD, which characterizes the likelihood of a
white matter bundle aligned in a given direction, as the object most directly of interest.

At each voxel, the measured DWI signal attenuation profile can be understood as the
convolution of some single fiber response kernel (i.e., an impulse response) with an
underlying fiber orientation distribution. Several approaches have been proposed which
leverage this basic concept to address the inverse problem of recovering the FOD from a set
of diffusion-weighted samples. One class of such methods aims to decompose the complex
signal attenuation profile into a set of underlying 2nd-order diffusion tensors, each of which
represents a single fiber population. Kim et al. (2005) achieved this goal via independent
component analysis, while Peled et al. (2006) proposed a constrained two-tensor fitting
process for voxels suspected of containing crossing fiber populations. Ramirez-Manzanares
et al. (2007) developed a regularized procedure for combining elements from a pre-defined
basis tensor set to recreate the observed diffusion tensor, thereby inferring fiber orientation
via basis tensor weights. Recently, Landman et al. (2008) introduced a similar approach in
which a compressed-sensing method is used to assign a sparse set of coefficients to a fixed
library of prolate tensors. Also, Leow et al. (2009) assign weights over the space of
symmetric positive-definite matrices to determine a tensor distribution function, from which
a tensor orientation distribution can be derived to determine fiber directions.

Other related methods include the efforts to decompose the 2nd-order tensor into an
isotropic and multiple purely anisotropic components (Behrens et al., 2003; Hosey et al.,
2005; Behrens et al., 2007). We also recognize the process of finding the persistent angular
structure (PAS) function as being conceptually similar to the deconvolution problem for
fiber orientation recovery (Jansons and Alexander, 2003).

A more direct and general approach to reconstruction of principal fiber directions–one
closely related to that which we propose in this work–has recently been advanced by
Tournier et al. (2004). Rather than postulating a form for the impulse response, they estimate
it directly from the most anisotropic voxels in the data. Using this kernel, they solve the
inverse deconvolution problem directly on the sphere, S2, to recover a spherical harmonic
representation of the FOD at each voxel. The spherical harmonics represent a complete basis
for spherical functions, analogous to the Fourier sinusoids for one-dimensional functions in
that they provide a frequency-domain representation of the data. They have been utilized
previously in the HARDI analysis for representation of the dODF and signal attenuation
profile and offer the advantages of providing a compact representation for complex spherical
data and enabling straightforward filtering techniques (Alexander et al., 2002; Anderson,
2005; Frank, 2002; Hess et al., 2006; Ozarslan et al., 2006; Descoteaux et al., 2007). Indeed,
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it has recently been demonstrated that a fiber orientation distribution function can be
estimated, somewhat indirectly, by differential scaling of the dODF’s spherical harmonic
coefficients (Descoteaux et al., 2009).

We note, however, that as a probability distribution, the FOD is subject to certain
mathematical constraints—namely, it must have unit mass and be both real and non-negative
over its entire domain. Furthermore, the physical interpretation of the FOD requires that it
be radially symmetric if, as is commonly assumed, the minimum fiber bundle radius of
curvature is much greater than the typical spin displacement during imaging and no
significant migration of spins occurs between fiber bundles (i.e. the diffusion compartments
are in “slow exchange”). These constraints produce some difficulties for methods which
generate spherical harmonic representations of the FOD. Fundamentally, these problems
stem from the fact that valid FODs exist only in the subspace of spherical functions
containing real, symmetric, and non-negative functions, a space which cannot be spanned by
a finite number of spherical harmonics. The more general nature of the spherical harmonic
bases has necessitated the use of certain workarounds to ensure that ODF reconstructions are
restricted to the valid range. Specifically, the realness of the spherical harmonic ODF
reconstruction is typically enforced by using a modified real-valued basis, while the
symmetry constraint is met by forcing all odd-order coefficients to be zero (Hess et al.,
2006; Descoteaux et al., 2007).

The non-negativity constraint, however, has been more challenging to satisfy within the
spherical harmonics framework (Tournier et al., 2004; Anderson, 2005; Tournier et al.,
2007; Tournier et al., 2008). No straightforward manipulation of the spherical harmonic
bases has been identified which restricts reconstructions to the nonnegative space. This
criterion is rarely violated in the least-squares estimation of dODFs due to the typically large
0th degree coefficient (i.e. DC offset) needed to accurately fit the spin diffusion profile. The
FOD, however, lacks this property, and the ill-posed nature of the deconvolution problem
results in the frequent appearance of negative lobes in the FODs generated by previously
reported methods. Common ad hoc methods for dealing with negative values in the FOD
include resetting them to zero or suppressing them upon display. More recently, Tournier et
al. (2007) and Tournier et al. (2008) have described a method for constrained spherical
deconvolution (CSD), an iterative approach to the inverse problem which penalizes negative
values in the FOD. This approach has been shown to minimize the appearance of negative
regions in the FOD, but it cannot explicitly forbid them. Furthermore, an intuitive
interpretation of exactly how the FOD estimate changes through the CSD iterations is
somewhat lacking. Other approaches to the physically-valid spherical deconvolution include
those of Alexander (2005) who has explored spherical deconvolution from a maximum
entropy perspective, and Kaden et al. (2007) who parametrize the FOD by a mixture of
Bingham distributions.

