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Abstract
Detection and classification of ventricular complexes from the electrocardiogram (ECG) is of
considerable importance in Holter and critical care patient monitoring, being essential for the
timely diagnosis of dangerous heart conditions. Accurate detection of premature ventricular
contractions (PVCs) is particularly important in relation to life-threatening arrhythmias. In this
paper, we introduce a model-based dynamic algorithm for tracking the ECG characteristic
waveforms using an extended Kalman filter. The algorithm can work on single or multiple leads.
A ‘polargram’ - a polar representation of the signal - is introduced, which is constructed using the
Bayesian estimations of the state variables. The polargram allows the specification of a polar
envelope for normal rhythms. Moreover, we propose a novel measure of signal fidelity by
monitoring the covariance matrix of the innovation signals throughout the filtering procedure.
PVCs are detected by simultaneous tracking the signal fidelity and the polar envelope. Five
databases, including 40 records from MIT-BIH arrhythmia database, are used for differentiating
normal, PVC, and other beats. Performance evaluation results show that the proposed method has
an average detection accuracy of 99.10%, aggregate sensitivity of 98.77%, and aggregate positive
predictivity of 97.47%. Furthermore, the method is capable of 100% accuracy for records that
contain only PVCs and normal sinus beats. The results illustrate that the method can contribute to,
and enhance the performance of clinical PVC detection.

Index Terms
Characteristic waves; Electrocardiogram (ECG); Extended Kalman filter (EKF); Premature
ventricular contraction (PVC); Signal quality; Signal fidelity; Wave-based dynamical model

I. Introduction
Cardiovascular diseases (CVDs) are the leading single cause of death in the developed world
and are responsible for more than 30% of all deaths in most countries. For instance, the
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American Heart Association (AHA) recently reported that nearly 80 million people in the
U.S.A. were burdened by some form of CVD, of which eight million experienced
myocardial infarction, or a ‘heart attack’. Additionally, CVDs were the underlying cause of
one in every 2.8 deaths in 2008 [1]. The detection of CVD and the determination of the
underlying etiology of the disease for prevention and treatment is therefore a crucial task.
Identifying premature ventricular contractions (PVCs) in Holter recordings or during
monitoring is of particular interest. PVCs result from irritated ectopic foci in the heart’s
ventricles, and are independent of the pace set by the sinoatrial node. Recent studies have
shown that the occurrence of PVCs is indicative of increased risk of sudden cardiac death,
and is linked to mortality when associated with myocardial infarction [2]. The presence of
PVCs has also been shown to be associated with an increased total mortality in some patient
subgroups, suggesting that a high frequency of PVCs is a marker of a more severe disease
process, rather than the provocateur of a terminal electrical event. Events that occur after a
PVC are alos of interest, and in particular, the rate of acceleration and deceleration of the
heart rate immediate after a PVC has shown to be more effective than ejection fraction in
stratifying patients post-myocardial infarction [3]. Therefore, accurate detection of PVCs is
of great significance for stratifying patients at high risk and predicting life-threatening
ventricular arrhythmias.

Accurate, noninvasive diagnosis of and screening for CVD has been a challenge.
Electrocardiogram (ECG) analysis is routinely used as the first tool for initial screening and
diagnosis in clinical practice. The ECG as a noninvasive and low-cost method provides
valuable clinical information regarding the rate, timing and regularity of the heart [4].
Analysis of the ECG remains the benchmark method for cardiac arrhythmia detection.
Several methods have been proposed in the literature for automatic detection and
classification of various arrhythmias. The vast majority of the developed techniques includes
algorithms based on time domain features [5], ECG morphology and heartbeat interval
features [6], principal component analysis (PCA) [7], hidden Markov models [8]–[10], self
organizing maps [11], wavelets and filter banks [12], [13], statistical classifiers [14] and
neural networks (NN) [15], [16]. On the other hand, efforts have been aimed at coping with
the specific problem of PVC detection. Most works in this field employ NNs to classify the
PVCs after performing a suitable processing for the extraction of discriminant features [17]–
[22], and some authors underline the advantages of the competitive classifiers [18], [23].
Although these methods have shown promising results, they have several disadvantages.
First, the methods suffer from the problem of finding efficient feature sets [19]–[22].
Second, since there are various choices for selecting the network structure to achieve an
acceptable performance, finding the optimum architecture has not a unique solution [20]–
[22]. The use of symbolic dynamics analysis [24] and Gaussian processes [25] for PVC
detection has also been reported.

