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Purpose: Predicting complex patterns of respiration can benefit the management of the respiratory
motion for radiation therapy of lung cancer. The purpose of the present work was to develop a
patient-specific, physiologically relevant respiratory motion model which is capable of predicting
lung tumor motion over a complete normal breathing cycle.
Methods: Currently employed techniques for generating the lung geometry from four-dimensional
computed tomography data tend to lose details of mesh topology due to excessive surface smooth-
ening. Some of the existing models apply displacement boundary conditions instead of the intra-
pleural pressure as the actual motive force for respiration, while others ignore the nonlinearity of
lung tissues or the mechanics of pleural sliding. An intermediate nonuniform rational basis spline
surface representation is used to avoid multiple geometric smoothing procedures used in the com-
putational mesh preparation. Measured chest pressure-volume relationships are used to simulate
pressure loading on the surface of the model for a given lung volume, as in actual breathing. A
hyperelastic model, developed from experimental observations, has been used to model the lung
tissue material. Pleural sliding on the inside of the ribcage has also been considered.
Results: The finite-element model has been validated using landmarks from four patient CT data
sets over 34 breathing phases. The average differences of end-inspiration in position between the
landmarks and those predicted by the model are observed to be 0.450�0.330 cm for Patient P1,
0.387�0.169 cm for Patient P2, 0.319�0.186 cm for Patient P3, and 0.204�0.102 cm for Pa-
tient P4 in the magnitude of error vector, respectively. The average errors of prediction at landmarks
over multiple breathing phases in superior-inferior direction are less than 3 mm.
Conclusions: The prediction capability of pressure-volume curve driven nonlinear finite-element
model is consistent over the entire breathing cycle. The biomechanical parameters in the model are
physiologically measurable, so that the results can be extended to other patients and additional
neighboring organs affected by respiratory motion. © 2010 American Association of Physicists in
Medicine. �DOI: 10.1118/1.3455276�
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I. INTRODUCTION

In external beam radiation treatment, the goal to deliver a
lethal radiation dose through external beams conformed to
the tumor while sparing adjacent healthy tissues may be
compromised by organ motions.1–12 The current radiation
treatment paradigm, for the most part, is still based on an
assumption that both the tumor location and shape are known
and remain unchanged during the course of radiation deliv-
ery. This assumption fails in anatomical sites such as the
thoracic cavity and the abdomen, owing predominantly to
respiratory motions.2–6 In the lungs, for example, respiration
related deformation13 can be as much as 4 cm. As a result,
although higher radiation doses have shown better local tu-
mor control, less aggressive treatment strategies with various

degrees of dose margin have been adopted to accommodate
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for potential targeting errors.14–17 Based on four-dimensional
computed tomography �4DCT�,18–23 the motion margin can
be estimated more accurately by overlapping information
from all the phases. However, patient breathing pattern
changes from time to time; the estimated margin from 4DCT
may not represent the real margin for the delivery. Modeling
of respiratory motion presents a unique multidisciplinary
challenge. Although such research was reported as early as
the 1940s,24 dynamic modeling was not considered owing to
past limitations in computer and medical imaging technolo-
gies. The challenge is especially interesting in the context of
biomechanical modeling because the lung motion has
uniquely complex spatial and temporal patterns. In space, the
different lung lobes have varying ranges of deformation.3,6,7

In time, the respiratory cycle can be unstable and patient
25,26
dependent. To predict the lung motion, one must take
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into account of nonlinear elasticity of lung tissue,27,28 pleural
sliding,29,30 regional differences in lung response, and the
motion of adjacent structures such as the heart.31,32

Although deformable image registration models33 and
nonmodel heuristic approaches25 incorporating surrogates
have provided information on tumor displacement caused by
respiration, advanced finite-element methods �FEMs� can ad-
dress limitations associated with these methods, including
prediction of localized deformation of tumor34 and interorgan
interactions such as the pleural sliding.35 Finite-element lung
models have also been used to evaluate the effect of gravity
on respiratory physiology36 and to find surface matching of
organs in two images in deformable image registration
techniques.37–40 Recently, finite-element lung models for tu-
mor tracking at the end of inhalation incorporating contact
conditions have been proposed.35,34 In FEM, the effective-
ness of the model and its accuracy in predicting tumor mo-
tion depend on several important issues including the quality
of the patient geometric model and the regularity and accu-
racy of the finite-element mesh. In previous works by Brock
et al.,38 Werner et al.,34 and Villard et al.,41 multistep proce-
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dures such as isosurface construction, multiple iterative mesh
smoothing, relaxing, and decimation may result in undue
simplification and artifacts in the modeling as pointed out in
Sec. III A of this paper. Additionally, the idea of using a
projected displacement boundary condition by Brock et al.38

and Al-Mayah et al.35,42 on the surface of the lungs may
misrepresent the physiology and incorrectly represent con-
tact conditions with adjacent tissues.

