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ABSTRACT

Loci involved in local adaptation can potentially be identified by an unusual correlation between allele
frequencies and important ecological variables or by extreme allele frequency differences between
geographic regions. However, such comparisons are complicated by differences in sample sizes and the
neutral correlation of allele frequencies across populations due to shared history and gene flow. To
overcome these difficulties, we have developed a Bayesian method that estimates the empirical pattern of
covariance in allele frequencies between populations from a set of markers and then uses this as a null
model for a test at individual SNPs. In our model the sample frequencies of an allele across populations
are drawn from a set of underlying population frequencies; a transform of these population frequencies is
assumed to follow a multivariate normal distribution. We first estimate the covariance matrix of this
multivariate normal across loci using a Monte Carlo Markov chain. At each SNP, we then provide a
measure of the support, a Bayes factor, for a model where an environmental variable has a linear effect on
the transformed allele frequencies compared to a model given by the covariance matrix alone. This test is
shown through power simulations to outperform existing correlation tests. We also demonstrate that our
method can be used to identify SNPs with unusually large allele frequency differentiation and offers
a powerful alternative to tests based on pairwise or global FST. Software is available at http://www.
eve.ucdavis.edu/gmcoop/.

LOCAL adaptation to divergent environments can
lead to dramatic differences in average phenotype

between populations of the same species. Such variation
offers particularly compelling evidence of natural selec-
tion when it is correlated with variation in environmental
factors over multiple independent geographic regions
and/or species. For example, in warm-blooded species,
individuals at higher latitudes tend to be smaller than
those found at the equator (Bergmann 1847; Allen

1877) and birds in humid climates tend to be darker in
pigmentation than those in drier habitats (Gloger

1833). There are many other examples of phenotypic
adaptations to local environments, including cyptic
pigmentation in deer mice (Sumner 1929; Mullen

and Hoekstra 2008), body size and pigmentation
gradients in Drosophila (e.g., Coyne and Beecham

1987; Huey et al. 2000; Pool and Aquadro 2007), skin
pigmentation clines in humans (Relethford 1997), and
toxic soil resistance in plants ( Jain and Bradshaw 1966).
Such patterns were among the earliest types of evidence
used to demonstrate the action of local adaptation as a
force driving phenotypic differences between popula-
tions within a species (e.g., Huxley 1939; Mayr 1942).

Correlations between phenotype and environment
may be mirrored at the level of individual genetic
polymorphisms, where at some loci, allele frequencies
strongly differentiate populations that live in different
environments. Such correlations can arise when selec-
tion pressures exerted by the environmental variable are
sufficiently divergent between geographic locations,
such that differences in allele frequency can be main-
tained in the face of gene flow (e.g., Haldane 1948;
Slatkin 1973; Nagylaki 1975; Lenormand 2002). The
study of geographic patterns of genetic variation has
a long history, with some of the earliest work on genetic
polymorphism being the study of clines in the fre-
quency of cytologically visible inversion polymor-
phisms (Dobzhansky 1948). Other examples include
loci involved in adaptations to high altitude (Storz

et al. 2007; McCracken et al. 2009), pigmentation
(Hoekstra et al. 2004), and life-history changes
(Schmidt et al. 2008). One particularly impressive
example of adaptive response to selection is provided
by the ADH locus in Drosophila melanogaster, alleles of
which show a strong gradient with latitude (Berry and
Kreitman 1993). It has been observed that the ADH
cline is quickly reestablished after the introduction
of the species onto different continents and that it
responds quickly to climate change (Umina et al. 2005).
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The advent of genome-wide data sets with individuals
from many populations, across a wide geographic range
(e.g., Nordborg et al. 2005; Jakobsson et al. 2008; Li

et al. 2008; Auton et al. 2009), allows investigators to
obtain a systematic view of the processes shaping local
adaptation and to gain valuable insights into the genetic
and ecological basis of adaptation and speciation. It can
also provide support for adaptive explanations for
phenotypic variation, for example, suggesting an impact
of selection on variation that is linked to human meta-
bolic diseases (Thompson et al. 2004; Young et al. 2005;
Hancock et al. 2008, 2010; Pickrell et al. 2009).

Some of the earliest tests of selection on genetic
markers were based on identifying loci that showed
extreme allele frequency differences among popula-
tions (Cavalli-Sforza 1966; Lewontin and Krakauer

1973), using statistics such as FST, and there are now a
range of methods predicated on this idea (e.g., Beaumont

and Balding 2004; Foll and Gaggiotti 2008). Our goal
here differs, as we seek to identify loci where the allele
frequencies show unusually strong correlations with
one or more environmental variables. Such loci may be
under selection driven by those environmental factors
or correlated selection pressures. However, this goal
is complicated by the fact that allele frequencies are
typically correlated among closely related popula-
tions; since such populations tend to be geographically
proximate they often share environmental variables
(see Novembre and Di Rienzo 2009 for a recent dis-
cussion). This means that neighboring populations
can rarely be treated as independent observations.
Thus, a naive test of correlation between population
frequency and an environmental variable will often
have a high false positive rate. This situation is some-
what analogous to the reduced number of indepen-
dent contrasts when comparing traits across species
due to the shared phylogeny (Felsenstein 1985). The
nonindependence of populations is also known to
be an issue when using FST as a summary statistic to
identify selected loci (Robertson 1975; Excoffier

