Allelic Variation in Cell Wall Candidate Genes Affecting Solid Wood Properties in Natural Populations and Land Races of *Pinus radiata*

S. K. Dillon,¹ M. Nolan, W. Li, C. Bell, H. X. Wu and S. G. Southerton

Commonwealth Scientific and Industrial Research Organisation Plant Industry, Canberra ACT 2601, Australia

Manuscript received March 11, 2010 Accepted for publication May 12, 2010

ABSTRACT

Forest trees are ideally suited to association mapping due to their high levels of diversity and low genomic linkage disequilibrium. Using an association mapping approach, single-nucleotide polymorphism (SNP) markers influencing quantitative variation in wood quality were identified in a natural population of *Pinus radiata*. Of 149 sites examined, 10 demonstrated significant associations (P < 0.05, q < 0.1) with one or more traits after accounting for population structure and experimentwise error. Without accounting for marker interactions, phenotypic variation attributed to individual SNPs ranged from 2 to 6.5%. Undesirable negative correlations between wood quality and growth were not observed, indicating potential to break negative correlations by selecting for individual SNPs in breeding programs. Markers that yielded significant associations were reexamined in an Australian land race. SNPs from three genes (PAL1, PCBER, and SUSY) yielded significant associations. Importantly, associations with two of these genes validated associations with density previously observed in the discovery population. In both cases, decreased wood density was associated with the minor allele, suggesting that these SNPs may be under weak negative purifying selection for density in the natural populations. These results demonstrate the utility of LD mapping to detect associations, even when the power to detect SNPs with small effect is anticipated to be low.

NUMEROUS traits of agronomic importance are demonstrated to be under genetic control (KEURENTJES *et al.* 2008), and there is considerable interest in characterizing the causative polymorphisms underlying their quantitative variation. In forest trees, quantitative variation in traits such as mechanical and pulping properties of wood, growth, cold hardiness, and drought acclimation are likely to result from allelic variation within multiple genes (NEALE and SAVOLAINEN 2004; ORAGUZIE and WILCOX 2007). Because of the commercial importance of radiata pine (*Pinus radiata* D. Don), we are exploring the molecular basis of variation in its wood properties using an association genetics approach.

Radiata pine wood properties are variable in domesticated populations and exhibit a quantitative mode of inheritance with high heritability, indicating a strong underlying genetic component. High heritabilities have been observed for solid wood traits including density, cellulose microfibril angle (MFA), and modulus of elasticy (MOE) (BALTUNIS *et al.* 2007) and for carbohydrate composition, pulp yield, fiber length, and perimeter (EVANS *et al.* 1997; KIBBLEWHITE 1999); and genetic control has been established for several important production traits (Kumar 2004; Dungey *et al.* 2006; GAPARE *et al.* 2006; Wu *et al.* 2007).

It is anticipated that variation in wood quality will be dependent on variation in numerous genes involved in xylogenesis. Studies of gene expression in developing xylem have revealed genes involved in spatially and temporally regulated processes such as cambial division, cell differentiation, expansion, and secondary cell wall biosynthesis (Allona et al. 1998; PAUX et al. 2005; PAVY et al. 2005; CATO et al. 2006; LI et al. 2009). Studies in model plants indicate several thousand genes are likely to be involved in these processes, which can be grouped into four categories: information storage and processing, cellular processes and signaling, metabolism, and genes with unknown functions (YUAN et al. 2007). Studies in model plants have revealed specific functions for numerous genes in these developmental pathways. To date there have been few functional studies in forest trees revealing genes directly affecting wood quality (MACKAY et al. 1997; TSAI et al. 1998; VALERIO et al. 2003; LU et al. 2004; SPOKEVICIUS et al. 2007), largely due to inherent features of forest trees including their long generation times, large size, and lack of inbred or pure lines (OH et al. 2003).