The biomechanical engineering community has been
studying the deformation mechanics of the lungs for many
years. The first continuum-based FE model of a dome shaped
lung was proposed by West and Matthews43 in 1972. Linear
and nonlinear elastic material models, obtained from experi-
ments by Radford44 on strips of tissue excised from canine
lungs, were used in the model. Zhang et al.37 proposed a lung
model with pleural sliding which was driven by pressure
forces applied on the surface of the lungs. This model was
implicitly validated by overlaying the CT lung image at in-
halation and a reconstructed image of the lung at exhalation
without quantitative comparisons. Villard et al.40 described a
3D deformable continuum-based lung model with pleural
sliding. They showed that the simulation of pleural sliding
produce results which are in closer agreement with clinical
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data. In an extension of this work, Didier et al.39 used the
same FEM model and investigated the kinematic effects of
the ribs on the motion during a breathing cycle by using a
finite helical axis �FHA� method. Extending the work of
Zhang et al.,37 Werner et al.34,45 recently proposed a respira-
tory lung motion model incorporating contact mechanics. In-
stead of using contact elements, an augmented Lagrangian
algorithm was used for the contact formulation in the FEM
software COMSOL MULTIPHYSICS �COMSOL AB, Sweden�.
Brock et al.38 developed a FE model driven by displacement

TABLE I. Summary of our nonlinear FE lung model �s
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FIG. 4. FE models including a thoracic cavity, a tumor �gross target volume
for radiation treatment purposes�, and lungs for P2.
Reference 52.
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fields obtained from CT images. This approach is capable of
handling multiple organs. The initial and final states of the
lungs and the other organs are obtained from the CT scans
from the end of expiration �EE� and end of inspiration �EI�,
respectively. None of these FEM models discussed above
considered the nonlinear elastic property associated with
lung motion. Recently, Al-Mayah et al.35,42 has improved the
FEM-based 3D lung model in Brock et al.38 by including
contact conditions and nonlinear material properties. Pre-
scribed displacement boundary conditions, similar to that in
Brock et al.,38 have been applied and the interaction between
the walls of the lungs and the chest has been modeled using
frictionless surface-based elements. However, the lung mo-
tion in their study was simulated using displacement bound-
ary conditions which are not physiologically relevant.36

Although the previous studies offer insights into
continuum-based lung modeling, none has presented results
of tumor tracking over the entire breathing cycle as these
studies lack one or more of the following three key features:
Physiologically correct boundary conditions, physically real-
istic contact-friction modeling of pleural sliding, and empiri-
cally derived nonlinear mechanical properties of lung tissue.
The necessity of including all three features is dictated by the
mechanics of lung motion and the biomechanics of the lung
tissue as explained in Sec. II B.

In this paper, we present a physics-based modeling

deo 1�URL: http://dx.doi.org/10.1118/1.3455276.1��.
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method of respiratory motion that was based on 4DCT data
of four patients. An intermediate nonunifrom rational
B-spline �NURBS� surface representation was used to avoid
multiple geometric smoothing procedures employed in pre-
vious work.34,38,46 A nonlinear hyperelastic material model is
used together with physiologically relevant boundary condi-
tions based on pressure-volume �P-V� curves and pleural
sliding. The FE model has been validated using 48 land-
marks from the CT data. No tuning of FE modeling param-
eters including material properties,34 contact stiffness,37 or
friction coefficients42 was employed. In II, we present our
modeling methodology, followed by a discussion of results
in Sec. III and conclusions in Sec. IV.

II. METHODS AND MATERIALS

A flow diagram of our modeling scheme is presented in
Fig. 1 which shows the procedure for creating the geometric
model from patient-specific 4DCT data �Sec. II A� and our
technique of physiologically based lung motion modeling
�Sec. II B�

II.A. Patient specified geometric modeling

The first step in respiratory motion modeling is to develop
FE models of the lungs and associated structures from 4DCT
data. As shown in Fig. 2, four patient 4DCT data set were

TABLE II. Comparison of mesh quality indices in the
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��0.9�

Aspect
��2.