et al. 2009).
To illustrate the problem, Figure 1 shows the allele

frequencies of a SNP in a series of 52 human populations,
as a function of the distance of each population from the
equator (Figure 1 is redrawn from a similar plot in
Thompson et al. 2004). The SNP is AGT M235T and the
allele that increases in frequency with latitude is known to
reduce sodium retention (Lifton et al. 1993), which may
have been selectively favored in cooler northern climes.
However, as is apparent in Figure 1, populations cluster
by broad geographic region for both allele frequency and
distance from the equator. Thus, the correlation between
allele frequency and environmental variable is clearly
supported by far fewer independent observations than
the 52 points plotted in Figure 1. Moreover, it is not clear
how much of the variation in allele frequency in Figure 1
is due to sampling error in some of the smaller samples

or genetic drift. For example, are the low allele frequen-
cies in Oceania—which support an environmental
correlation—simply due to sampling error or genetic
drift?

In this article, we develop a model to overcome these
difficulties by accounting for differences in sample sizes
and for the null correlation of allele frequencies across
populations when testing for correlation between an
environmental variable and allele frequencies. To do
this, we use a set of control loci to estimate a null model
of how allele frequencies covary across populations. We
can then test whether the correlation seen between the
allele frequencies at a marker of interest and an
environmental variable is greater than expected given
this null model. We concentrate on markers such as
SNPs that are codominant and usually biallelic, but we
note in the discussion how the model can be extended
to other types of markers. The method developed here
can be applied to continuous or discrete environmental
variables. We demonstrate the method by applying it to
genome-wide SNP data from humans. Elsewhere we
have applied this method to human genome-wide SNP
data, for a range of environmental and ecological
variables (Hancock et al. 2008, 2010).

METHODS

We develop a model for the joint allele frequencies
across populations. One way to do so would be to use a
fully explicit model of demographic history, but such

Figure 1.—The distance from the equator for each of 52
human populations, plotted against sample allele frequencies
for the SNP AGT M235T in each population. The points are
colored according to the geographic region each popula-
tion belongs to, following region definitions of Rosenberg

et al. (2002). The data were generated using HGDP samples
by Thompson et al. (2004) and are replotted on the basis
of a figure in that article.
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models are very difficult to parameterize and to fit for so
many populations. Instead, we intentionally avoid using
an explicit model of the historical relationships between
populations and opt for a flexible, less model-based
parameterization. Under our null model, the population
allele frequency in each population may deviate away
from an ancestral (or global) allele frequency due to
genetic drift. Populations covary in the deviation that
they take, allowing some populations to be more closely
related genetically to each other due to the effects of
shared population history or gene flow. Thus, our null
model is specified by the covariance structure of allele
frequencies across populations. To estimate this covari-
ance structure, we assume that a transform of the popu-
lation frequency of an allele across populations has a
multivariate normal distribution. We estimate the covari-
ance matrix of this normal distribution using our control
SNPs. This provides the null model that we use to assess
the correlation between the environmental variable and
allele frequencies at a SNP of interest.

Null model: Suppose that L unlinked SNPs have been
typed in K populations. First we estimate the null model
using all L of these markers; if the number of markers is
very large, then to improve computational speed we may
estimate the null model using a large random subset L
of all the markers typed. (As discussed below, we find
that the null model parameters estimated from differ-
ent subsets of the data are highly consistent, provided
that L is large enough.) In some applications, the
markers that we are interested in testing for environ-
mental correlations may be among the L (since we
expect that a small fraction of selected loci will have little
impact on the parameter estimates for the null model).
Alternatively, the L may represent a set of well-matched
control markers (see Hancock et al. 2008, 2010, for
discussion).

The data at locus l consist of the number of times we
see alleles 1 and 2, respectively, in each of the k
populations. (The two alleles are labeled arbitrarily.)
Then let nl ¼ {n1l, . . . ,nKl } be the observed counts of
allele 1 and ml¼ {m1l, � � � , mKl } be the counts of allele 2,
in populations 1; . . . ;K ; hence the total number of
allele copies genotyped at locus l in population k is nkl 1

mkl. This notation ignores any missing data at site l,
which is appropriate if we assume that any missing data
are missing at random with respect to genotype. The
population allele frequencies at locus l will be denoted
by x1l, . . . , xKl, and we assume that the observed counts of
each allele are the result of binomial draws from these
frequencies, independently for each k and l. The
population allele frequencies are unknown in advance,
and must be estimated from the data.

We aim to construct a model for the joint distribution
of allele frequencies across the k populations. If these
frequencies were not constrained to be between zero
and one, it would be natural to model the population
allele frequencies of a SNP across populations as being

multivariate normal. To overcome the constrained
nature of allele frequencies, we follow Nicholson

et al. (2002) by assuming that the population allele
frequency in a subpopulation, xkl, is normally distrib-
uted around an ancestral allele frequency el (0 , el , 1),
but that the densities of xkl above 1 and below 0 are
replaced with point masses on 1 and 0, respectively.
Further, we adopt the assumption of Nicholson et al.
(2002) that, for a particular subpopulation, the
variance of this normal distribution is a product of a
factor that is constant across loci multiplied by a
locus-specific term: i.e., el(1 � el). This model was
introduced to describe a pure drift model where the
allele frequency within each population indepen-
dently drifts from the ancestral allele frequency.
The normal distribution was chosen because, when
the frequency of an allele in the current generation
is e, the binomial sampling of the next generation
can be approximated as the frequency in the next
generation being �N(el, el(1 � el)/(2Ne)) (in a pop-
ulation of effective size Ne). Thus, after t generations
of genetic drift, the distribution of allele frequency
can be approximated as �N(y, Ckel(1 � el)), where
Ck¼ t/(2Ne) is shared across loci, for t > Ne

(Nicholson et al. 2002). The estimate Ck can also
be viewed as a model-based population-specific esti-
mate of FST, a relationship that holds for low values of
Ck (Nicholson et al. 2002), a point that we return to
briefly in the discussion.