Here, we present an alternate approach to spherical deconvolution in which we discretize the
problem onto a dense spherical mesh and solve via a projected gradient descent algorithm.
In contrast to previous related works (Tournier et al., 2007, 2008), we operate in the
spherical spatial domain rather than the frequency domain, avoiding the difficulties in
satisfying non-negativity associated with the latter approach. In addition, we provide a
clearer and more straightforward formulation, casting the constrained deconvolution as a
convex optimization problem with a single cost function which, unlike those in previous
methods, does not vary from one iteration to the next. We also implement the mesh-based
algorithm and provide a publicly-available software tool for fiber orientation recovery via
spherical deconvolution. We demonstrate that our new formulation enables stable
reconstruction of the FOD while strictly satisfying the realness, nonnegativity, and
symmetry requirements in a principled and predictable manner. Additionally, we include a
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regularization term in our method which provides for tunable noise suppression and
smoothness biasing. We explore the properties of this new approach below using both
simulated and real data sets, comparing its properties to ad hoc approaches for ensuring non-
negativity. We find that the mesh-based approach accurately recovers simulated and known
anatomical fiber orientations, and that this method is both flexible in allowing the user to
determine the sharpness of the final solution and robust in that regularization parameters
need not be tuned separately for each data set.

Methods
Discrete spherical mesh formulation

From a linear systems perspective, the diffusion signal attenuation profile can be viewed as
the convolution of a single fiber response function with the fiber orientation distribution
(FOD). In the ideal case, the signal s can thus be represented in terms of the FOD x and the
kernel h:

Spherical deconvolution attempts to solve the inverse problem of determining x, given a
limited number of noise-corrupted samples of s and a suitable estimate of h.

Recognizing that the difficulty associated with ensuring nonnegativity stems from the choice
to use the spherical harmonic bases to represent the FOD, we instead derive a new
formulation defined on a discrete mesh:

(1)

where A is the convolution matrix, x is the FOD estimate, and y contains the measured
signal attenuations. This formulation characterizes a convex optimization problem in which

we seek to minimize the energy function . In this manner, we
define a balance between the L2 norm of a data-driven term and a separate regularization
term, each of which is explained in futher detail below.

The first term of the energy function, , is the L2 or Euclidean norm of the residual
vector between the measured signal attenuations in y and the FOD estimate x transformed
into this “signal attenuation space” through the convolution matrix A. Thus, this data-driven
term is minimized when the estimated FOD convolves into exactly the signal attenuations
measured. Note that standing alone, the L2 norm of the residual embodies the ordinary least-
squares problem.

The mesh-based nature of our approach is made evident in the construction of the
convolution matrix A, which we define on a hemispherical icosahedral tessellation. For an
icosahedral subdivision of order i, such a mesh has n=5·4i+1 unique directions on which the
FOD x will be defined. For this work, we select i=4 for a 1281-point mesh. Given m
directional signal attenuations, collected for each voxel in y, the convolution matrix A takes
on dimensionality m×n; that is, A transforms the m-dimensional signal attenuation vector
into the n-dimensional FOD estimate. Each column of A is formed by aligning the single
fiber response function (i.e. the impulse response, described further below with the
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corresponding mesh direction and interpolating by inverse distance weighting onto the
original m measurement directions. In other words, we rotate the discrete fiber response
function to align with a mesh vertex, and we sample the value of this function on the
original diffusion-weighting gradient directions through interpolation. Thus, if we denote the
original measurement directions as uj, the directions after rotation as ũj, interpolated signal
attenuation s̃, and normalization constant Z, we have:

(2)

The vector s̃ is assigned to the column in A corresponding to the mesh vertex to which the
kernel was aligned. This process is repeated for each point on the mesh to fill the n columns
of A.

The second term in Eq. (1) provides for flexible regularization. In typical cases, the number
of diffusion gradient directions measured is less than the number of mesh vertices on which
the reconstruction is desired (i.e. m<n), and the deconvolution problem described by Ax=y is
underdetermined. The inclusion of the regularization term allows solutions containing the
properties described by D to be penalized relative to others. The parameter τ controls the
relative contributions of the regularization and data-driven terms, while p indicates a p-norm
level to be used in regularization.

The contraints x≥0 and xTw=1 are used to enforce the nonnegativity and unit mass
requirements on the FOD. The n-length vector w is a weighting vector in which each
element represents the amount of the total spherical surface area attributable to the
corresponding vertex. Thus, ||w||1 =4π. For a dense icosahedral mesh as we use here, these
weights are very nearly equal, and the approximation which assigns each element of w to be
4π/n is justifiable. The constraint on the regularization parameter p≥1 ensures the convexity
of the problem.

A number of interesting properties of this approach are evident directly from the
formulation. First, by defining the deconvolution on a hemispherical mesh, symmetry of the
final solution can be ensured trivially by reflection across the origin. In addition, the
presence of the regularization term allows for the minimization to be guided by prior
knowledge. In this report, for example, we assume that the FOD has some degree of spatial
smoothness, and accordingly, we define D to be a difference matrix (weighted according to
fractional mesh area) for neighboring vertices on the mesh. In this manner, we penalize large
variations in the FOD between neighboring vertices. This penalty is similar in principle to
the constraint function utilized by Sakaie and Lowe (2007) for FOD regularization. Finally,
we note the useful property that, since Eq. (1) is convex for all p≥1, the solution x̂ is
guaranteed to be globally optimal.