Attempts to identify genes underlying phenotypic variation in forest trees typically focused on quantitative trait loci (QTL) mapping. In radiata pine several QTL associated with wood density, growth, and disease re-

Supporting information is available online at http://www.genetics.org/cgi/content/full/genetics.110.116582/DC1.

¹Corresponding author: CSIRO Plant Industry, GPO Box 1600, Canberra ACT 2601, Australia. E-mail: shannon.dillon@csiro.au

sponse have been identified (DEVEY et al. 2004a,b; MATHESON et al. 2006). However, poor success in validating QTL markers in populations with different genetic and environmental backgrounds due to unfavorable pedigree linkage disequilibrium (LD) (NEALE and SAVOLAINEN 2004), has led to a shift in research to population-level association (or LD) mapping. This approach aims to identify gene alleles that directly contribute to phenotypic variation by statistical inference of the cosegregation of genotype and phenotype data in unrelated populations (NEALE and SAVOLAINEN 2004). Forest trees are ideally suited to association mapping as LD and population structure are frequently low (NEALE and SAVOLAINEN 2004). Encouraging progress toward identifying molecular polymorphisms linked to phenotypic variation in trees has recently been achieved following this approach. The cinnamoyl CoA reductase gene in Eucalyptus (THUMMA et al. 2005) and four cell wall genes in P. taeda (GONZALEZ-MARTINEZ et al. 2007) were shown to influence variation in MFA, early wood specific gravity, and late wood proportion. Recently a single-nucleotide polymorphism (SNP) in a cobra-like gene in Eucalyptus nitens was identified that is associated with cellulose content and pulp yield (THUMMA et al. 2009). Further functional analysis revealed that this SNP is a regulatory polymorphism and is likely to affect both traits through its influence on allelic expression. This finding demonstrates the utility of populations harboring low LD in the study of causative polymorphisms. Association genetics has also been applied in model plants to identify SNPs influencing major traits in Arabidopsis and maize (THORNSBERRY et al. 2001; OLSEN et al. 2004; ARANZANA et al. 2005) and has been used extensively to dissect complex traits in humans where population structure parallels that of many tree species (PRITCHARD and PRZEWORSKI 2001; BURTON et al. 2007).

Despite the potential promised from association genetics, several factors have been identified that influence power to detect true associations (Long and LANGLEY 1999; NEALE and SAVOLAINEN 2004; GORDON and FINCH 2005; NEWTON-CHEH and HIRSCHHORN 2005). These factors can often be accounted for at the experimental design phase, by considering the extent of genome-wide LD, the candidate genes selected, the effect size, the number of genes affecting the trait, allele frequency, sample size, and rates of genotyping and phenotyping error. The use of natural populations or pedigrees for association studies can introduce confounding genetic structure (BURTON et al. 2007; ZHAO et al. 2007), which creates false LD between markers and OTL (NEALE and SAVOLAINEN 2004; BALL 2007). Radiata pine occurs naturally as a regional ensemble of disjoint populations over a small range including three from mainland California and two on Guadalupe and Cedros Islands. Genetic diversity of the mainland populations, used in this study, is at least moderate among conifers (KARHU et al. 2006), and the populations exhibit a low yet significant level of genetic structure ($F_{\rm ST} \sim 5\%$) (PLESSAS and STRAUSS 1986; KARHU et al. 2006), which may confound association tests. The aim of this study was to apply an LD mapping approach to identify allelic variants regulating wood formation in the natural populations of radiata pine. Several methods have been developed for the quantification of genetic structure and we have employed two of these to correct for allelic structure arising in populations and pedigrees when testing individual SNP associations (RITLAND 1996; PRITCHARD et al. 2000). Because of the large size, anonymity, and complexity of conifer genomes (12n = 26,000 Mb) (AHUJA and NEALE 2005), and the rapid breakdown of LD, we focused on SNPs from 36 cell wall candidate genes and their flanking sequences rather than a genomewide scan. Where SNP associations were detected in the natural populations, we investigated whether significant associations could be validated in an Australia land race.