Initial 21.1% 0.2%

Laplacia
Five iterations 4.2% 0.2%
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FIG. 5. Pressure-volume relationship from the parameterized P-V curve
�Ref. 52� �TV=500 ml and transpulmonary pressure=10 cm H2O�.
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used; one was publicly available 4D respiratory-gated CT
image data set, a point-validated pixel-based breathing tho-
rax model,47 and the other three were acquired at the center
of collaborator. Each image slice has a resolution of 0.98
�0.98 mm2 with a slice thickness of 2 mm, resulting in a
512�512�141 voxel matrix. For each patient data set, ten
breathing phases in the 4DCT DICOM data were
segmented48 into different regions of interest �ROIs� using
the Pinnacle system �Version 8.0 m, Medical systems, Mil-
pitas, CA�.

According to the computed lung volume of each phase,
the EE state, the EI state, and states in between were selected
for modeling. The ROIs at the EE from this procedure are
used as lung geometry �inner pleural surface� and the ROIs at
the EI are used as ribcage �outer pleural surface�. Though
image data set were captured along breathing signal, real-
time position management system �Varian Medical System,
Palo Alto, CA�, the volume of corresponding phases were
used to sort the actual order of breathing phases. The volume
change over time is monotonic function during either inha-
lation or exhalation; this means that the volume of lungs only
increases during inhalation and decrease during exhalation.
For example, Patient P1 has originally ten 4DCT phases per
each patient data set. But two inconsistent breathing phases
which have increasing volume exist during exhalation. So

entage of elements violating threshold criteria.
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these two inconsistent breathing phases are excluded in the
modeling. The finally chosen breathing phase of each patient
are presented in Sec. III D.

For accurate simulations, a uniform “good quality” mesh
with elements that have small aspect ratios and include
angles must be used.49 However, mesh models generated
from patient-specific CT images tend to have a dense ar-
rangement of elements with highly irregular geometries,
which cannot be directly used for FE analysis. In previous
studies,34,38,41 multiple iterations38 of mesh decimation and
Laplacian smoothing were used to reduce the number of el-
ements and generate a more uniform mesh acceptable in FE
simulations. The problem of this procedure is that the detail
of the mesh topology may be lost since Laplacian smoothing
focuses on moving point locations to improve triangulation
while neglecting the preservation of the original geometric
features. Also, the procedure is not interactive as multiple
steps are involved. In this study, we have used a NURBS
surface reconstruction approach to convert the ROIs into FE
meshes as shown in Fig. 3. Primary surfaces are generated

TABLE III. Characteristics of the finite-element mode

Name Number of phases Total landmarks
Avg. v

P 1 8 48
P 2 8 48
P 3 10 46
P 4 8 39

(a)

(b) (c)

FIG. 7. Landmark positions of P2; bifurcation of vessels and airway were
determined by radiologists �a� locating landmarks at anatomical points of
bifurcations and at the center of the tumor �tumor, arrow; LR-AP, sectional
view on top; AP-SI, sectional view on bottom left; LR-SI, sectional view on
bottom right�; �b� 48 points of landmarks; and �c� five points of landmarks
close to the tumor.
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from ROI contour lines in Rhinoceros 3D �Robert McNeel &
Associates, Seattle, WA�. NURBS surfaces were then recon-
structed and converted into suitable FE meshes using HYPER-

MESH �Altair Engineering, Troy, MI�. This approach greatly
simplified the procedure of FE mesh generation from CT
scanned image data without losing the geometric details. In
Sec. III, we will compare the NURBS surface reconstruction
technique with Laplacian smoothing. The each FE model is
composed of the thoracic cavity and the lungs with an em-
bedded tumor in the right lung as seen in Fig. 4.

II.B. Physiological respiratory motion modeling

In this work we have developed a physics-based lung
model using FEM, which takes into account the physiology
of respiratory motion, the biomechanics of the lung tissue,
and the sliding of the lungs on the inside of the ribcage.
Since the lung itself is a passive organ, its deformation is
driven primarily by the intrapleural pressure changes caused
by relative motion of other anatomical structures such as the
ribcage and the diaphragm.36 So-called “P-V” curves50,51 are
plotted to represent the relationship between the lung volume
�V� and transmural pressure �P� changes. We have used the
P-V data to apply pressure boundary conditions to the sur-
face of the lung model based on its instantaneous volume so
that the relationship between lung volume and pressure is
maintained. We believe that this is an advantage of our mod-
eling approach compared to models that apply displacement
boundary conditions35,38 to drive lung motion.