Put in notational form, we assume that the population
allele frequency xkl is related by a simple transform g() to
a surrogate population allele variable ukl that is not
constrained to be between 0 and 1:

xkl ¼ g ðukl Þ ¼
0 if ukl , 0
ukl 0 # ukl # 1
1 ukl . 1:

8<
: ð1Þ

Therefore, for a locus l there is a set of ul ¼ u1l, . . . , uKl,
where ukl has a marginal distribution�N(el, el(1 – el)Ck)
(Nicholson et al. 2002). The point masses in the dis-
tribution of xkl on zero and one (ukl # 0 and ukl $ 1)
represent the probability that the allele has been lost or
fixed in the kth population, respectively.

Since we want to explicitly estimate the covariance
in allele frequencies across populations, rather than
assuming independent normally distributed varia-
bles across populations (as in Nicholson et al. 2002),
we assume that the ul have a multivariate normal
distribution

Pðul jV; elÞ�N ðel ; elð1� elÞVÞ; ð2Þ

where N(m, V) is a multivariate normal distribution with
mean m and variance–covariance matrix V. When the
off-diagonal components of V are set to zero, this model
is the same as that of Nicholson et al. (2002) with minor
differences in parameterization.
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We can write the joint posterior of the parameters (ul,
V, el) at a single locus l up to a normalizing constant, as

Pðul ; V; el j nl ; mlÞ}Pðnl ; ml j xl

¼ g ðul ÞÞPðul j V; elÞPðVÞPðelÞ; ð3Þ

where P(V) and P(el) are priors on the covariance
matrix and ancestral frequency, respectively. Our prior
on the ancestral allele frequency e is symmetric Beta
with parameter l. For the results presented here, we set
l ¼ 1, reflecting the fact that the SNPs have been
ascertained to be polymorphic. But in practice the
choice of l makes relatively little difference, as when
there are many populations, there is reasonably good
information about the parameter e; we note, however,
that e is generally ‘‘biased’’ toward matching the allele
frequency of geographic regions with large numbers of
populations sampled.

Our prior on the variance–covariance matrix V, P(V),
is somewhat more complicated, as it must have weight
only on the set of positive definite matrices (a re-
quirement of the multivariate normal distribution).
We use the inverse Wishart prior, which is often used
as a prior on variance–covariance matrices because it is
the conjugate prior for the variance–covariance matrix
of a multivariate normal. The inverse Wishart is param-
eterized by W(rR�1,r), where R is the prior K 3 K shape
matrix and r (where r $ K) is a parameter controlling
the strength of the prior (i.e., how much the posterior
draws of the covariance matrix resemble the shape
matrix). To make the prior as weak as possible we set r¼
K. We set R to be the identity matrix (i.e., Rij¼ 1 if i ¼ j,
and 0 otherwise), but investigate the effect of this choice
of prior later.

The covariance matrix is shared over loci, and so the
joint posterior for all the loci is

PðV; u1; . . . ; uL; e1; . . . ; eL j n1;m1; . . . ;nL; mLÞ

}
Yl¼L

l¼1

Pðnl ;ml j xl ¼ g ðul ÞÞPðul j V; elÞPðelÞ
( )

PðVÞ:

ð4Þ

We use Markov chain Monte Carlo (MCMC) to explore
the posterior of the covariance matrix and other param-
eters. Our MCMC scheme is presented in appendix a.

Alternative model: Having estimated a null model of
how SNP frequencies vary across populations (i.e., the
posterior of the covariance matrix V), we now use this
model to investigate whether allele frequencies at a SNP
of interest are significantly correlated with an environ-
mental variable Y. To do this, we allow the allele
frequency, ul, to be dependent on Y (Y is standardized
to have mean zero and a standard deviation of 1). The
surrogate allele frequencies ul have a deviation from the
ancestral allele frequency el that is linearly proportional
to the environmental variable Y with coefficient b; i.e.,

Pðul j V; el ;bÞ�N ðel 1 bY; elð1� elÞVÞ: ð5Þ

We note that while this model predicts a linear
relationship between ul and Y, this does not necessarily
imply a linear relationship between the population
allele frequencies xl and Y due to the boundaries for
the population allele frequency at 0 and 1. Note that b

and Y could also be multivariate, allowing combinations
of climate variables to be investigated. However, the
allele frequencies at any one locus are intrinsic noisy;
thus there is limited information about even a single
climate variable correlation and so we refrain from
implementing this multivariate option.