Projected gradient descent
Eq. (1) describes the deconvolution as a convex optimization problem. We have already
noted that a symmetric solution is inherent in the formulation. The task then remains to
perform the minimization in a way that ensures realness, non-negativity, and unit mass.
Projected gradient descent provides a way to achieve this objective.

At each voxel, we begin by generating an initial guess for the inverse problem Ax=y.
Because this problem is ill-posed, we obtain the pseudoinverse A+ via truncated singular
value decomposition in which we retain only as many of the largest singular values as
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necessary to preserve 90% of the energy in A. The result is then made to satisfy the
constraints x≥0 and ||x||1 =1 by straightforward projection onto the non-negative region of
the unit mass surface to provide the initial condition x0. We next begin the iterative process
of stepping along the direction of the negative gradient. If f(x) denotes the objective function
to be minimized in Eq. (1), we have:

(3)

where the exponentiation and the multiplication indicated by (·) are element-wise operations.
We perform a line search along this direction to determine the optimal step length δ,
projecting the updated result onto the space of non-negative FODs with unit mass:

(4)

(5)

Here, the n×n orthogonal projection matrix P is diagonal with Pii =0 if the ith entry of  is
negative, and Pii =1 otherwise. ŵ, the unit-length version of the weighting vector w defined
previously, is normal to the hyperplane containing all x which satisfies xTw=1.

The gradient is then recalculated and the process is repeated until a termination criterion is
satisfied; for all experiments in this report, we chose to cease iterating when the J-
divergence (symmetrized KL-divergence) between subsequent FOD estimates fell below
1×10−8, a heuristic value which will naturally depend on the choice of mesh density. Use of
the J-divergence as a termination threshold ensures that the procedure continues only as long
as the FOD estimate is changing significantly from one iteration to the next. The final
update to the FOD is the desired solution x̂. We have summarized the entire process in Table
1.

The realness of the final solution is obvious from this description; all of the terms in Eq. (1)
are real, and we do not introduce any complex values through gradient descent. As for the
the non-negativity constraint which has proven difficult to satisfy in the spherical harmonic
framework, we observe that it is guaranteed in our mesh-based formulation. By projecting
each step of the minimization onto the non-negative space, our procedure explicitly forbids
any negative values in the FOD. Our projection method also ensures that the final solution
satisfies the unit mass property of probability distributions. We note that projected gradient
descent is a well-characterized approach to solving constrained convex optimization
problems. Its performance has been widely studied, and for problems of the form (1), it has
been proven to converge to the lowest energy solution which also satisfies the constraints
(Iusem, 2003). Furthermore, projection has a more intuitive and less esoteric interpretation
than CSD, which attempts to enforce non-negativity in the spatial domain by modifying
coefficients of the frequency domain (Tournier et al., 2007,2008). We favor this procedure
for performing the spherical deconvolution as a more principled and predictable method
than those previously described.
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Response function estimation
All methods for performing the spherical deconvolution require a reasonable estimate of the
single fiber response function to represent the convolution kernel. Implicit in this
requirement are several assumptions which remain to be tested. For example, it has not been
examined whether a single convolution kernel accurately models diffusion arising from fiber
bundles across the entire brain which may have varying degrees of coherence or
myelination. Nevertheless, we proceed cautiously as in previous reports and stipulate that
the response function is constant across voxels.

We may choose either to define the fiber response function based on assumed prior
knowledge or to estimate it directly from the data. We select the latter approach which has
the theoretical advantage of incorporating unique features of the scanning hardware,
acquisition parameters, and the subject’s anatomical characteristics into the putative kernel.

We begin by estimating the dODFs using the conventional spherical harmonic approach
(Descoteaux et al., 2007). We then sample the spherical harmonic reconstruction on the
chosen spherical mesh, and use these values to compute the generalized fractional
anisotropy (GFA) and maximum diffusion direction for each voxel. The 300 voxels with the
highest GFA are assumed to contain only a single fiber bundle and are labeled “response
function voxels.” The signal attenuations from all response function voxels are aligned
according to maximum diffusion direction and averaged (using inverse distance-weighted
interpolation) to estimate the impulse response. Additionally, values on measurement
directions which are equiangular from the maximum diffusion direction are averaged
together to ensure axial symmetry.

Software
We implemented the preceding mesh-based deconvolution approach using the Java language
as a module within LONI’s Pipeline environment (available for download at
http://pipeline.loni.ucla.edu). The Pipeline’s modular design and substantial backend
infrastructure make it an ideal tool for processing computationally intensive neuroimaging
tasks (Rex et al., 2003). All of the deconvolution results in this report were generated using
this tool. In the Pipeline, computational tasks are represented graphically as “workflows”; a
sample workflow for mesh-based spherical deconvolution is illustrated in Fig. 1. Workflows
submitted through the Pipeline are executed on a computing cluster comprised of more than
800 2.4 GHz CPUs (Dinov et al., 2009). This computational framework enables the
deconvolution operation to be massively parallelized for increased processing speed.