Recently, Bayesian filters were proposed for ECG denoising [26] and filtering cardiac
contaminants [27]. The state-space model used in this approach was inspired from the model
proposed by McSharry et al [28], who suggested the use of Gaussian mixture models to
generate synthetic ECGs. It was later found that by some modifications, the filtering
framework developed by Clifford et al [29] and Sameni et al [26] could be used as a
parameter-based framework for model-based ECG filtering [29], [30], simultaneous
denoising and compression [29], [31], and beat segmentation [29], [32].

In this paper, we propose the tracking of the parameters of an updated Gaussian wave-based
representation of the ECG by employing a Bayesian estimation procedure through an
extended Kalman filter (EKF). A new polar representation is then introduced together with a
procedure to track rhythm changes using the innovation sequence provided by the EKF. The
paper is organized as follows. In section II, the wave-based dynamical model is presented.
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Section III provides relevant background on the theory of the EKF. In section IV, our
proposed algorithm for PVC detection is explained in detail. Section V is devoted to
simulation results. Finally, a discussion and conclusions are provided in section VI.

II. Wave-Based ECG Dynamical Model
A simple interpretation for modeling an ECG record is to model every heart beat as a
combination of finite characteristic waveforms (CWs), each of which represented by the
sum of Gaussian kernels. In other words, we assume that every cycle of a heart beat
recorded on an ECG can comprise a finite number of CWs, (typically the P wave, QRS
complex and T wave). However, every CW reflects the electro-physiologic functioning of a
specific part of the heart, which in turn facilitates the analysis of the ECG events. This idea
originates from the synthetic nonlinear dynamic model that was proposed for generating
artificial ECGs by McSharry et al [28]. The model generates a three-dimensional trajectory
which consists of a circular limit cycle that is pushed up and down as it approaches each of
the turning points in the ECG (P, Q, R, S and T) whose centers are the center of each
Gaussian. The simplified discrete version of the model in the polar plane is given by [26]:

(1)

where δ is the sampling period, ω = 2πf, f is the beat-to-beat heart rate and Δθik = (ϕk −
θik)mod(2π). The phase, ϕ, is a saw-tooth shape signal that is expected to be zero at R-peaks,
and is linearly assigned a value between −π and π for each sample between two successive
R-peaks. αi, bi and θi are the amplitude, angular spread and location of the Gaussian
functions, respectively, and η represents random additive white noise which accounts for
baseline wander effects and other additive sources of process noise. It can be seen that the
ECG signal s is represented by a sum of Gaussian functions, whose locations are controlled
by the phase signal ϕ. In order to model the separate events of an ECG signal, the second
dynamical equation in (1) can be divided into separate state variables, each of which has a
similar behavior to the original equation. However, the separation and the corresponding
increase in the dimensionality facilitate the analysis of different events in the ECG signal.

Assuming the presence of three distinct CWs, corresponding to the P wave, QRS complex
and T wave, the ECG signal is divided into three components. In addition, to have a more
accurate representation of the CWs, the number of Gaussian functions can be varied.
Clifford et al proposed an extension of the model which used an arbitrary number of
Gaussians, with 2 Gaussians for each asymmetric turning point (P and T) [29]. Since
Gaussians are symmetric, asymmetric turning points require more than one Gaussian and
that two is the minimum number in this case and therefore the best choice, as we want to
minimize the number of parameters for computational simplicity. Accordingly, P and T
waves are characterize by two Gaussian kernels to account for bi-phasic P waves and the
asymmetric nature of the T wave at low to medium heart rates. In contrast, the inclusion of
more than one kernel for Q, R, and S is of negligible importance. Specifically, Sayadi and
Shamsollahi showed that minimum five kernels are essential for preserving the
morphological features in the EKF filtered signal [31]. However, increasing the number of
Gaussians has a negligible effect on the filtering performance, yet provides a slightly
improved compression ratio [30], [31]. Consequently, we adopted 7 Gaussian kernels to
model an ECG beat. The modified model is given by:
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(2)

where ηP, ηC and ηT represent the baseline perturbations of the P wave, QRS complex and T
wave, respectively.