MATERIALS AND METHODS

Genetic material: P. radiata trees in the discovery population were maintained in a 25-year-old provenance-progeny trial at Batlow, New South Wales (35°31'17"S; 148°08'40"E). This trial was established following an incomplete block design, with four trees per family per replicate, from seed collected from the species natural distribution in mainland California. Needles were sampled from one tree per family for 447 families in replicate 1 and included all three mainland provenances: Monterey (210), Año Nuevo (155), and Cambria (82). Needles were also collected from a second-generation progeny trial in Flynn, Victoria (BR9611: 38°15'46"S; 146°41′33″E), which served as a validation population that was previously described by BALTUNIS et al. (2007) and is composed of families descended from the Año Nuevo and Monterey provenances. This population was part of a 7-yearold trial established following an incomplete block design with four trees per family per replicate. Needles were collected from 458 individuals. This population contained two half-sibs (open pollinated) from each of 229 different families. Diploid DNA was extracted from needles using a modified CTAB protocol (Doyle and Doyle 1990) and further purified on QIAquick PCR purification columns according to the manufacturer's instructions.

Candidate gene selection and SNP genotyping: Thirty-eight candidate genes chosen on the basis of their known or likely involvement in development of secondary xylem were previously sequenced in a panel of radiata pine individuals (Table 1). This included genes in five functional categories: (1) lignin biosynthesis, (2) cellulose synthesis, (3) cell wall structure, (4) cell expansion, and (5) abiotic stress responses. Prior to genotyping, SNPs were parsed from 72 candidate gene amplicon alignments covering 54,188 bp of DNA sequence (supporting information, Table S1). One hundred forty-nine haplotype-tagging SNPs were genotyped in parallel across the 447 individuals from the discovery population, using universal bead arrays (Illumina) (SHEN et al. 2005). Linkage disequilibrium between unphased SNP data was assessed using Helix-Tree software 6.3.6 (Golden Helix). The overall level of LD between SNPs was low with <1.2% of pairwise correlations between sites (r^2) exceeding 0.2 (Table S2). Significant SNP

TABLE 1

Gene	Name	Amplicons	L	SNPs
α-Expansin	αexp1	4	1,492	7
α-Tubulin	αtub	1	788	2
Aquaporin	porin	1	1,919	5
CÔBL4 (Arabidopsis thaliana)	cobl4	2	2,642	4
Dehydrin 2 (A. thaliana)	dh2	1	606	2
Dehydrin 7/8 (A. thaliana)	dh7/8	1	232	2
rac13 GTPase (G. hirsutism)	rac13	4	3,372	6
Caffeate 3-O-methyltransferase 2 (P. taeda)	comt2	2	1,290	2
Chloroplastic superoxide dismutase	sodchl	1	720	3
Cinnamate 4-hydroxylase	c4h	1	440	2
Cinnamoyl-CoA reductase	ccr1	2	2,763	2
Cinnamyl-alcohol dehydrogenase	cad	3	2,111	11
Korrigan (endo-1,4-b-D-glucanase)	kor	3	2,523	5
Katanin (fragile fiber mutant 2) (A. thaliana)	fra2	1	786	3
Glycine hydroxymethyltransferase	glyhmt	2	1,300	5
hdzip transcription factor	athb8	2	1,621	7
hdzip transcription factor	athbx	1	470	2
Peroxidase precursor	perox	1	812	1
Phenylcoumaran benzylic ether reductase	pcber	1	572	3
Proline-rich protein	prp	1	643	6
Cellulose synthase 3 (P. radiata)	cesal	10	7,649	19
Cellulose synthase 7 (P. radiata)	cesa2	1	716	1
Cellulose synthase 1 (P. radiata)	cesa3	3	2,244	6
lim 1 transcription factor (P. taeda)	lim1	2	1,702	2
myb 1 transcription factor (<i>P. taeda</i>)	myb1	1	1,361	2
myb 4 transcription factor (<i>P. taeda</i>)	myb4	2	1,256	2
Phenylalanine ammonia lyase 1 (P. taeda)	pal 1	3	2,128	6
Arabinogalactan protein 4 (P. taeda)	agp4	2	1,749	6
Arabinogalactan protein 6 (P. taeda)	agp6	1	497	1
Glycine-rich cell wall protein	lp5	1	735	1
S-adenosyl-L-homocysteine hydrolase	sahh1	1	650	3
S-adenosyl-L-methionine synthase 1 (P. taeda)	sam1	2	1,342	6
S-adenosyl-L-methionine synthase 2 (P. taeda)	sam2	2	1,399	6
Sucrose synthase	susy	2	1,043	2
Unknown protein	nh3702	1	287	1
Xyloglucan endotransglycosylase 1 (<i>P. taeda</i>)	xet1	3	2,328	5
Total		-	54,188	149