We place a prior on b, P(b), and then estimate the
posterior

Pðul V; el ; b j nl ; mlÞ}Pðnl ; ml j xl

¼ g ðulÞÞPðul jV; el ; bÞPðVÞPðe1ÞPðbÞ; ð6Þ

where P(b) is defined to be a uniform distribution
between our choice of the minimum and maximum
values of b, bmin and bmax. We use the posterior of the
covariance matrix estimated from the control SNPs as
the prior for the covariance matrix for a single locus.
Since we perform the test at each locus separately, we
further assume that the information from the control
loci provides all of the information about the covariance
matrix. Thus, rather than exploring the posterior of the
covariance matrix given both the control SNPs and the
test SNP, we can simply use draws from the posterior of
the matrix that have previously been generated from the
control SNPs. In practice, in our applications to human
SNP data, we found that we have sufficient information
(i.e., enough control loci) that the posterior mass of the
covariance matrix is tightly concentrated on a single
matrix and so it makes little difference if we use a single
draw of covariance matrix from the posterior given the
control loci and ignore the small uncertainty in this
matrix. Thus, for the applications in this article, we
simply use a single draw from the posterior of the
matrix, while noting that for applications with smaller
numbers of markers, it may be important to incorporate
the uncertainty in the matrix.

To summarize the support for the alternative model
M1 (i.e., the model with b) compared to the null model
M0 we calculate the Bayes factor

PðM1 j nl ;ml Þ
PðM0 j nl ;ml Þ

¼
Ð

Pðnl ;ml j ul ÞPðul j b; el ; VÞPðVÞPðel ÞPðbÞdbdul del dVÐ
Pðnl ;ml j ul ÞPðul j el ; VÞPðVÞPðel Þdul del dV

;

ð7Þ

where P(M0 j nl, ml) is the posterior probability of the
data at locus l under the null model (b ¼ 0), found by
integrating the right-hand side of Equation 3 over all the
parameters of the null model, and P(M1 j nl, ml) is given
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by the integral of Equation 6 over all parameters of the
alternative model. The calculation of the Bayes factor is
discussed in appendix b, where we present a way in
which many environmental correlations can be tested
using a single run of the MCMC for a SNP. The im-
portance sampler will perform best when the target dis-
tribution is close to that simulated under, i.e., when the
posterior of the data under the alternative model is
close to that under the null model. This suggests that
the importance sampler will converge quickly when the
data resemble data generated under the null model; i.e.,
our estimates of large Bayes factors will be noisier. As
with all MCMC algorithms the estimates of Bayes factors
produced by the method should be checked with
multiple runs of the algorithm. We find good agreement
between Bayes factors over independent runs and also
between the posterior of b estimated by the importance
sampler and posteriors for b estimated by MCMC
(results not shown).

Assessing significance: Various aspects of population
history are likely to violate the simple assumptions of our
model; therefore the addition of the linear dependence
on an environmental variable might improve the fit to
the frequencies of even neutral alleles. Indeed, when
investigating the performance of the method, on control
sets of SNPs chosen to be neutral (e.g., Conrad et al. 2006;
Hancock et al. 2008), we found that the distribution of
Bayes factors differed dramatically between environmen-
tal variables. This variation in the distribution of Bayes
factors, across environmental variables, was not seen in
data sets simulated using the matrix estimated from the
Human Genome Diversity Project (HGDP) data, suggest-
ing that it represents a feature of the data (results not
shown). Thus, a large Bayes factor supporting the
alternative model may not be strong evidence that the
SNP has been the target of selection. A robust way to
overcome this problem is to apply the method to all of
the control SNPs and build an ‘‘empirical distribution’’ of
Bayes factors from the control SNPs. The Bayes factor for
the SNP of interest (for a given environmental variable)
can then be compared to this distribution to judge its
significance (Hancock et al. 2008, 2010). For applica-
tions of the method we recommend that these empirical
distributions are constructed separately for bins of
mean global allele frequency and ascertainment
scheme; this will control for features of the data not
well captured by the model. We direct interested readers
to Hancock et al. (2010), where these recommenda-
tions have been implemented in a genome-wide scan for
adaptive alleles.

RESULTS

To explore our method, we initially applied our
method to the genotype data gathered by Conrad

et al. (2006) for 927 individuals from the 52 human
populations of the HGDP panel. These populations

represent a reasonable sampling from around the
world, although there are some notable gaps in the
sampling. Conrad et al. (2006) typed 2333 SNPs in 32
autosomal regions to study patterns of linkage disequi-
librium. Although the SNPs within each region are in
partial linkage disequilibrium, and thus violate our
assumption of independence between SNPs, parameter
estimates of the model should not be biased as a result
(although this violation may lead to overconfident
parameter estimates). Consistent with this, we get very
similar results if we run the analysis on subsets of the
genomic regions (results not shown). We first estimated
the 52 3 52 variance–covariance matrix of the HGDP
populations. We show a single draw from the posterior
of the covariance matrix in Figure 2A and the correla-
tion matrix computed from this matrix in Figure 2B.
These matrices reveal the close genetic relationship of
populations from the same geographic region, which is
qualitatively similar to the groups identified by STRUC-
TURE for these data (Conrad et al. 2006) and samples
(Rosenberg et al. 2002; Li et al. 2008). Also, the Uygur and
Hazara populations are clearly picked out as showing
higher covariance between the East Asian and Western
Eurasia blocks than other populations within the blocks,
consistent with the hypothesis that these populations
result from recent admixture events between these
broad geographic regions (Rosenberg et al. 2002).

The convergence of the MCMC to the posterior is
relatively quick and dropping the first 5000 iterations
was more than sufficient as a burn-in. Multiple in-
dependent runs with different starting positions quickly
converged to similar matrices. Draws from the posterior
showed relatively small fluctuations around the matrix
displayed in Figure 2A, suggesting that the matrix is
reliably estimated from this data set.