III. Bayesian State Estimation Through Extended Kalman Filter
Having derived the state space representation for the ECG signal, the process equations of a
Bayesian framework are formed. Relating the ECG signal as an observation to the state
variables in the left side of state-space model (2) is now straightforward, since the CWs are
summed up to form the ECG. The observed noisy phase φk and noisy amplitude zk of the
ECG are given by:

(3)

where u1k and u2k are the observation noises of the ECG in the phase and spatial domains,
respectively. Using the wave-based dynamical model (2) as the process equations and the
observation relations (3), the state variables vector, xk and the observation vector, yk, the
process noise vector, wk, and the observation noise vector, vk, are defined, respectively, as:

(4)

The wave-based dynamic model, equation (2), is a nonlinear function of the state and
process noise vectors. Therefore, nonlinear extensions of the Kalman filter (KF) are required
for estimating the state vector. Our proposed framework is built upon an extended Kalman
filter structure for its simplicity and improved numerical stability over other Bayesian filters
[33]. In order to use the KF formalism for this system, it is necessary to derive a linear
approximation of (2) near a desired reference point (x̂k, ŵk, v̂k), to obtain the following linear
approximate model:

(5)
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where f is the state evolution function, equation (2), and g represents the relationship
between the state vector and the observations, equation (3). The linear approximate
coefficients in (5) are given by [34]:

(6)

In order to implement the EKF, the time propagation and the measurement propagation
equations are summarized as follows [34]:

(7)

where  is the a prior estimate of the state vector, xk, at the kth stage

using the observations y1 to yk−1, and  is the a posteriori estimate of this
state vector after using the kth observation yk.  and  are defined in the same manner to
be the estimations of the covariance matrices, in the kth stage, before and after using the kth

observation, respectively. In addition, Qk=E{wkwk
T} and Rk=E{vkvk

T} are the covariance
matrices of the process noises and measurement noises, respectively, and w̄k = E{wk}, v̄k =
E{vk} [35]. As it can be seen in (7), the key idea of the EKF is to linearize the nonlinear
system model in the vicinity of the previous estimated point, and to recursively calculate the
filter gain Kk, the innovation signal rk and the state covariance matrices  and  from the
linearized equations, while the KF time propagation is performed via the original nonlinear
equations [36].

IV. Bayesian Detection of PVC
A PVC is a morphological abnormality that generally only appears in a small number of the
ECG cycles and imposes a rhythm change in the normal ECG pattern, so that the P wave
vanishes by the occurrence of a dominant wide QRS followed by a dominant T wave. This
morphological change can lead to large errors in the Gaussians functions’ locations. In this
case the EKF estimations are not expected to be satisfactory. However, the benefit of the
Gaussian mixture representation is that the effect of each Gaussian term vanishes very
quickly (in less than the ECG period), meaning that the errors are not propagated to the
following ECG beats [26]. Moreover, by monitoring the state estimates’ covariance matrices
and the variations of the innovation signals, it is possible to detect such unexpected
abnormalities. Therefore, in this section we define some signal fidelities by tracking the
covariance matrix of the innovation signal throughout the filtering procedure to detect
unexpected morphological changes, such as a PVC. We also introduce a new polar
representation to distinguish PVCs from other rhythm changes.
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A. Monitoring the signal fidelity
In practice, due to the Gaussian assumption on the noise sources and the initial state vector
values, the state estimate entries of  should lie within the envelope of the square roots of
their corresponding diagonal entries in  for the majority of the time. Therefore, by
monitoring the variance of the state estimations, it is possible to detect these morphological
changes [33].