The features of our FE model are summarized in Table I.
A distributed time-varying pressure load was applied to the
surface of the FE lung model. Pressure amplitudes at each
breathing phase were evaluated from the parametrized P-V
curve52 and the mean P-V curve53 shown in Fig. 5. The in
situ lung volumes over multiple breathing phases were com-
puted from the segmented 4DCT data between the EE and
the EI and the volume difference at corresponding breathing
phases lead the corresponding pressure, which was read off
from the P-V curve. Though in Fig. 5, the value of volume of
tidal volume �TV� and pressure was used as 500 ml and 10
cm H2O for illustration, the pressures at EI are evaluated by
the mean P-V curve53 and the change of scaled pressure over
volume are fitted by the parameterized P-V curve.52

A tumor-bearing lung is modeled as an elastic medium �
consisting of N homogeneous isotropic subdomains in the
finite-element model of ABAQUS. The external surface of
lung �� is decomposed in ��d, where the displacements û
are prescribed by the anatomical facts �root of lung�, and ��t

ach patient.

e of tetrahedral
�ml� Node/elements Computation time

.111 7274/30 320 1 hr 30 min

.165 6184/25 212 2 hr

.081 5797/24 938 2 hr 45 min

.101 7748/35 830 2 hr 20 min
l of e

olum

0
0
0
0
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where distributed surface traction t̂ are applied. The locally
uniform elastic regions �I�I=1, . . . ,N� are implanted into
the lung �. The boundary of local region �I is called an
internal boundary ��I. The elastic properties in a region �I

are assumed to be isotropic hyperelastic modulus in term of
strain energy potential WI. In the medium, the deformation
gradient F=I+�u /�X is described from the displacement

TABLE IV. The different breathing phases are distinguished by volume
change from EE �ml� and provided unique identifiers.

Breathing phase identifier

Volume change �V−VEE�
�ml�

P1 P2 P3 P4

EE 0 0 0 0
IN-1 43.47 189.16 5.59 68.6
IN-2 51.15 252.03 70.21 175.98
IN-3 ¯ 412.67 273.13 ¯

IN-4 ¯ 443.62 354.26 ¯

IN-5 ¯ ¯ 403.51 ¯

EI 244.5 453.97 404.86 354.92
EX-1 243.58 303.41 301.52 354.02
EX-2 130.76 237.82 170.54 342.35
EX-3 60.47 ¯ 55.2 69.6
EX-4 57.72 ¯ ¯ 16.15
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u�X� in Lagrangian coordinate system and the Green strain is
E= �FTF−I� /2. The strain energy WI of local region �I in-
troduces the second Piola–Kirchoff stress S=�WI /�E, which
is energy conjugate to the Green strain. The governing equa-
tion and boundary conditions for finding u�X� are defined as

��S · FT� + b�X,u�X�� = 0 X � � or �I

�S · FT� · n = t̂�X� X � ��t

u�X� = û�X� X � ��d

, �1�

where b is body force and n is normal on ��t. For each
breathing phase, corresponding intrapleural pressure change
determines distributed surface traction t̂ in quasistatic
problem49 of Eq. �1� and resultant algebraic equations of
each loading step were solved by Newton iterative algorithm
in ABAQUS.

It is essential to use empirically derived stress-strain con-
stitutive relationships. Such constitutive equations of human
lung tissue have been rarely reported.55,56 Some existing
models represent lung tissue as a linear elastic
material.34,37,38 However, nonlinear hyperelastic constitutive
models have been presented by Zeng et al.55 based on ex-
cised cadaver lung parenchyma, which is used in this study.
The parameters of this model are presented in Table I.

Another important feature of physics-based lung model-
ing is that the motion of the lungs is asymmetric due, in part,
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to the sliding of the pleural membrane on the inside of the
chest wall. The surface area of the pleura that comes in con-
tact with the chest wall is a function of deformation and
cannot be determined a priori.36 This introduces nonlineari-
ties known as “contact nonlinearities.”44 Hence, we have in-
cluded pleural sliding in our model. The pleural membrane
can slide against the chest wall at velocities up to 20 cm/s
during vigorous respiration. Lubrication is provided by a thin
layer of fluid, typically 20 �m thick in the pleural space.50

Experimental friction data between the pleura and the inner
chest wall do not exist. Hence, in this paper, we have as-
sumed frictionless contact conditions.