L, length of sequenced region.

associations identified in the discovery population were regenotyped in 458 individuals from the validation population, using the iPLEX Gold assay (Sequenom).

Trait data analysis: *Discovery population:* Increment cores were sampled at breast height from the north side of each tree in the discovery population. Cell wall dimensions and wood quality data were collected via X-ray diffraction and point measurement on 1.5×0.3 -cm wooden strips prepared from 12-mm incremental cores using SilviScan. Nine traits were measured including density, MOE, MFA, fiber wall thickness, fiber wall tangential diameter, fiber wall radial diameter, fiber coarseness, fiber-specific surface area, and cell population.

The first cambial ring does not necessarily correspond to the same calendar year tree to tree, and therefore increment cores were aligned between samples on the basis of cambial ring widths. On average, 20.5 rings were simultaneously partitioned along the core for each trait on the basis of individual density profiles, using Analyze (MADDOCK 2001). This process yielded ring-by-ring early and late wood estimates for each trait, as well as late wood proportion. Transition age was estimated for each sample using established methods (GAPARE *et al.* 2006). Trait data were subsequently separated into juvenile and mature phases, where juvenile rings accounted for all rings up to and including the predicted transition ring. Significant differences in wood quality traits as well as gene expression have been reported between the juvenile and mature developmental stages (LI *et al.* 2009), prompting their analysis as separate components in addition to whole-core estimates.

Three principal components describing the uncorrelated variation present among a set of 13 whole-core traits (density, MFA, MOE, fiber wall thickness, fiber wall tangential diameter, fiber wall radial diameter, fiber coarseness, fiber-specific surface area, cell population, minimum density, maximum density, ring width, and cumulating ring width) were defined using StatistiXL 1.7 software and an eigenvalue cutoff of 1. The final trait set used for association analysis in the discovery population consisted of 62 directly measured and synthetic (including principal components) traits, which are listed in Table S3.

Validation population: Phenotypic data for core length, density, MOE, and MFA, measured using SilviScan on 12-mm increment cores collected at breast height, were taken from the data set of BALTUNIS *et al.* (2007). We selected ring-by-ring and whole-core averages for the outer four of seven rings for each trait, corresponding to the juvenile wood. In total 36 traits were used for association tests (Table S3).