Another approach to provide a means of monitoring the fidelity of the filter is to update the
values of Qk and Rk, which is practically convenient to monitor the covariance matrix of the
innovation signal throughout the filtering procedure and to compare it to the innovation
covariance matrices estimated by the KF [37]. Specifically, with a diagonal (or
diagonalized) noise covariance matrix of Rk, the following term can be formed for the ith
ECG measurement, which we call the signal fidelity:

(8)

where  is the second entry of the zero-mean innovation vector of rk defined in (6),
corresponding to the kth ECG measurement, N is the length of the averaging window, and

 is the KF estimated variance of  for CWs, given by:

(9)

where  is the 2nd row of the Mk matrix defined in (7),  and  are the 2nd, 3rd and

4th entry of , respectively. Similarly,  and  are the 2nd, 3rd and 4th

column of the  matrix, respectively, and  is the second diagonal entry of Rk. In
fact, γCW is an average of the variances of the N recent ECG innovations, normalized by
their KF estimated variances of the corresponding CWs. This formulation originates from
the proposal of Sameni et al [26] to use the KF estimated variance for improving the
filtering performance. However, since we are intended to investigate the fidelity for every
characteristic component, in the current approach, the original formulation is modified to
provide three signal fidelities corresponding to three CWs. It is worth noting that as long as
the ECG morphology remains normal, γi ≈ 1. Values much greater than unity indicate that
the innovation signal variance is being underestimated by the KF, while values close to zero
indicate that the innovation signal variance is being overestimated. Sameni et al benefited
from this property of γi to adaptively modify the KF noise parameters to ensure the filter
stability and to achieve better filtering performances in low SNR scenarios [26]. However,
in the current approach, we monitor the γCW’s to detect any significant rhythm change in the
ECG signal, which will affect the P-QRS-T morphology. In addition, unlike the original
model (1), the wave-based model (2) enables us to define three γCW corresponding to each
CW. Hence, the morphological changes may be simply identified and localized by
monitoring the γCW signals. Three adaptive thresholds, thrCW, corresponding to three γCW

signals are used to detect the fidelity peaks. The value of thrCW is defined to preserve 95%
of the γCW energy, and is at least 3 times the mean value of γCW. In other words, with L be
the length of the signal fidelity, the thresholds should satisfy the following conditions:
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(10)

The best values of the energy and multiplier of the mean value of γCW were found by
changing all possible values over the used database.

As a disadvantage, the innovation sequences are affected not only by morphological changes
of the observation signals, but also by local noise artifacts and filter divergences [37].
Hence, in order to identify the PVCs using γCW, we need a symptom of rhythm change for
discrimination between artifacts and real rhythm changes. In the next section we introduce a
polar representation using the estimations provided by the EKF and address how to use this
representation for PVC rhythm identification.

B. Polargram formation and envelope extraction
The wave-based ECG dynamical model (2) suggests that the ECG signal is considered as a
combination of three characteristic waveforms. Using a Bayesian filter structure, each of
these CWs, as well as the phase signal, can be tracked in time. A polar representation for the
ECG signal, which we call polargram, can be obtained using the 2D vector [ϕk (P +C +T)k]′
at each time instance, k. By simply plotting the samples of the summed CWs, as the
amplitude, and their corresponding phase values, a polargram for the whole ECG signal is
obtained. The polargram clearly shows the beat to beat variations during different ECG
cycles. In addition, by analyzing a specific portion of the polar plane, it is possible to
investigate the inter-beat variations for every CW. This is because in the phase signal
construction, the R-peak is always assumed to be located at θR = 0 and the ECG contents
lying between two consecutive R-peaks are assumed to have a phase between − π and π
[26]. Visual inspection of various ECG signals shows that the QRS complex lies in the range
of [−π/6, π/6]. Hence, the preceding P wave and the proceeding T wave will occur in the
range of [−π, −π/6] and [π/6,π], respectively. Fig. 1 shows a typical normal ECG signal and
the corresponding phase signal, the estimations provided by the EKF and the polargram with
the corresponding partitioning. In fact, the polargram is simply the polar plot of (P +C +T)k
vs. ϕk, and the idea of partitioning the polargram is the key to identifying PVCs from normal
sinus beats.

As stated before, the morphological changes imposed by PVC occurrence lead to large
errors in the Gaussian kernels’ locations, which result in unsatisfactory filtering
performance. In other words, the PVC morphology has minimum amount of phase overlap
with the underlying morphology of the normal ECG signal. Hence, if we specify a specific
span in the polargram, any undesired change in the morphology of the signal would lie out
of this span. Using the mean ( ) and the standard deviation (σECG(θ)) of this new
representation, we define a polar envelope which spans between the upper and lower ranges
of  in the polar plane. Hence, any morphological changes are expected to
happen outside this envelope.