III. RESULTS AND DISCUSSION

III.A. Comparison of Laplacian smoothing vs NURBS
surface reconstruction

To evaluate the NURBS surface reconstruction procedure
tested against conventional mesh preparation using multiple
Laplacian smoothing and decimating,38,46 we compared the
geometric quality of the elements. Four mesh quality indices,
commonly used in computer sided engineering49 are consid-

TABLE V. Mean deviation of FE model prediction fr
numbers of landmarks in each region are within pare

Region �number of landmark�

Mean devia

LR

�a� P
Whole model �48� −0.003�0.346

Upper left�7� −0.043�0.112
Upper right�5� 0.134�0.097
Lower left�16� 0.173�0.352

Lower right �20� −0.165�0.580

�b� P
Whole model �48� 0.073�0.221

Upper left �15� −0.049�0.077
Upper right �16� 0.289�0.247
Lower left �8� −0.027�0.097

Lower right �9� −0.013�0.116

�c� P
Whole model �46� 0.024�0.225

Upper left �10� −0.023�0.171
Upper right �15� −0.052�0.117
Lower left �16� 0.164�0.295
Lower right �5� −0.105�0.057

�d� P
Whole model �39� −0.038�0.103

Upper left �9� −0.014�0.064
Upper right �15� −0.060�0.134
Lower left �8� 0.014�0.073

Lower right �7� −0.079�0.078
ered in this study.
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�a� Aspect ratio: This is the ratio of the longest edge of an
element to its shortest edge.

�b� Maximum and minimum interior angles: These maxi-
mum and minimum values are evaluated independently
for triangle facet.

�c� Jacobian: The determinant of the Jacobian matrix mea-
sures the deviation of an element from its ideal or “per-
fect” shape, such as a triangle’s deviation from equilat-
eral. In HYPERMESH, a ratio of the maximum to the
minimum value of this determinant at all the Gauss
points is available for each element. A value of this
ratio closer to 1.0 indicates less distortion, whereas a
value closer to 0.0 signifies a highly distorted element.

In Fig. 6, elements which violate the mesh quality indices
for each approach are color-coded. The results show that the
threshold for violation is 0.9 for the Jacobian, 2.0 for the
aspect ratio, and 80° and 50° for the maximum and minimum
interior angle, respectively. The volume change indicates
loss of geometric features. It is clear that the proposed geo-
metric modeling procedure preserves initial geometry of the
CT scan data. Laplacian smoothing is an algorithm to smooth
a polygonal mesh. For each vertex in the mesh, a new posi-

DCT data at four different lung regions: P1–P4 �the
es�.

f FEM prediction at bifurcation points at EI
�cm�

P SI Magnitude

t P1
30�0.271 0.013�0.272 0.450�0.330
13�0.074 −0.027�0.046 0.131�0.058
83�0.066 −0.163�0.114 0.242�0.135
72�0.289 0.065�0.320 0.490�0.350
49�0.326 0.030�0.296 0.585�0.472

t P2
66�0.146 0.245�0.200 0.387�0.169
85�0.119 0.257�0.099 0.307�0.098
23�0.118 0.347�0.193 0.560�0.11
06�0.110 0.109�0.163 0.224�0.098
44�0.201 0.168�0.278 0.360�0.141

t P3
93�0.148 −0.190�0.142 0.319�0.186
99�0.070 −0.131�0.102 0.238�0.110
84�0.152 −0.107�0.143 0.237�0.141
03�0.130 −0.276�0.112 0.417�0.228
74�0.298 −0.281�0.096 0.413�0.089

t P4
36�0.136 −0.038�0.141 0.204�0.102
32�0.098 −0.020�0.142 0.161�0.082
91�0.066 −0.104�0.076 0.216�0.050
62�0.077 0.044�0.154 0.177�0.076
08�0.233 −0.014�0.192 0.266�0.190
om 4
nthes
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tion is chosen based on local information �such as the posi-
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tion of neighbors� and then the vertex is moved. Laplacian
smoothing focuses on moving point locations to improve tri-
angulation without any guarantees on the preservation of the
original geometric features.

In studies reported by Refs. 38, 41, and 10, iterations of
Laplacian smoothing and additional ten smoothing iterations
with decimation were used to prepare the computational
mesh. Table II shows that ten cycles of smoothing iterations
can reduce the original volume by 20.3 ml and the relaxing
operations failed to enhance the mesh quality indices, while
our proposed approach achieved higher quality meshes with
13.2 ml of volume loss.