Synthetic data simulations
For synthetic data experiments, we select the well-characterized multi-tensor model:

(6)

where fq denotes the fraction contribution of the qth fiber. The prolate diffusion tensor Dq
for each fiber was calculated with eigenvectors oriented along the desired directions and
fixed eigenvalues: λ1 =1.7× 10−3mm2/s and λ2 = λ3 =0.2×10 −3mm2/s. The noise samples η1
and η2 were drawn from a zero-mean Gaussian distribution with a standard deviation
determined by the desired signal-to-noise ratio: σ=1/SNR. This noise level is defined with
respect to the diffusion-weighted samples as opposed to the unweighted reference (Eq. (6)).
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In this report, we perform all simulations at a b-value of 3000 s/mm2. The gradient
directions uj were generated using an electrostatic repulsion model.

The “response function voxels” used to estimate the fiber response function for synthetic
data experiments were 300 single fiber simulations generated with the same SNR as the
main data set.

Data acquisition
Real data sets were acquired at the Centre for Magnetic Resonance (University of
Queensland, Brisbane) using a 4 Tesla Bruker Medspec scanner (Bruker Medical, Ettingen)
with a transverse electromagnetic headcoil. Diffusion-weighted scans utilized a single-shot
echo planar technique with a twice-refocused spin echo sequence to minimize eddy-current
induced distortions. The timing of the diffusion sequence was optimized for SNR. A total of
105 scans were acquired per subject—94 diffusion-sensitized gradient directions plus 11
baseline images with no diffusion-sensitization. Imaging parameters were: b-value= 1159 s/
mm2, TE/TR=92.3/8,259 ms, FOV=230 mm×230 mm, and 55×2 mm contiguous slices. The
reconstruction matrix was 128×128, yielding 1.8 mm×1.8 mm in-plane resolution. Total
acquisition time was 14.5 min. A single data set was acquired per subject (no averaging).
Estimated SNR≈27 for the b0 volumes, and ≈9 for diffusion-weighted volumes (noise
variance was measured from non-brain regions of the image as in NEMA (2008)).

Results
Mathematical validation

We began by verifying the mathematical characteristics of our approach. For this purpose,
we tested our algorithm on a 60-directional simulated data set containing two equally-
weighted fibers crossing at 90° with SNR=30, τ=0.025 and p=2.00. We first demonstrate
qualitatively that our approach guarantees non-negativity by comparing the deconvolution
results with and without projection of the FOD estimate onto the non-negative space at each
iteration. Without enabling the projection step of the algorithm (Eq. (5)), we obtain a final
solution which contains negative side lobes, indicated in black in Fig. 2. Implementing the
projection step eliminates these side lobes completely, validating our assertion that gradient
projection is sufficient to ensure compliance with the nonnegativity constraint on the FOD.
We observe that the projected FOD is slightly sharper along the true fiber directions, and in
this case, we also note the presence of a small positive-valued out-of-plane (red) lobe in the
unprojected FOD, which is eliminated in the projected solution.

In Fig. 2 and throughout this report, we illustrate the spherical FOD function by scaling the
radial distance of each mesh point according to its FOD value. Note that we do not apply the
min–max normalization that is commonly used to enhance the visual contrast of dODFs
(Tuch, 2004); the FODs are inherently high-contrast over S2 and we plot them without
artificial enhancement. The coloring corresponds to the standard diffusion imaging
convention which maps red, green, and blue to the x-, y-, and z-axes respectively.

In addition to establishing non-negativity through projected gradient descent, we examined
the convexity of the problem and convergence characteristics of the algorithm. We
generated 100 simulated voxels, again with crossing angle 90° and SNR=30, and performed
the mesh-based deconvolution both with and without projection, as in Fig. 2, using τ=0.025
and p=2.00. To observe the convergence characteristics, the termination criterion was
temporarily relaxed, and the value of the objective function, f(x), was recorded at each
iteration. Fig. 3 shows the mean value of f(x) across the 100 trials at each of the first 20
iterations. As expected, we observe that the objective function decreases at each iteration,
and furthermore that the rate of convergence decreases rapidly with iteration count. This
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behavior is consistent with the known characteristics of gradient descent-based convex
optimization procedures. We also note that the magnitude of the objective function is
smaller (difference at iteration 20=4.9×10−4) when we allow negative lobes to appear,
relative to the projected case. This indicates that negative weights on certain mesh points
permit the convolved reconstruction to slightly better match the measured data–i.e., that the
global optimum for the corresponding unconstrained problem does not lie in the non-
negative space–but as we have already argued, such a solution violates physical limitations
on the FOD.

Effects of gradient projection
Having confirmed the mathematical properties of the mesh-based approach, we next
quantitatively evaluated the effects of the gradient projection operation on the FOD
reconstruction. We recall that, when solved without imposing the non-negativity constraint
through Eq. (5), the mesh-based formulation defines in the spatial domain essentially the
same problem as others have derived in the spherical frequency domain (Tournier et al.,
2004). A very common method of handling the negative lobes produced by these frequency-
domain methods is simply clipping them to zero and renormalizing the FOD to unit mass. In
the following comparisons, we evaluate the accuracy of FOD constructions obtained by
using the full projected gradient approach relative to the ad hoc clipping scheme. Below, we
refer to the solutions generated by these methods as “projected” and “clipped” FODs,
respectively. To control for effects of the regularization term and the parameters chosen, our
negative-lobed FODs are generated by disabling the projection step of the mesh-based
deconvolution algorithm, rather than through a frequency-domain method.