In order to classify PVCs and other abnormal beats, we can take advantage of the CW
parameter estimations provided by the EKF. Since we have the estimations of the CWs, as
well as the phase signal, it is possible to have 3 different polargrams corresponding to P,
QRS and T. In other words, the 2D vectors [ϕk Pk]′, [ϕk Ck]′ and [ϕk Tk]′ provide three
separate polar paths for all time instances, k. Any morphological changes are detected by
monitoring γCW, and their corresponding envelope . However, to verify the
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PVCs, one should search the CW polargrams for the absence of a P wave together with the
increase in the width of QRS complex and T wave polar paths. The overall PVC detection
algorithm is illustrated in figure 2, in which the phase calculation block is simply an R-peak
location detector, followed by linear assigning of a phase value between −π and π to the
intermediate samples [26]. The decision making block uses the polargrams and the signal
fidelities to detect PVC occurrence. In fact, we use equation (10) to compute the values of
thrCW using the γCW signals. Afterwards, the thresholding is performed to locate γCW peaks.
Finally, the polargram is examined for the occurrence of cycles outside the polar envelope in
different partitions. If this occurrence holds for all polargrams and the corresponding γCW

passes the threshold, then the beat is determined to be a PVC.

V. Results
The proposed algorithm was implemented in MATLAB®. The MIT-BIH Arrhythmia
Database [38], [39] was used to study the performance of the proposed method. The
performance of the KF is influenced by the initial value for the state vector, as well as the
covariance matrices of the process and the measurement noise. Hence, we employ the
initialization procedure described in [26] and [31]. Accordingly, the angular frequency ω, is
set to ; where  is the average RR-interval of the whole signal. In order to
estimate the initial values for the Gaussian kernels, a typical nonlinear optimization scheme
such as the Levenberg-Marquardt procedure [40],[41] is performed on the mean ECG
( ) and the standard deviation (σECG(θ)) [29]. Similarly, the covariance values of Qk
are found by calculating the magnitude of the deviation of the parameters of the Gaussian
functions around the estimated mean, that best model the acceptable deviations of the mean
ECG within the upper and lower ranges of . In a similar manner to [26], we

set , and  to the mean variance of baseline perturbations. The values

of  and  are found from the deviations of the inactive segments of the
ECG, around the corresponding CW portion.

Fig. 3 shows a typical ECG signal with PVCs included, the γCW’s and the polargrams. The
envelopes of normal rhythms are also provided, which excludes the PVCs. Visual inspection
reveals that these exclusions correspond to the peaks of γCW, as was expected. Moreover,
two PVCs are obvious in all CW polargrams, as well as in all γCW’s, see Fig. 3(f)–(h).

As discussed in the previous section, γCW is sensitive to any morphological changes.
However, the benefit of the proposed wave-based model is that it provides 3 different γCW s,
each of which monitors the fidelity of the corresponding CW estimation, and is dependant
on the corresponding CW rhythm change. Hence, unlike a PVC which imposes a dominant
peak in all the γCW s, other morphological changes are expected to be tracked in a specific
γCW. Fig. 4 shows the γCW s, ECG polargram and the T-polargram for a 17 beats segment of
an ECG signal. The segment has two PVCs (3rd and 11th beats), three aberrated atrial
premature beat (5th, 7th and 14th beats) and two non-conducted P wave abnormalities, i.e.
blocked atrial premature beats (the last 2 beats). It can be seen that all the γCW s locate the
PVC beat, as well as the aberrated atrial premature beat, which have different morphologies
compared to the normal cycles. However, these two abnormalities are classified correctly in
the polargram, since only the PVC spans outside the envelope. In contrast, the blocked atrial
premature beats are identified only in γT, and have no effect on the outside of the polargram.