III.B. Evaluating modeling accuracy based on
landmarks for multiple patients

The procedure in this study to evaluate the modeling ac-
curacy was based on the patient-specific models and 4DCT
image data. As shown in Fig. 7, anatomical points that rep-
resent the bifurcation of vessels and airways were chosen on
the exhale and inhale images. For each patient data set,
39–48 such landmarks were chosen from the 4DCT images
over multiple breathing phases. For obtaining the landmarks,
we followed the procedure described by Sarrut et al.57 The
motion patterns of these points in the 4DCT images were
compared to the motion of the corresponding points in the
FE model to evaluate the modeling accuracy.

Table III summarizes the details of each patient FE model.
The commercial FE software package ABAQUS �Dassault
Systèmes, Providence, RI� was used to simulate the model
on an Intel Core2 Quadcore 2.83 GHz CPU machine with 8
GB RAM. Each computation runs till each finite-element
model is subjected to the pressure loading history according

TABLE VI. EE-EI prediction errors between for mode

Author M

Didier et al. �2007�a
A
b

Brock et al. �2005�b

A
4
A

Al-Mayah et al. �2008�c A
L
a
H



H
A

Al-Mayah et al. �2008�d

A
f
a

Werner et al.�2008�e
D
b

aReference 39.
bReference 38.
cReference 35.
dReference 42.
eReference 34.
to the volume change in Table IV. Due to its nonlinearity
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from lung tissue property and contact procedure, the compu-
tation time of each model is independent from its number of
unknowns.

The model developed in this study can predict motion at
multiple respiratory phases; each breathing phase is distin-
guished by its volume change of the segmented 4DCT data
from EE �breathing phase with minimum volume� and is
provided a unique identifier in Table IV.

III.C. Prediction of lung motion between EE and EI

The average of the position error and standard deviation
in each direction are used as metrics of comparison in this
study. If x4DCT is the position of landmark in 4DCT and xFEM

is the position of landmark in the corresponding FEM model,
then we define the prediction error as in Al-Mayah et al.35

	x = xFEM − x4DCT. �2�

Figure 8 plots a histogram of the absolute values of the pre-
diction error between EE and EI. The average difference of
end-inspiration in position between the landmarks and those
predicted by the model, are observed to be 0.450�0.330 cm
�average�standard deviation� for Patient P1, 0.387�
0.169 cm for Patient P2, 0.319�0.186 cm for Patient P3,
and 0.204�0.102 cm for Patient P4 in the magnitude of
error vector, respectively. In the lungs, the superior-inferior
�SI� direction is the predominant motion direction compared
to the anterior-posterior �AP� or left-right �LR�. For the ma-
jority of the landmarks, the displacement errors are less than
3 mm. It should be noted that the landmarks are located at
the bifurcations of vessel or airway where effects of hetero-
geneity of the lung tissue are significant. Also, note that all
3D CT images have slice spacing of 2 mm and that, conse-
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2 mm in superior-inferior direction. A model predicative of 2
mm error may be used to reduce margin of the planning
target volume. Although Patient P1 model had the smallest
volume change in this study, complex geometric feature
around the hilum prevented the pleural sliding along the AP
and LR direction and brought more erroneous result at the
lower right part of the lung.

Table V summarizes the prediction errors in four regions
of the lungs. The lower and upper part of lung are divided at
the midpoint of each lung in SI direction. It is interesting to
note that there are significant regional differences in predic-
tion error. In this table, the predictions for the lower-right
regions of the lung are more accurate than the upper-right
regions. These discrepancies may be caused by the assump-

TABLE VII. Mean errors of the FE model prediction fr
�b� P2, �c� P3 and �d� P4.

Breathing phase

Mean error

LR AP

�a� P
IN-1 −0.018�0.257 0.007
IN-2 0.045�0.347 0.082
EI −0.003�0.346 0.130

EX-1 0.037�0.435 0.270
EX-2 0.043�0.421 0.260
EX-3 −0.006�0.431 0.297
EX-4 −0.033�0.372 0.215

�b� P
IN-1 −0.003�0.187 0.115
IN-2 0.028�0.259 0.213
IN-3 0.054�0.246 0.114
IN-4 0.064�0.235 0.100
EI 0.073�0.221 0.066

EX-1 −0.008�0.123 0.001
EX-2 −0.014�0.102 −0.001

�c� P
IN-1 −0.006�0.127 0.054
IN-2 −0.010�0.157 0.112
IN-3 0.001�0.247 0.057
IN-4 0.016�0.231 −0.018
IN-5 0.050�0.232 −0.094
EI 0.024�0.225 −0.093