Association analysis: Discovery population: Associations between 62 traits and 149 SNPs were tested via a least-squares fixed effects general linear model implemented in Tassel (BRADBURY et al. 2007). The statistical model is described by $y = X\beta + e$, where y is a vector for the observed dependent variable (trait), β is a vector containing independent fixed effects, including genetic marker and population structure matrices, X is the known design matrix, and e is the unobserved vector for the random residual (error) (HENDERSON 1975). Tests for significance were performed on 447 individuals from the discovery population, Año Nuevo (155), Monterey (210), and Cambria (82), as well as separately within the three natural populations. Since significant divergence has been detected between the three provenances in this population (KARHU et al. 2006), a Q-matrix describing individual population assignments was generated in Structure (PRITCHARD et al. 2000) and incorporated in the model. We utilized the same 149 SNP markers and 447 samples from the discovery population, assuming independence of markers and applying a previously optimized burn-in of 10,000, and 100,000 chains to estimate likelihoods from MCMC analysis. All P-values were adjusted for multiple testing on the basis of 2000 permutations of each trait across 149 SNP markers. Pedigree structure, or kinship, in the provenance-progeny trial was found to be low following analysis of pairwise kinship coefficients among the same 447 trees and 149 SNPS in Spagedi (HARDY and VEKEMANS 2002). The Loiselle and Ritland estimators (LOISELLE et al. 1995; RITLAND 1996) yielded similar results with coefficients ≤ 0 for a majority of analysis. Associations were tested using the Loiselle matrix and mixed linear model implemented in Tassel (y = $X\beta + Zu + e$, where X and Z are the known design matrices and u is an unknown vector of random additive genetic effects from multiple-background QTL). Consistent with a lack of kinship, the results were >99% similar to those of the general linear model (Table S4) and were subsequently omitted.

Validation population: A panel of 25 SNPs producing significant associations in the discovery population using the general linear model were genotyped in the validation population. This included all SNPs shortlisted in Table 3 and 15 SNP markers that had P-values < 0.05 in the discovery population but had q-values >0.1 (Table S1). Associations with 36 traits were tested using the same methods as in the discovery population. A Q-matrix was included in the model since significant population genetic structure was identified using Structure (Figure S1). Genotype data for four SNPs (2, 133, 17, and 9) could not be analyzed in the validation population: SNP 2, a low-frequency SNP in the Año Nuevo and Monterey provenances, did not segregate in the validation population; and SNPs 9, 17, and 133 failed quality control. The Loiselle and Ritland estimators yielded pairwise kinship coefficients $\leq 0 > 50\%$ of the time, and results for the mixed linear model were >96% similar to those of the general linear model (Table S5). Consequently results for the mixed model were omitted.

An alternative statistic based on the false discovery rate, or *q*-value, which provides an additional measure of significance dependent on the *P*-value distribution, was applied in both populations (STOREY and TIBSHIRANI 2003). Individual association *q*-values were calculated using *Q*-value software upon *P*-values generated using the general linear model. Bin counts between *P*-values of 0.85 and 1 were set to the mean count observed over the remaining distribution to eliminate bias due

to the permutation test, which adjusted many *P*-values to near 1. Bayes factors were calculated for individual SNP associations, using the Bayesian statistical package ldDesign (BALL 2005). The interpretive scale of KASS and RAFTERY (1995) was used to grade strength of evidence for each association on the basis of estimated Bayes factors, where Bayes factor categories 0-2, 2-6, 6-10, and >10 corresponded to weak, positive, strong, and very strong evidence, respectively. Bayes factor calculation incorporated priors for allele frequency, *P*-value, and population size.

RESULTS

SNP genotypes: The quality of GoldenGate genotype scores for individual SNPs was assessed from their GenTrain cluster and GenCall genotype scores in BeadStudio (Illumina). The average GenTrain score across all SNP loci and individuals was 0.67, but ranged from 0.3 to 0.89 for individual SNP clusters. In the most extreme cases the heterozygote cluster tended to be very diffuse, possibly representing variable probe binding efficiency due to anonymous variations in the SNP flanking region. GenCall scores for individual genotypes fell in a similar range, with an average score of 0.65 over all SNPs and individuals and average minimum and maximum scores of 0.25 and 0.89, respectively. This indicates that individual genotype data for the 149 SNPs assayed were of moderate to high quality (*i.e.*, >0.2) and could be included in further analysis. Assessment of allelic segregation among all populations revealed that ~73% of SNPs adhered to Hardy-Weinberg expectations when *P*-values were relaxed (<0.10). In some cases departure from the theoretical expectation may have resulted from a Wahlund effect for structured loci. When markers were examined within provenances, 95% adhered to the Hardy-Weinberg expectations in all three populations.