We first analyzed the differences between FODs in terms of the earth mover’s distance
(EMD) between the projected and clipped versions. The EMD, or Mallows distance, is a
statistical metric for quantifying the difference between two probability distributions
(Levina and Bickel, 2001). Informally, the EMD reports the minimum amount of “work”
needed to change one distribution to match another. Given our goal of generating FODs
which retain interpretability as probability densities, the EMD provides an appropriate
comparison metric. We simulated a 60-directional acquisition of 1000 voxels, each
containing two fibers at two different noise levels: SNR=10 and SNR=30. The orientation
and crossing angle (≥5) of the simulated fibers were generated randomly. Deconvolution
was performed using regularization parameters τ=0.025 and p=2.00. The EMD was
computed between each simulated FOD and the ideal FOD composed of impulse functions
oriented along the chosen mesh vertices.

Fig. 4 shows the results for this set of experiments. We observe that the clipped FODs are
more different from the ideal case than are the projected FODs across all crossing angles at
both noise levels. On average, across all angles, the EMD from the ideal case is 64.1%
greater for clipped FODs than projected FODs at SNR=10, and 67.8% greater at SNR=30.
For both the projected and clipped methods, the deviation from the ideal result increases as
SNR worsens. The projected FODs show a 13.8% increase in EMD, on average, at SNR=10
relative to SNR=30, while EMD for the clipped FODs increases 11.3%. We further observe
that the EMDs for the clipped method are more variable at each noise level than
corresponding measure for the projected method. Since the ideal FOD is unchanged for the
projected versus clipped comparison, this observation about the EMD suggests that the
clipped FODs themselves are more variable at a given noise level than the projected FODs.
Finally, we observe that, for both methods and noise levels, the EMD displays an increasing
trend as the fiber crossing angle decreases. When crossing angle is reduced beyond the
resolution threshold (studied further below), however, this increasing trend in the EMD is
actually somewhat diminished. This behavior can be attributed to the characteristics of the
EMD itself: despite the fact that two fiber peaks may no longer be distinguishable in narrow-
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angle FOD reconstructions, less “work” is required to change the merged fiber distribution
into the ideal narrow-angle crossing distribution—in a statistical sense, the merged
distribution is closer to the correct FOD.

We next examined the effects of gradient projection on the angular accuracy and resolution
of the method. Popular tractography methods often simply extract the maxima of the FOD
(or dODF) and rely on these reduced representations as error-free measures of fiber
orientation. It is thus important to understand the performance of the mesh-based spherical
deconvolution approach with regards to angular accuracy. We generated 1000 60-directional
crossing fiber simulations at random crossing angles, as before, using SNR=30. We
performed both projected and clipped versions of the mesh-based deconvolution using
parameters τ=0.025 and p=2.00. Maximum fiber directions were obtained by extracting local
maxima from the FOD as defined on the 1281-directional mesh. For FODs which exhibited
more than two local maxima (suggesting spurious side lobes), we considered only the two
directions with largest FOD magnitude; such a determination would be difficult to make in
real data without prior knowledge about underlying anatomy, but here we focus purely on
understanding the behavior of mesh-based deconvolution.

Fig. 5 shows the results of this experiment as scatter plots between the true and estimated
crossing angles for both the projected and clipped methods. Qualitatively, we observe that
the results for both cases are quite similar: the estimated crossing angles are distributed with
some variance about the true crossing angles. This variance appears to increase as the true
crossing angle decreases, until some resolution threshold beyond which two maxima can no
longer be detected. Sample FODs calculated using the projected method are illustrated for
various simulated crossing angles in the bottom of Fig. 5. We note that as the crossing angle
decreases, the value of the estimated FOD increases on mesh points located in between the
two true fiber directions. This effect is expected due to the finite width of the convolution
kernel, and we see that below the resolution threshold, the reconstructions evolve into
merged, broader FODs with only a single maximum. For a quantitative measure, we define
the residual angle as the difference between the true and estimated crossing angle: i.e. θtrue −
θest. Across all simulations in which two maxima were detected, the mean and standard
deviation of the residual angle are −0.86°±2.65° for the projected method and −1.58°±2.87°
for the clipped method. The minimum simulated crossing angle yielding two detectable
maxima in the FOD was 39.7° for the projected method and 36.3° for the clipped method.
The actual minimum reconstructed crossing angle was 39.0° for the projected method and
39.1° for the clipped method.

Regularization parameter optimization
Until now, we have relied on regularization parameters τ=0.025 and p=2.00. To better
understand the effects of these values on the reconstructed FOD, we varied them
systematically across τ={0.005, 0.025, 0.050} and p={1.75, 2.00, 2.25}. We perfomed
projected mesh-based deconvolution using each combination of parameters for 100
simulated voxels with two fibers crossing at 60° at SNR=10. We relied on 60 diffusion-
sensitized directional acquisitions for each voxel. The average FOD over the 100 runs is
shown for each combination of τ and p in Fig. 6. One example of the noisy signal
attenuation profile is also displayed for reference. We can immediately make the general
observation that despite the ill-posed nature of the deconvolution problem, the regularization
term enables us to obtain a smooth 1281-directional FOD solution from 60 noise-corrupted
observations. With respect to the parameters themselves, we note that the FOD estimate
becomes smoother with increasing τ and decreasing p. The latter observation may seem
inconsistent with the typical behavior of p-norm regularization, but it is indeed expected in
this case since all of the elements in the vector Dx are necessarily less than unity—as a
probability distribution, the weighted FOD values are themselves less than one, and D
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simply takes the difference between neighboring values on the mesh. This range of
regularization parameters demonstrates that our approach is simultaneously flexible, with
the ability to control the sharpness of the solution, and robust, particularly with respect to the
parameter τ, which in this case produces reasonable results over a full order of magnitude.
Moreover, we see that very similar FOD estimates may be obtained from different choices
of τ and p, as in Fig. 6 for the pairs (τ=0.005, p=2.00) and (τ=0.025, p=2.25). Finally, we
observe that the angular accuracy seems to be largely unaffected over this range of
regularization parameters, though it is clear that over-regularization will adversely affect the
minimum angular resolution.