The posterior of the matrix estimated from these data
is reasonably unaffected by the choice of prior of the
covariance matrix. If instead of setting the shape matrix
of the prior on the covariance matrix (R) to the identity
matrix, we set it to specify a strong prior correlation (i.e.,
Rij¼ 1 if i ¼ j and 0.99 for i 6¼ j), there is no notable
difference in the posterior estimate of the covariance
matrix. For example, the Mantel matrix correlations
between draws of the posterior matrix within a run are
very similar to those observed between runs with
different priors (results not shown). For applications
to small numbers of markers and/or sample sizes, it may
be advisable to use this prior shape matrix that reflects a
strong correlation of allele frequencies between pop-
ulations. This will encourage the method to combine
information over small samples and will reduce the
chance that populations with small samples will add
noise to the test.

Power simulation: Next we explored the power of
our method to detect correlations between allele fre-
quencies and environmental variables in the HGDP
data. Simulating selection in a large number of pop-
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ulations under nonequilibrium models of history is
challenging and unappealing, as it requires the arbitrary
choice of many parameters. Instead we took an empir-
ical approach and altered the sample frequency of the
SNPs in the Conrad et al. (2006) HGDP panel by adding
a linear effect of the environment variable. If the
current sample frequency of an allele in population k
is Xk¼ nk/(nk 1 mk), then our new frequency is X 9k ¼
Xk1bYk, where Yk is the environmental variable in the
kth population (we rescaled Y to have mean zero and
variance 1). We converted these to sample frequencies
by rounding nkX 9k to the nearest integer n9

k ; if n9
k is

negative or exceeds the sample size (nk1mk), then n9
k is

set to zero or nk 1 mk, respectively. Informally, this linear
shift may be thought of as modeling strong selection
that acted recently on the frequencies of the allele
across populations. We conducted these power simu-
lations for a range of b.

We then calculated the Bayes factor to assess support
for a correlation between Y and the modified SNP
frequencies. For comparison, we also calculated the
power of a number of other test statistics aimed at
detecting the correlation between the environmental
variable and the sample allele frequencies: Spearman’s
rank correlation r, the P-value from a linear regression
model, and the P-value in a linear model obtained after
first regressing out the first three principal components
of the genetic data. We note that none of these three

alternative methods offers a well-calibrated statistic; i.e.,
the P-values were not uniform under the null model
(i.e., b ¼ 0). Therefore, for these alternative methods
and our Bayes factors we used the empirical distribution
of a test statistic to correctly set the cutoff threshold for
significance. To do this, we calculate the test statistic for
all SNPs, applying no linear effect of the environmental
variable (i.e., b ¼ 0), and create an empirical distribu-
tion for each of these test statistics. We then find the 5%
cutoff for this empirical distribution and any test statistic
lower than this is declared significant at the 5% level. To
explore the power of the various methods to detect an
environmental correlation, we chose a geographic vari-
able, i.e., latitude, and a climate variable, i.e., summer
precipitation. Latitude was chosen because it has been
used in a number of previous studies (e.g., Beckman

et al. 1994; Thompson et al. 2004; Young et al. 2005;
Hancock et al. 2008) and summer precipitation was
chosen as an example where all methods should have
good power because summer precipitation is relatively
uncorrelated with genetic patterns (it has only mildly
significant correlations with the first four principal
components of the genetic data). In Figure 3, we show
our power to detect a latitudinal effect on population
allele frequency. As can be seen, the methods that
account for the genetic structure of the populations
outperform those that do not, and our method is the
most powerful.

Figure 2.—(A) A single draw from the posterior of the covariance matrix estimated for the HGDP SNPs of Conrad et al. (2006).
(B) The correlation matrix calculated from the covariance matrix shown in A. The matrices are displayed as heat maps with lighter
colors corresponding to higher values. The rows and columns of these matrices have been arranged by broad geographic label.
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When the environmental variable is reasonably un-
correlated with the major axes of variation in genetic
data, the power of all of the methods improves,
compared to the latitudinal results, as the ‘‘noise’’
caused by genetic relatedness between populations is
less confounded with the signal that we are trying to
detect. This can be seen clearly by comparing the power
to detect an effect with summer precipitation (see
Figure 4) to the latitudinal case, where all methods
have lower power (note that both environmental
variables have been standardized and so the average
change in frequency is approximately the same in both
cases). Also, the improvement in power of methods that
account for genetic structure over those that do not is
greatly reduced if the environmental variable is not
strongly correlated with the principal axes of variation
in the genetic data. For example, the power of Spear-
man’s rank test to detect an effect of summer pre-
cipitation is comparable to that of the principal
component method.

We also explored our power to detect a ‘‘continental’’
effect. To this end, we created an environmental vari-
able Y, where Y ¼ 1 for all European populations and
Y ¼ �1 for all non-European populations. We again
calculated our power to detect such an effect using our
estimated Bayes factor as a test statistic. For comparison,
we also calculated the power to detect the effect using
various FST-based measures between broad geographic
areas: pairwise FST between the Middle East and Europe,
pairwise FST between Central Asia and Europe, and a
European population-specific measure of FST (these
were all calculated according to Cockerham and Weir

1986 and Weir and Hill 2002). We also calculated a
global FST using ‘‘continent’’-level labels, but it per-
formed very poorly, presumably because the changes
in allele frequency were restricted to a subset of pop-
ulations, and so was not included. The results of the

power simulations are shown in Figure 5. Our method
has higher power than the standard FST-based methods,
perhaps because it effectively combines information
from all of the pairwise comparisons in the data while
accounting for the noise and covariance in each
comparison (see also Excoffier et al. 2009 for
discussion).