EX-1 0.025�0.234 −0.070
EX-2 0.019�0.159 −0.102
EX-3 0.152�−0.014 −0.133

�d� P
IN-1 −0.034�0.128 0.018
IN-2 −0.008�0.117 0.041
EI −0.038�0.103 0.036

EX-1 −0.029�0.110 0.018
EX-2 0.021�0.171 0.002
EX-3 0.008�0.154 −0.018
EX-4 0.036�0.137 −0.004
tions in the proposed modeling method. First, the intrapleural
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pressure may have spatial variations on the surface of the
lungs. This may be due to uneven compliance, uneven air-
way resistance, or the lungs sagging due to their weight.
None of these effects have been considered in this model.
Second, it has been reported that tumor-bearing regions have
a considerably lower mobility than the corresponding tumor-
free regions13 �4.1�2 vs 6.2�2.5 cm�. For Patient P2, we
chose five landmarks around tumor as shown as Fig. 7 and
the mean deviation of this tumor region is 0.041�0.212 cm
in LR, 0.061�0.152 cm in AP, 0.515�0.113 cm in SI, and
0.571�0.109 cm in magnitude. This may explain the differ-
ences in left vs right and tumor-bearing vs healthy tissue in
Table V. Additionally, geometric misalignment between
ROIs and landmarks or the surface of EE and EI may exist

e 4DCT data at different breathing phases for �a� P1,

E prediction at landmark points
�cm�

SI Magnitude

t P1
00 −0.012�0.198 0.235�0.252
88 −0.048�0.260 0.375�0.320
71 0.013�0.272 0.450�0.330
68 −0.111�0.319 0.554�0.319
52 −0.165�0.350 0.599�0.268
46 −0.173�0.313 0.613�0.282
63 −0.142�0.295 0.531�0.285

t P2
63 0.004�0.239 0.333�0.145
09 0.036�0.283 0.442�0.201
37 0.259�0.198 0.415�0.167
30 0.260�0.194 0.405�0.161
46 0.245�0.200 0.387�0.169
26 0.003�0.230 0.230�0.108
23 0.007�0.235 0.191�0.085

t P3
40 0.034�0.104 0.199�0.101
74 0.000�0.143 0.274�0.108
95 −0.098�0.185 0.318�0.207
31 −0.188�0.160 0.310�0.187
34 −0.197�0.144 0.320�0.197
48 −0.190�0.142 0.319�0.186
39 −0.116�0.144 0.283�0.180
25 −0.131�0.132 0.265�0.122
.062 −0.032�−0.038 0.205�0.165

t P4
07 −0.050�0.107 0.179�0.103
24 −0.065�0.127 0.198�0.106
36 −0.038�0.141 0.204�0.102
12 −0.075�0.123 0.187�0.105
42 −0.035�0.129 0.225�0.126
30 0.021�0.146 0.208�0.134
50 0.064�0.145 0.202�0.161
om th
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Table VI lists the prediction error of the previous physi-
cally based respiratory models found in the literature. As
reported, parametric studies involving linear elastic param-
eters �Young’s modulus and Poisson’s ratio� have been con-
ducted by Werner et al.34 Villard et al.,40 whereas a paramet-
ric study of friction coefficients has been performed in Al-
Mayah et al.42 However, it is noted that these parameters
should have been empirically obtained in the context of bio-
mechanics. In comparison, our model involved no tuning of

TABLE VIII. Mean error of linear prediction �Ref. 45

Breathing phase

Patient P2: Mean error

LR

IN-1 0.030�0.147 0.123
EX-2 0.055�0.233 0.220
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FIG. 9. Inferior-superior motion of landmark at tumor centroid for proposed
model and 4DCT over multiple breathing phases: �a� P1, �b� P2, �c� P3, and
�d� P4.
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FE modeling parameters including material properties,34

contact stiffness,37 or friction coefficients,42 and contains the
respiratory motion corresponding to the complete breathing
cycle with positional accuracy better than 3 mm, on average.

III.D. Prediction of lung motion at multiple breathing
phases

The mean errors, i.e., deviations of our model predictions
from the landmark data at multiple breathing phases are pre-
sented in Table VII. It is noteworthy that the average error in
the superior-inferior direction is less than 3 mm, which sug-
gests that our modeling approach is consistent in accuracy
over the entire breathing cycle. Contrary to previously re-
ported studies,58 which indicate that greater lung expansion
is associated with greater prediction error, the result shows
that the prediction error in the superior-inferior direction is
not the greatest at EI. What may be observed from Table VII
is that the prediction error does, in most cases, exhibit a
cyclical behavior with the location of the peak error being
determined by factors including location of the tumor and
interactions of the lungs with the ribcage through pleural
sliding. Deviation from this behavior may be observed in
Patient P4, and the error is not cyclic possibly because the
tumor of P4 is located on the pleural surface which alters its
sliding response compared to other patients.