Real data experiments
We next evaluated the ability of our approach to resolve multi-fiber voxels in 94-directional
real (non-simulated) data sets. Using Fig. 6 as a guide, we chose τ=0.025 and p=2.25 as a
reasonable pair of regularization parameters for the analysis of these data. Fig. 7 illustrates
the intersection of the corpus callosum and corticospinal tracts in one subject. We first
estimated the FODs using all 94 diffusion-weighted samples and the projected gradient
method (Fig. 7, bottom-left). The crossing geometry is clearly represented by the FODs in
the region of intersection. We then performed the deconvolution again with 60 diffusion-
sensitized directions (randomly discarding 34 diffusion-weighted images) to confirm that the
method performs well even with a more commonly available number of directional samples.
These FODs are shown in the middle panel of the bottom row of Fig. 7, and qualitatively
agree well with those calculated from the full 94-directional data set. We computed the
EMD between the FODs generated using 94 and 60 DWIs; this map is shown in the middle
panel of the top row in Fig. 7. We see that reducing the number of diffusion-weighted
samples causes the greatest difference in FODs in regions of low anisotropy: e.g. gray
matter. We also performed the deconvolution (with all 94 samples) using the clipped method
and examined the difference between the resulting FODs and those generated using the
projected method (Fig. 7, right). In this case, we see that the ad hoc clipping method
generates less sharp FODs and exhibits the greatest deviation from the projected case in
highly-anisotropic white matter areas.

To illustrate the robustness of this choice of regularization parameters, we analyzed several
additional data sets using the same values of τ and p. We show interesting FOD
reconstructions from three different subjects in Fig. 8. In the top row, we see FODs
accurately resolving the transverse pontine fibers (red) in the pons, amid bundles of
ascending and descending fibers (blue). Note that many of the voxels in between the labeled
regions exhibit crossing fiber geometry due to partial volume effects. In the middle row we
display results from another subject, which highlight accurate reconstruction of the corpus
callosum (red), cingulum (green), and fornix (cyan). Finally, in the bottom row, we show the
distinct FODs in the anterior (thalamo-frontal tract, yellow) and posterior (corticospinal
tract, blue) limbs of the internal capsule. A small area of the genu of the corpus callosum
(red) is also visible. These results suggest that the simulated data sets provide an appropriate
model for selecting regularization parameters to apply to real data sets, and that reliable
FOD results can be obtained from multiple data sets without manual adjustment of
regularization parameters for each case.

Discussion
We have presented a hemispherical mesh-based formulation for spherical deconvolution to
recover fiber orientations directly from DWI signal attenuations. This method has several
unique characteristics, which we have highlighted in this report. It ensures that the estimated
FOD will strictly satisfy the physical constraints of realness, symmetry, and non-negativity.
Moreover, the final solution will have unit mass and be globally optimal, subject to
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constraints, with respect to the objective function embodied in Eq. (1). Our method also
provides flexibility in the form of the regularization parameters τ and p, as well as in the
choice of the regularization matrix D. This flexibility does not imply the lack of robustness,
however, as we have shown that an appropriately-chosen set of regularization parameters
can provide reasonable results for multiple data sets, both real and simulated.

The primary advantages of our mesh-based formulation are in its guarantee of physically-
valid FOD reconstruction and its straightforward, well-characterized approach to obtaining
these results. As noted, previous attempts have been made to minimize negative values in
FOD reconstruction obtained using the spherical harmonics framework, but such efforts
require an ad hoc approach which has a more obscure interpretation than the principled
gradient projection method we propose here. We also note that enforcing a non-negativity
criterion through the frequency domain may have an undesirable behavior because the
spherical harmonic basis functions are periodic and globally supported, and thus
manipulating the coefficients to diminish negative values in one region will necessarily
change the FOD values over all of S2. By applying the non-negativity constraint directly in
the spatial domain, the mesh-based approach enables local adjustments to FOD shape
without distant consequences. Moreover, even the modified spherical harmonics-based
deconvolution approaches cannot completely eliminate negative values in the final solution,
an important consideration for probabilistic or front-evolution-based tractography methods
that sample the FOD at each step, which may be forced to invoke ad hoc logic themselves to
handle such events. Moreover, as we have shown that such ad hoc methods may reduce the
accuracy of the FOD, especially in regions of high anisotropy (Figs. 4 and 7, right), it is
conceivable that the mesh-based spherical deconvolution approach has the potential to
improve downstream tractography results and ultimately our understanding of brain
connectivity.