Data application: To demonstrate the utility of the
method for genome-wide data, we applied the method
to the 640,698 autosomal SNPs typed by Li et al. (2008)
in the HGDP–CEPH. An expanded exploration of these
data for a range of environmental variables is given in
Hancock et al. (2010). Since the genotyped SNPs come
from three different ascertainment panels (Eberle et al.
2007), we estimated three different covariance matrices,
by sampling three different sets of 10,000 SNPs at
random from the three different SNP sets. Draws from
the posterior of the three covariance matrices estimated
were qualitatively very similar to the example shown in
Figure 2 and to each other and showed little variation
within runs of the MCMC (results not shown).

We calculated the Bayes factors for all autosomal SNPs
for a number of different continental effects, using the
covariance matrix for each SNP that matched its
ascertainment set. All of the calculated Bayes factors,
along with the matrices used, are available for download
at http://www.eve.ucdavis.edu/gmcoop/. In Figure 6,
we show the Bayes factors for all autosomal SNPs for two
of the effects tested: a European effect and a Western
Eurasian effect (Europe, Middle East, and Central Asia).
For example, for the European effect we set Y¼ 1 for all
European populations and Y ¼ �1 for all other
populations and then standardize Y.

Among our top hits for a European effect are pre-
viously identified hits at TLR6 (Todd et al. 2007;
Pickrell et al. 2009), SLC45A2 (Norton et al. 2007),
and HERC2 (Sulem et al. 2007). Variants at these genes
are known to be involved in immune response, skin

Figure 3.—The power of various methods to detect a cor-
relation between latitude and allele frequency.

Figure 4.—The power of various methods to detect a cor-
relation between summer precipitation and allele frequency.
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pigmentation, and eye color, respectively. All of these
alleles strongly differentiate the European populations
from the closely related Middle Eastern and Central
Asian populations. Instructively, SNPs in the Lactase
gene are not among our top European effects, despite
the selected allele being at high frequency within
Europe and almost absent in the Middle East. This is
likely due to the fact that the selected allele is also at
high frequency in Central Asia (Bersaglieri et al. 2004)
and in fact SNPs near the lactase gene have some of the
largest Bayes factors for a joint Europe–Central Asian
effect genome-wide.

Our top hit for a Western Eurasian effect (Figure 6) is
the previously identified signal at SLC24A5 (Lamason

et al. 2005). Interestingly, EDAR is among our top hits
for a Western Eurasian effect; this gene was previously
identified by Sabeti et al. (2007) as the putative target of
the strong selective sweep in East Asians (and is among
the top Bayes factor signals for an East Asian–America
effect). The Bayes factor signal in Western Eurasia hints
that this genomic region might have undergone sepa-
rate sweeps in Western Eurasia and East Asia. To explore
the signal for a second sweep using haplotype patterns
in this region, we calculated the empirical P-value for
the XPEHH statistic (Sabeti et al. 2007), which com-
pared haplotype homozygosity between two popula-
tions, for a window containing this gene (see Pickrell

et al. 2009 for details). The empirical P-value was 0.029 in
Europe, 0.046 in the Middle East, and 0.026 in Central
Asia, suggesting evidence of a second sweep, although
less strongly than the XP-EHH signal in East Asians for
this region (empirical P-value of 0.0015).

DISCUSSION

In this article, we develop a flexible model for
examining the correlation in allele frequencies across
populations, parameterized by the covariance matrix.

Our main goal was to use this estimated covariance
matrix to perform a parametric test of the effect of an
environmental or continental variable on the frequency
of an allele at a SNP, while controlling for the correla-
tion of allele frequencies across populations. Therefore,
this model has strong similarities to generalized linear
mixed models, where the environmental variable is a
fixed effect and the covariance matrix governs the
random effects. Thus, the approach is conceptually
similar to the approaches introduced to map pheno-
types across individuals in strongly structured popula-
tions; in these approaches a kinship matrix is used to
account for differences in the background genetic
relatedness (Yu et al. 2006; Kang et al. 2008). The
proposed test results in a considerable improvement
in power to estimate effects over methods widely used in
the literature. This gain of power comes from the fact
that the estimated covariance matrix informs the model
as to how to weight the different populations.

For a single locus, the covariance matrix is propor-
tional to the variance and covariance of allele frequen-
cies around a common mean, where the constant of
proportionality is the binomial variance el(1 – el). This
means that the elements of the estimated matrix have a
direct intepretation as a parametric estimate of the
pairwise and population-specific FST. This interpreta-
tion holds only for relatively low levels of drift, as the
boundaries at zero and one distort the relationship
between the variance of the multivariate normal and FST

for large levels of drift. Nicholson et al. (2002) have an
extensive discussion of this interpretation of the vari-
ance in the case where each population drifts indepen-
dently from some shared ancestral population, and
Weir and Hill (2002) and Samanta et al. (2009) discuss
this connection for the maximum-likelihood estimator
of the sample covariance matrix when levels of drift are
low and sample sizes are large. The framework pre-
sented here thus provides a Bayesian model-based
estimate of FST matrices discussed in Weir and Hill