For performance evaluation we chose 40 ECG records with the same lead configuration, i.e.
modified lead II, which contains 5 types of signals; records with only normal beats (type A),
records that contain only normal beats and PVCs (type B), records with no PVCs (type C),
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records with no normal beats (D) and records consisting normal beats and multiple
arrhythmias (type E). We quantified our classifier performance using the most common
metrics found in literature: accuracy, sensitivity, and positive predictivity. Accuracy (Ac) is
perhaps the most crucial metric for determining overall system performance, and is defined
as follows:

(11)

where Ne and Nt represent the total number of classification errors and beats in the file,
respectively. To express how successfully a classifier recognizes beats of a certain class
without missing them, sensitivity (Sn) is used. Likewise, to measure how exclusively it
classifies beats of a certain type, positive predictivity (+P) is used. These two metrics are
given by:

(12a,b)

In these equations, TP, FP, and FN denote true positives, false positives and false negatives,
respectively. Similar to [19], to evaluate the overall performance, the averages are weighted
according to the number of beats of each class that were present in a file. The weighted
measure is written as:

(13)

where nbi is the number of beats for the ith record, nf is the total number of records, and 
is the value of a specific measure for the ith record in the class “CL”. The file-by-file
comprehensive results are provided in Table I. The results show the capability of the
proposed wave-based Bayesian framework for PVC identification among other beat types.
Performance evaluation results of type A signals shows that normal beats are accurately
detected. It can be seen that for type B records, where no other abnormality than PVC is
presented, the detection algorithm achieves an accuracy, sensitivity and positive predictivity
of 100%. In other words, the algorithm is fully capable of discriminating PVCs and normal
beats. Likewise, the results for type C records show that the method is capable of classifying
normal beats and other abnormalities in the absence of PVC. In a similar manner, the
analysis of type D records illustrates that the algorithm is still reliable for PVC detection, in
absence of normal beats. Finally, for type E signals, where a mixture of abnormalities is
often presented in the ECG, the PVC detection results are very promising. It can be seen that
in most cases, the sensitivity of PVC detection, as well as the positive predictivity of other
beat types, is equal to 100% which demonstrates that the PVCs are identified with minimum
error and the algorithm misses no PVCs. The overall performance evaluation results show a
weighted average Sn and +P of 98.77% and 97.47%, respectively. Evaluation results for the
identification of other beat types is also well in the acceptable range, however, the polar-
envelope-based decision making should be modified to incorporate a wide range of
abnormalities, which is beyond the scope of the current study.

Furthermore, one should note the impressive results for records 105, 118, 213, 214, 215, and
223, compared to the results reported in [19]. These six records are the most difficult for
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PVC detection (sensitivity for records 105 and 215 is less than 5%, while others result in Sn
≈ 40% [19]). Hence, they are usually excluded from the database [21], [25]. To show the
PVC detection capability of our proposed method, we have compared its performance to the
file-by-file results of the NN-based approach in [19]. Statistical improvement results are
shown in Fig. 5(a). It can be seen that for all cases, the proposed method enhances the mean
improvement, while shifting the upper improvement quartile to the positive values. In
addition, there are cases whose related improvements are very impressive, and can be
followed by the upper side of the error-bars, indicating the maximum achieved
improvement. Using the numerical evaluation results reported in the reference paper [19], it
is also possible to compute the correlation coefficient (CC) as:

(14)

where TN represents the number of elements predicted as false that are false (true negatives).
The ratio in (14) scores positively correct predictions and negatively incorrect ones, and
takes a value between −1 and 1. Accordingly, the CC measure falls into the interval of [0,1].
The more correct the method is, the closer CC would be to unity. Another metric for
measuring the correctly predicted elements is specificity(Sp), given by:

(15)

Having computed the values of Sn and Sp, a plot of Sn vs. Sp, namely the receiver operating
characteristic (ROC) curve, is built for the same classification method using a series of
detection results. However, since we do not vary the filter parameters and we have no
thresholds to obtain stepwise Sn and Sp values, the best classification method is the one that
describes the largest area under the curve (AUC).

In order to investigate the true positive PVC detection performance, we have chosen type B,
D and E signals for analysis. Fig 5(b–d) show the mean values of different metrics for these
types of records, evaluated using the proposed method (box bars) and the NN-based
technique [19] (cylindrical bars). The figure illustrates that in contrast to the NN-based
method, all metrics’ values for the proposed algorithm are over 90%, and are often very
close to 100%.