Secondary advantages include beneficial side effects of the mesh-based representation itself.
Determining the most likely fiber direction, for use in deterministic tractography, becomes
trivial. Similarly, the mesh-based representation permits straightforward comparison of
orientation differences between FODs in neighboring voxels, a metric which can be used to
enable broader-scale spatial regularization of fiber tracts. For these reasons, and because we
have not observed significant differences in angular resolution between our mesh-based
approach and CSD, for example, we suggest that the mesh-based representation may
expedite future analyses without sacrificing accuracy, albeit at the cost of a less compact
representation.

The mesh-based approach also presents some unique challenges, particularly with regards to
discretization. For the ith vertex, the value xiwi represents the likelihood of fibers oriented in
directions which lie within some solid angle surrounding that vertex; the size of this solid
angle is determined by the mesh geometry. This is similar to the interpretation of the
discrete dODF in Tuch (2004). For some applications, however, it may be desirable to know
the value of the FOD in any arbitrary direction. This can be obtained from piecewise linear
interpolation of x on the triangulated mesh. Because x as weighted by w has unit integral
over the mesh, the continuous function resulting from interpolating all arbitrary directions
on S2 in this manner will also have unit mass and retain the properties of a probability
distribution, including non-negativity.

The maxima of the FOD, however, will always lie on the original mesh points following
piecewise linear interpolation. For downstream applications such as deterministic
tractography methods which rely solely on the maxima of the distribution, this raises a
significant concern about possible discretization error. Here we have attempted to minimize
this error by using a very dense mesh. For a 1281 point mesh, the angle between
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neighboring vertices is slightly greater than 4°, resulting in a maximum discretization error
of approximately 2°. This represents less than one standard deviation of the error we observe
in simulations, even at high SNR (Fig. 5). However, computation of the solution for a dense
mesh is necessarily expensive as the convolution matrix A contains as many columns as
there are mesh vertices (for the 60-directional data sets in this work, a single Pipeline CPU
solves 100 voxels in just under 30 s). If possible, disregarding non-brain (or perhaps non-
white-matter) voxels can reduce the computation time. We propose two additional
approaches to further mitigate this burden. First, as the deconvolution operation treats each
voxel independently, once the convolution matrix A is determined, the operation can be
parallelized in a straightforward manner to compute multiple voxels simultaneously. This is
the approach we have utilized in our Pipeline implementation. Second, one might use an
adaptive re-meshing strategy where the deconvolution is carried out initially on a sparse
mesh, and then again on a mesh which contains additional vertices near the previously
detected maxima. Indeed, as we have observed little difference in angular accuracy and
resolution between the “projected” and “clipped” methods, the mesh-based approach may
not be the most economical choice for applications which make use of only the maxima of
the FOD, rather than the full distribution.

The process of choosing appropriate regularization parameters also warrants further
discussion. Throughout this report, we have defined D as the weighted spatial difference
matrix over neighboring mesh vertices. As noted previously, however, the regularization
matrix is a free parameter, and the user may select it in accordance with prior knowledge
about the form of the solution. Accordingly, a seemingly obvious choice for D might be the
identity, suggesting that the desired FOD is sparse. We note that this choice, along with
letting p=1, converts Eq. (1) into the form commonly encountered in “compressed-sensing”
methods (Candes and Tao, 2006;Donoho, 2006). While it is true that the FOD is zero over
most of its support, this choice of regularization parameters, in our experience, produces
appropriately-oriented, but highly noisy FODs due to the ill-posed nature of the spherical
deconvolution. Furthermore, we observe that for p=2, Eq. (1) takes the classical Tikhonov-
regularized form, and an explicit solution is available. Although this closed-form solution
does not guarantee non-negativity, it may be useful as an initial guess for beginning
projected gradient descent. Also, in this paper, we have relied on the multi-fiber simulation
of Eq. (6) to select optimal regularization parameters for non-synthetic data sets. We have
managed to obtain reasonable results with this approach, although this model is certainly an
oversimplification of the true diffusion process (Inglis et al., 2001;Maier et al., 2001;Assaf
et al., 2004). In addition, we note that, while we have tuned these parameters at the higher b-
value (3000 s/mm2) used for simulation in previous works (Sakaie and Lowe, 2007;Tournier
et al., 2007), we generate satisfactory results from data sets acquired at more conventional b-
values (1159 s/mm2). This is likely largely a consequence of the fact that we obtain the
single fiber response function by sampling each data set individually. Despite this
robustness, it may be worthwhile, in some applications, to optimize the tuning for a
particular data set by examining results for several values of τ and p for a few selected
voxels from regions with known anatomy before computing the solution for the full volume.