To check the temporal prediction capability of proposed
mode, Fig. 9 shows that the inferior-superior motion of the
landmark at tumor centroid �positive is the downward direc-
tion in figure�. As shown in Sec. III C, Patient P1 has more
error in the other breathing phases as in EI. In this study, we
used same biomechanical properties and pressure loading
history for all four patients. This may show a temporal physi-
ological modeling factor which can address the each pa-
tient’s pathological conditions such as breathing patterns and
elastic property of the lesion and healthy tissue. It is note-
worthy that smaller tumor motion in 4DCT gives the smaller
discrepancy in the proposed FEM model in P4. Some of the
major simplifying assumptions in our model include neglect-
ing the complex alveolar structure of the lungs and modeling
them as homogeneous structures, using a parameterized P-V
curve52 and assuming the tumor tissue to have the same me-
chanical properties as the healthy lung tissue. We show that
in spite of these simplifications, the model is predictive and
reasonably accurate. Prediction of tumor motion may be im-
proved by assuming a different material model for the tumor.
However, biomechanical characterization of the tumor must
be performed prior to such modeling.

N-1 and EX-2 in Patient P2.

ear prediction from EE-EI at landmark points
�cm�

SI Magnitude

32 0.111�0.210 0.405�0.130
99 0.090�0.218 0.491�0.215
� at I

of lin

AP

�0.1
�0.1
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Most of the existing FE models report prediction of one
breathing phase at EI from EE34,35,37,39 and a linear interpo-
lation between EE-EI is used to predict the breathing motion
in the middle of EE-EI.45 For comparison, we also perform
the linear prediction45 through interpolation between EE and
EI of Patient P2 and compare the mean errors as a result of
linear prediction in Table VIII at midinspiration �IN1� and
midexpiration �EX2�. The magnitudes of mean error of the
proposed nonlinear FEM are 0.333 and 0.191 cm at IN1 and
EX2, respectively, compared to 0.405 �IN1� and 0.491 cm
�EX2� for the linear model predictions, indicating better ac-
curacy.

IV. CONCLUSIONS

The primary goal of this study was to develop a method
of FE modeling of the lung motion for the purposes of ra-
diation treatment planning and dosimetry evaluation. Special
attention was paid to the adoption of anatomically realistic
geometry, physiologically relevant boundary conditions,
pleural sliding, and nonlinear constitutive model. For geo-
metric modeling of the lungs and ribcage, an intermediate
NURBS surface between 4DCT images and meshes has been
constructed for FE computation. The results show that this
approach avoids multiple geometric smoothing procedures
used by many researchers and is more efficient while pre-
serving geometric features of the CT data. A P-V relationship
was used to provide physiologically relevant boundary con-
ditions to the FE model over the entire breathing cycle.
Expert-based validation using landmarks from 4DCT image
of four patients and FE model shows that the mean position
errors between our FE model and 4DCT data are within 3
mm in SI direction over the complete respiratory cycle. Fur-
thermore, the nonlinear FE predictions show more accurate
results over full breathing cycle than linear interpolation be-
tween EE and EI.

Some of the limitations of this study include the treating
the complex hierarchical alveolar structure of the lungs as
homogeneous structures, using a generic P-V curve, and as-
suming same mechanical properties of the tumor as the
healthy lung tissue. In spite of these simplifications, the
study demonstrated that the FE model is predictive over the
entire breathing cycle with clinically acceptable accuracy.
Prediction of tumor motion may be further improved when
biomechanical characterization of the tumor becomes avail-
able in the future.

Unlike previous models, the parameters of the model re-
ported here are physiologically identifiable and measurable,
so that the results can be refined by patient-specific measure-
ment of modeling parameters and extended to other patients
and additional neighboring organs affected by respiratory
motion. Future studies will consider multiple organs such as
the diaphragm in the simulation scenario in order to gain
insight into the effects of their interactions. A nonlinear vis-
coeleastic model of lung tissue will need to be developed in
the future to more accurately represent the energy dissipation
mechanisms using new data from experimental characteriza-

tion of lung tissue. Finally, the model developed here is for

Medical Physics, Vol. 37, No. 8, August 2010
normal breathing. For active breathing, modifications to this
model would be necessary including ribcage rotation and
intercostals muscle contraction and relaxation.
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