Furthermore, the improvement in PVC detection is obvious by visual comparison of the
height of cylindrical bars to that of box bars. Specifically, we note the improvement in
sensitivity, which demonstrates that the Bayesian method has much fewer FN detections.
Hence, the minimum number of PVCs is misclassified by the proposed approach. In other
words, unlike the method in [19] which is based on feature extraction and neural network
classification with no temporal memory, our proposed technique benefits from the tracking
potential of the Bayesian framework to obtain much better detection accuracies for PVCs.

To appreciate the merits of the proposed method over conventional PVC classification
algorithms and to ensure its ability to locate PVCs, we have compared our results to those of
some benchmark techniques in the literature. The results are reported in table II. Since the
results of methods are reported for different databases, we have also provided the number of
ECG records (Nrec) and number of PVCs (NPVC) used in each method. It can be seen from
table II that our proposed method provides a higher Ac and Sn, while preserving the +P in
the acceptable range. Additionally, taking the number of analyzed PVCs into consideration,
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the +P results of our algorithm is comparable to and usually superior to the other methods,
which shows the ability of the proposed framework to distinguish the PVCs from other beat
types more accurately.

Another interesting feature of the proposed method is that the PVC detection depends upon
both the γCW and the polar envelope, which together enables the algorithm to distinguish
between PVCs and rhythms with similar morphologies, which is a significant problem in
feature-based methods. As an example, previous studies could not distinguish between
PVCs and left bundle branch blocks (LBBB) beats [19], [21]. LBBB is a cardiac conduction
abnormality seen on ECG, in which activation of the left ventricle is delayed, which results
in the left ventricle contracting later than the right ventricle. The criteria to diagnose a
LBBB are QRS widening and T wave discordance, in which the T wave should be deflected
opposite the terminal deflection of the QRS complex. This is similar to PVC, however, in
the case of a PVC, the P wave is fused in the QRS complex and the dominant T wave is not
essentially deflected opposite the terminal deflection of the QRS complex. Hence, using the
time interval features and a NN [17] or wavelet features and fuzzy NN [21], it is very
difficult to distinguish between a PVC and a LBBB beat. For instance, Shyu et al [21]
reported 405 LBBB as FN detections while characterizing PVCs. The potential of the
Bayesian framework enables it to correctly identify LBBB as non-PVCs. This is due to the
polar envelope formation based on the LBBB, which spans a different partition from the
PVCs. Specifically, γCW identifies the LBBB as a monotone rhythm in ECG, whereas the
PVC is characterized as a rhythm change. This is obvious by comparing the results of our
algorithm for record 214 (Sn= 100%, +P=100%) to the reported results of [19] for the same
record (Sn=47.66%, +P=92.42%), which includes 256 PVCs and 1996 LBBB beats. Fig. 6
illustrates a segment of record 214, the signal and T wave polargrams and the signal fidelity
γT corresponding to the T wave.

I. Discussion and Conclusion
In this paper, a wave-based Bayesian framework was presented and validated for PVC beat
detection which is capable of running on a single ECG lead. The method is based on an EKF
algorithm that incorporates the characteristic waves of the ECG into a dynamical model. By
separating the Gaussian functions, and using 2 kernels for each asymmetric wave, a state
space model was constructed. The proposed set of equations aims at integrating into the
ECG model a mechanism that estimates an ECG signal as a combination of finite
characteristic waveforms, each of which represents a particular physiological state of the
heart. According to this specific model, the EKF structure provides a means of tracking the
behavior of the CWs, throughout the filtering procedure.