We have noted a relative scarcity of clinical reports utilizing HARDI reconstructions and
associated metrics, relative to those incorporating more traditional DTI analyses. No doubt
this imbalance results partially from the increased technical requirements of HARDI
acquisition, but also in part due to a sparsity of widely available tools for conducting such
analyses. To this end, we hope that the software we have made available via the Pipeline
will be of use to others in testing our spherical deconvolution approach on a variety of data
sets for methodological comparisons and validations, as well as for quantitative
investigations of clinical populations.
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Future directions for investigation using the mesh-based formulation include analysis of
more complex convex optimization methods in order to minimize computational load.
Newton–Raphson methods, quasi-Newton methods, and conjugate gradient methods all have
theoretical speed advantages for solving Eq. (1); it will be important to examine whether
these can be realized in practice while still imposing the necessary constraints. In addition,
the incorporation of more sophisticated prior knowledge into the regularization matrix D
may lead to improved FOD reconstructions. Finally, we note that the mesh-based
representation lends itself naturally to neighborhood-guided spatial regularization, and
further exploration along may lead to improved or more robust tractography results.
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Fig. 1.
Representative workflow for mesh-based spherical deconvolution using LONI’s Pipeline.
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Fig. 2.
Effects of projection onto the non-negative space. Without projection (left), spherical
deconvolution yields a solution containing negative-valued regions (black). Enabling
projection results in elimination of these negative side lobes from the FOD solution (right).
Results are for a 60-direction simulated data set modeling a 90° crossing with SNR=30, b
=3000 s/mm2, and regularization parameters τ=0.025, p=2.00. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this
article.)
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Fig. 3.
Convexity and convergence of mesh-based spherical deconvolution. 100 simulated crossing
fiber voxels were generated with the same parameters as in Fig. 2. Top: mean (across 100

simulations) value of  with respect to iteration number for FOD
estimation using projected gradient descent. Bottom: convergence plot for FOD estimation
with the projection step disabled.
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Fig. 4.
Effects of gradient projection on FOD accuracy. 1000 two-fiber simulations were generated
with random crossing angles, 60 diffusion-weighted samples, and b =3000 s/mm2. All FOD
reconstructions were computed with τ=0.025, p=2.00. Top-left: scatter-plot for earth
mover’s distance between the ideal FOD and those reconstructed using gradient projection
(blue) or those calculated without projection, after clipping negative lobes to zero (red) for
simulations carried out at SNR=30. Bottom-left: the same experiment repeated with noise
level SNR=10. Bottom-right: bars show mean ±1 standard deviation of earth mover’s
distances from the ideal case over all crossing angles, summarized for both noise levels and
both FOD computation methods. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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Fig. 5.
Effects of gradient projection on angular accuracy. 1000 two-fiber simulations were
generated with random crossing angles, 60 diffusion-weighted samples, SNR=30, and
b=3000 s/mm2. All reconstructions used regularization parameters τ=0.025 and p=2.00.
Top-left: plot of simulated crossing angle versus FOD maxima crossing angle for FODs
computed using the projected gradient descent method of Table 1. Top-right: similar plot for
FODs computed without gradient projection, but following clipping of negative lobes to
zero. Bottom row: sample FODs for several crossing angles, computed using the projected
gradient descent method.

Patel et al. Page 21

Neuroimage. Author manuscript; available in PMC 2011 July 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 6.
Effect of regularization parameters on the deconvolution solution for a 60-directional
simulated 60° fiber crossing with SNR=10 and b=3000 s/mm2. FODs shown are the average
reconstructions over 100 simulations. All FODs truly have unit mass; here, for easier visual
comparison, they are scaled to have the same height. Left: deconvolution results for a range
of τ={0.005, 0.025, 0.050} (top to bottom) and p={1.75, 2.00, 2.25} (left to right); black
lines in the background provide a 60° reference angle. Right: one realization of the noisy,
60-directional simulated DWI signal attenuation profiles from which the FOD results were
generated. Note that the signal attenuation has been rotated 90° relative to the FODs to show
the large y-component (green) more clearly. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
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Fig. 7.
Resolution of the crossing between the corpus callosum and corticospinal tracts in a single
subject. Top-left: the boxed area on the fractional anisotropy (FA) image indicates the
region of FODs depicted in the bottom row. Bottom row: FODs calculated using all 94
available DWIs, with projected gradient descent (94proj, left); the same region calculated
using only 60 DWIs (60proj, middle); and the same region calculated using all 94 DWIs, but
without projection and after clipping of negative lobes (94clip, right). Top-middle and top-
right panels contain maps of the earth mover’s distance between FOD reconstructions
computed using the 94proj method and those computed using the 60proj or 94clip methods,
respectively.
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Fig. 8.
Robustness of regularization parameters. Deconvolution results for 3 interesting regions
from 3 different subjects, all using the same regularization parameters: τ=0.025 and p=2.25.
In each row, the right column contains a perspective view of the FODs in the region of
interest, which is also boxed for reference in that subject’s corresponding b0 (top) and FA
(bottom) images in the left column. Top row: an axial section at the level of the pons
illustrates FODs from the transverse pontine fibers (highlighted red) surrounded by
ascending and descending connections to the spinal cord (blue). Middle row: a coronal
section illustrating FODs in the corpus callosum (red), in close proximity to fibers in the
cingulum bundles (green) and thefornix (cyan) oriented out-of-plane. Bottom row: an axial
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section at the level of the internal capsule illustrates the thalamo-frontal tract (yellow) in the
anterior limb, and corticospinal fibers (blue) in the posterior limb. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this
article.)
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Table 1

Projected gradient descent algorithm.

1 Form an initial guess x0 via truncated SVD, projected onto the non-negative space.

2 Calculate the gradient vector according to Eq. (3).

3 Perform a line search along the direction of the negative gradient to determine the optimal step length δ.

4 Update the FOD estimate x according to Eqs. (4) and (5).

5 Repeat steps 2–4 until the J-divergence of successive FOD estimates falls below the termination threshold.
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