(2002). An alternative model-based formulation of
population-specific FST is offered by the beta-binomial
island-model framework (Balding and Nichols 1995;
see also Balding 2003). This island-model framework
considers populations at an equilibrium of mutation–
migration–drift balance, as opposed to the nonequilib-
rium pure drift model of Nicholson et al. (2002);
the merits of these two approaches are discussed in
Nicholson et al. (2002), Balding et al. (2002), and
Balding (2003). The island-model framework has
been extended to identify loci that have outlying allele
frequencies with respect to particular populations
(Beaumont and Balding, 2004; Bazin et al. 2010).
Our aim here has been to develop a test of environ-
mental selective gradients; thus while we have imple-
mented this in the spirit of the pure-drift model of
Nicholson et al. (2002) our framework could be
implemented into the island-model framework and

Figure 5.—The power of various methods to detect a ‘‘Eu-
ropean effect’’ on allele frequency.
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would likely perform comparably [see also the discus-
sion of choice of g() below].

The study of the pattern of the covariance of allele
frequencies across populations has a long history as the
covariance contains information about the history and
levels of gene flow between populations (Cavalli-
Sforza et al. 1964; see also the review by Felsenstein

1982). It may be fruitful to adapt the Bayesian frame-
work presented here to infer the historical relation-
ships between the sampled populations. For example,
the drift on different branches of a tree of populations
could be approximated by normal deviations, which
would allow rapid calculation of the branch lengths (see
RoyChoudhury et al. 2008 for a recent presentation of
the problem). However, the pairwise covariance of allele
frequencies across populations can be used only to learn
about the average coalescent times within and between
pairs of populations (Slatkin 1991) and so this ap-
proach could not be directly used to distinguish be-
tween isolation models and migration models (see
McVean 2009, for discussion).

Here, we take a Bayesian approach that fully models
the uncertainty in allele frequencies due to sampling.
Thus, while we have discussed the model in terms of
allele frequencies across population samples, it could be
applied as an individual-based analysis where the
genotype of each individual represents two draws from
a unique ‘‘population.’’ This formulation may be useful
when population labels are not known a priori. The
current interest in principal component analysis (PCA),
now almost exclusively based upon individual-level
rather than population-level analyses, suggests that such
applications would be useful, given that PCA is a de-

composition of the covariance matrix (see McVean

2009, for discussion). Our method can also be extended
to other marker types, e.g., for biallelic dominant
markers, by using a different form from P(nl, ml j xl)
(e.g., Falush et al. 2007). Likewise, the method could
also be applied to data for pooled sample data or next-
generation short-read sequencing data—once again by
modifiying P(nl, ml j xl). We have also experimented
with different transforms of the population frequencies
[i.e., g()], e.g., a logit transform, and found that they
gave very similar results, particularly in terms of the test
of environmental variables (results not shown). Such
transforms may be useful for applying the method to
multiallelic systems such as microsatellites (e.g., Wasser

et al. 2004).
We summarize the support for the model with an

effect on an environmental variable compared to a
model without a linear effect using a Bayes factor. In the
application to the HGDP data, we ranked the SNPs by
Bayes factor. A posterior predictive P-value (Rubin

1984) could be obtained by simulation from the pos-
terior distribution of the null model, which would likely
lead to a similar ranking. However, we have deliberately
refrained from utilizing the method to make statements
about the absolute ‘‘significance’’ of the correlation
seen at specific SNPs, as we are somewhat skeptical
about the fit of the null model even to data with no
environmental dependence. Rather we suggest that
careful comparison of the empirical distribution of test
statistics (in our case Bayes factors) between a set of
putatively selectively neutral control markers and can-
didate SNPs of interest is the most convincing way
forward (Hancock et al. 2008). This can be accom-

Figure 6.—A plot of the log10 Bayes factor for each SNP along the human genome for (A) a European effect and (B) a western
Eurasian effect. Bayes factors ,1 are not plotted. The numbers on the x-axis indicate chromosome number, with SNPs on different
chromosomes colored alternately in red and black. We list the name of the gene that is nearest to each of the six highest-ranking
SNPs in each plot (considering only the peak SNP in each cluster of high Bayes factors).
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plished in a genome-wide setting by genic to nongenic
SNPs (assuming that nongenic sites are less likely to be
functional) to judge the evidence for an enrichment of
selection signals in the tails of a test statistic (Barreiro

et al. 2008; Coop et al. 2009; Hancock et al. 2010). The
empirical approach in turn has some serious drawbacks,
the most obvious of which is deciding what statistical
cutoff to use, as the choice of cutoff reflects one’s prior
beliefs of the prelevance of selection (Teshima et al.
2006).

It is hard to predict in advance how often strong
correlations between allele frequencies and environ-
mental variables will form across a species range.
However, it is likely that strong gene flow and the
parallel mutation will both act to reduce the likelihood
of strong correlations. If selection is not strongly di-
vergent across a species range, i.e., the locally adaptated
alleles are not selected against in other regions, then the
selected allele will be spread across the species range by
migration. Under these circumstances correlations may
temporarily form but they may not persist for long, and
these occurrences will also depend critically upon where
the mutation arose and patterns of migration. [Even
standard allele frequency differentiation-based meth-
ods may not identify a rapidly spreading sweep, and
haplotype-based methods may be more informative
(e.g., Voight et al. 2005).] In addition, the method will
tend to detect only those loci where the environmental
variable had a consistent effect on the frequency of a
particular allele (due to either hitchhiking or the direct
action of selection) and so may not detect regions of
the genome where in different populations the same
selection pressure has caused different haplotypes to go
to fixation. Thus, if rates of gene flow are low across a
species range compared to mutation rates toward the
adaptive phenotype, then repeated evolution of a
phenotype may occur by different genetic routes in
different parts of the species range. For example, the
genetic basis of pigmentation differs between geo-
graphic regions within a number of species (e.g.,
Hoekstra and Nachman 2003; Norton et al. 2007;
Edwards et al. 2010). Under these circumstances, the
frequency of an allele will be correlated with an
environmental variable only in parts of the species
range. This suggests that it may be profitable to perform
the analysis, including the estimation of the covariance
matrix, separately in different geographic regions.