From a filtering point of view, KFs can be thought of as adaptive filters that continuously
move the location of the poles and zeros of their transfer functions, according to the signal
or noise content of the input observations and the prior model of the signal dynamics. The
filter structure is based upon a unique dynamical model, which is adapted to the
observations according to the propagation equations. In this way, we can track the reliability
of the estimations, as well as the fidelity of the filter. Moreover, this feature allows the filter
to adapt with different spectral shapes and temporal non-stationarities, since the variance of
the observation noise in (4) represents the degree of reliability of a single observation, as
well as the degree of adaptively tracking the input noisy measurement. Based on this
concept, we introduced the signal fidelity, γCW, corresponding to each CW, and monitored
these parameters to detect PVC occurrence. Furthermore, a polar representation was
introduced to distinguish between the rhythm changes that occur inside the polar envelope
and PVCs, which span a different portion of the polargram. The designed filter was applied
to standard ECG databases, and compared to other published methods. The results
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demonstrate the filter’s capability in tracking the PVCs. It was also shown that the γCW’s are
capable of discrimination between PVCs and other abnormalities that exhibit a defect in a
specific CW. However, for those abnormalities that affect the γCW’s the same manner as
would a PVC, the polargram is used to verify the occurrence outside the polar envelope.

Performance evaluation results showed that the developed method provides a reliable and
accurate PVC detection, providing an accuracy of 98.83%, weighted average specificity of
99.29% for normal and 98.43% for PVC, and a mean positive predictivity of 99.75% for
normal and 96.68% for PVC, which is well within the acceptable range, and is superior to
the previously reported results. Moreover, in comparison to other published methods for
PVC detection, our proposed approach provides a superior performance, and there is no
need to employ decision rules based on comparison against thresholds, feature extraction,
training, and selection of the classifiers’ structure. Another point of interest is the capability
of the algorithm to fully determine the PVCs, with Ac, Sn and +P equal to 100%, for the
records that contain only two specific beat types: normal sinus beats and PVCs. It was also
shown that the proposed method is applicable to reliable PVC detection in presence of other
abnormalities, and in particular left bundle branch block.

It should be noted that the initial value for the state vector as well as the selection of the
covariance matrices of the process and the measurement noise will influence the trajectory
of the estimated vectors. The dependence of the results on these initial estimations is the
major drawback of the proposed method. Hence, an automated procedure for reliable
initialization was proposed. Although the Bayesian method we present depends on the initial
values, the method is still more efficient compared to NN-based approaches since the
initialization and training of the EKF parameters can be performed using just a few early
cycles.

Due to the recursive structure of the KF, the proposed method is also computationally
tractable and of special interest for real-time applications. Generally, the computation time
of this method is linearly proportional to the signal length in samples. For the currently
developed MATLAB® code, the computation time is already close to real time using a Core
Duo 1.86 GHz CPU. Compilation and optimization of this code, or conversion into a low-
level language for use in pre-processing units of clinical monitoring systems would result in
a significant increase in performance speed. This would allow the algorithm to run on
multiple ECG leads in real time on most embedded systems which are increasingly available
with on-board DSP chipsets.
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Fig. 1.
EKF estimations and polargram formation for a typical normal ECG signal. (a) ECG noisy
record and the corresponding phase signal, (b) CW estimation provided by EKF4, (c) The
estimated phase and filtered ECG signals using EKF4, (d) Polargram with the CW
partitioning included.
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Fig. 2.
General block diagram of the proposed PVC detection algorithm.
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Fig. 3.
Elements of PVC monitoring provided by the Bayesian framework. (a) ECG record 119, (b)
γP, (c) γC, (d) γT, (e) signal polargram and the polar envelope, (f) P wave polargram, (g)
QRS complex polargram, and (h) T wave polargram.
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Fig. 4.
Effects of PVC, aberrated atrial premature beat and blocked atrial premature beat on signal
fidelities and polargram. (a) ECG record 201, (b) γCW signals, (c) signal polargram, (d) T
wave polargram.
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Fig. 5.
Performance comparison of the proposed method to the wavelet-based NN algorithm [17],
evaluated on the same 40 records from MIT-BIH Arrhythmia Database. (a) Improvement
statistics for the whole database shown with box plots. The box lines show the lower
quartile, median (dotted) and upper quartile improvement values, and the error-bars indicate
the min and max improvement values. The mean improvement is shown with a cross
symbol, (b)–(d) comparative results for PVC detection using type B, type D, and type E
signals, respectively. The results of our proposed method are shown by box bars while those
of [19] are shown with cylindrical bars.
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Fig. 6.
Distinguishing LBBB and PVCs for a typical ECG signal. (a) ECG record 214, (b) γT, (c)
signal polargram and the polar envelope, (d) T wave polargram.
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