In closing, we note that while the method presented
here is potentially very useful in identifying selected loci
via their correlation with environmental variables, we
caution against overintepreting the correlations (or lack
of correlations) found. It is unlikely that causal selection
pressures can be identified by such correlations as many
environmental and ecological variables covary. Further,
as outlined above, correlations may exist as a transient
stage during the spread of a selected allele (even in the
absence of a causal relationship). Thus we view this

method as a powerful way of highlighting interesting
loci and correlations that can be further explored by
follow-up studies.
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APPENDIX A: SAMPLING FROM THE POSTERIOR

We first describe how we calculate the posterior under the null model, and then we discuss the calculation of the
Bayes factor in the next section. We wish to estimate the posterior of V integrating over our uncertainty in u and e. To
do this, we use MCMC, where in each iteration of the MCMC algorithm we sequentially update the different
parameters. Conditional on V and ul, we update el at each locus using a standard Metropolis update, i.e., add a small
normally distributed deviation to el and accept the new el if it falls within the range (0, 1), with a probability given by the
ratio of the posteriors under the current and new value of e.

We could use a similar proposal to update each ukl but since the ul are highly correlated over populations, we found
that updating them individually results in a high rejection rate. Thus, we update the entire vector of transformed
population frequencies (ul) simultaneously for a locus in a way that attempts to account for that correlation. Our
proposal for the new transformed frequencies at a locus l, u9l , is a small deviation from our current vector of ul. This
random deviation is chosen to have the correct covariance structure over populations u9l ¼ ul 1 D, where D¼ CX, X is a
length K vector of standard uncorrelated normals, and C is the Cholesky decomposition of the current covariance
matrix (i.e., V ¼ CCT). We then accept u9l with probability given by the ratio of the posteriors.

As the inverse Wishart is the conjugate prior for the covariance–variance matrix of a multivariate normal, given all
the ul and el over all loci, the posterior is itself inverse Wishart with form

W ððrR 1 LŜÞ�1; r 1 LÞ; ðA1Þ

where Ŝ is the sample estimate of covariance matrix of ul over loci,
Ŝ ¼ ð1=K Þ

PL
l¼1ð1=el ð1� elÞÞðul � el Þðul � el ÞT . Therefore, we can update our covariance matrix using Gibbs

sampling, by sampling from the Wishart distribution given in Equation A1 using the algorithm described in Odell

and Feiveson (1966).

APPENDIX B: EVALUATING THE BAYES FACTOR

There are a number of ways to evaluate this Bayes factor; for example, we could allow the MCMC to move between
the models with and without the linear factor b and estimate the Bayes factor by the proportion of time the MCMC
spends in the alternative model. However, because we wish to apply the test to large sets of SNPs, e.g., genome-wide data
sets for a large number of environment variables, we make use of importance sampling to quickly calculate the Bayes
factor from a single run of the MCMC under the null distribution. Specifically the ratio of probabilities
PðM1jnl ; mlÞ=PðM0jnl ; ml Þ can be written as

¼
Ð

Pðnl ;ml j ul ÞPðul jb; el ;VÞPðVÞPðelÞPðbÞdbdul del dVÐ
Pðnl ;ml j ulÞPðul j el ;VÞPðVÞPðel Þdul del dV

ðB1Þ

¼
Ð

Pðnl ;ml j ul ÞðPðul jb; el ;VÞ=Pðul j el ;VÞÞPðul j el ;VÞPðVÞPðel Þdul del dVÐ
Pðnl ;ml j ulÞPðul j el ;VÞPðVÞPðelÞdul del dV

: ðB2Þ

Writing

W ðul ;b; el ;VÞ ¼
Pðul jb; el ;VÞ

Pðul j el ;VÞ
ðB3Þ

we see that
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Ð
W ðul ;b; el ;VÞPðnl ;ml j ul ÞPðul j el ;VÞPðVÞPðelÞdul del dVÐ

Pðnl ;ml j ulÞPðul j el ;VÞPðVÞPðel Þdul del dV
¼
ð

W ðul ;b; el ;VÞPðul ; el ;V jnl ;mlÞdul del dV ðB4Þ

and thus that the Bayes factor is the expected value of W(ul, b, el, V) integrated over the null model posterior and so can
be evaluated by averaging W(ul, b, el, V) over the MCMC on ul, el, V (see, for example, Liu 2002). We do this by
averaging W(ul, b, el, V) simultaneously for a grid of b-values and obtain an estimate of the Bayes factor by numerically
integrating these grid points over the uniform prior. The fact that the Bayes factor for a particular environmental
variable can be evaluated using the MCMC for the null model means that we can evaluate the Bayes factor quickly for as
many environmental variables as required, using a single run of the MCMC for each SNP.
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