Wood quality trait analysis: Whole-core traits were shown to be distributed normally following the onesample Kolmigrov–Smirnov test (P < 0.05). The coefficient of variation was consistently higher for traits measured on the juvenile wood (Figure S2). In particular, juvenile variances for MOE and MFA were high compared to the mature component. Estimation of Pearson's correlation coefficient confirmed strong negative and positive correlations for many of the wholecore traits (Table S6). In general, fiber dimensions were strongly correlated with density and MOE. While MFA and MOE were strongly positively correlated, MFA was in general only moderately correlated with the other traits. The three principal components identified explained 84% of the total trait variance in the data. Graphical distribution of the casewise principal components analysis (PCA) scores for individuals and component score coefficients for traits are presented in Figure S3. Component loadings indicated the major traits contributing to components identified were as follows: PCA1, density, early wood density, MOE, late wood density, wall thickness, cell population, and specific

TABLE 2

				No. sign	ificant asso	ciations		%	significan	t
Model	Population	Structure	Permutations	P < 0.001	P < 0.01	P < 0.05	Tests	P < 0.001	P < 0.01	P < 0.05
General linear	Discovery	_	2000	16	29	56	9238	0.17	0.31	0.61
General linear	Discovery	Q-matrix	2000	3	23	47	9238	0.03	0.25	0.51
General linear	Validation		2000	2	6	14	814	0.25	0.74	1.72
General linear	Validation	Q-matrix	2000	1	4	12	814	0.12	0.49	1.47

Summary of association test results for the general linear model in the discovery (Batlow) and validation (Flynn) populations

surface area; PCA2, cell population, specific surface area, radial diameter, wall thickness, and coarseness; and PCA3, MFA.

SNPs affecting wood quality: Significant associations in the discovery population, with and without adjustment for population genetic structure, are summarized in Table 2 and Table S7. In total 47 associations were found to be significant after correction for population structure and multiple testing, or 0.51% of all tests. The cumulative *P*-value distribution between 0 and 1 plotted as a density histogram highlights the skew in P-values near zero compared to the distribution expected if all SNPs were null (Figure 1). This resulted in significant q-values (<0.1) for approximately half of these associations. This approach was used to assemble a shortlist of 18 SNP associations with 10 SNPs, from nine genes (Table 3). Bayes factors estimated for shortlisted associations indicated very strong evidence for the observed associations as Bayes factors fell between 10 and 88 in all but four instances. The markers identified controlled between 2 and 6.5% of phenotypic variation (Table 3). Not accounting for colinearity between markers, the cumulative percentage of improvement in phenotype ranged between 7 and 41% or for individual traits between 0.7 and 16.3%. Undesirable negative correlations between shortlisted SNP associations and growth were not observed.

Inclusion of the *Q*-matrix in the general linear model resulted in a 19% decrease in the number of significant associations at P < 0.05 (Table 2, Figure 1), presumably due to adjusted significance of associations where structure was detected. Genetic differentiation (F_{ST}) across the three provenances for individual SNPs ranged between 0.01 and 36.86%, with a number of outliers suggested from the F_{ST} histogram (Table 3, Figure S4). The average differentiation among SNPs that dropped out after adjusting for structure was higher (10%) than that in the remaining loci (4%)(ANOVA P = 0.0004). Six SNPs (2, 57, 61, 64, 113, and 133) in the former class retained one or more significant associations, two of which were shortlisted in Table 3. It is possible that the Q-matrix was unable to sufficiently adjust for strong allelic structure in these cases. To explore the validity of these associations we examined the outcome of the model when SNPs were tested in isolation from structure (within populations). Despite

small population sizes (n = 82-210), associations for most SNPs in Table 3 remained significant ($P \sim 0.05$), including all of the "structured" SNP associations, in one or more of the three populations. This suggests that divergent allele frequencies may have arisen due to population-dependent selection for the trait of interest.

Trends in the frequency of associations possibly due to dependence on SNP function were also observed. When grouped according to physical position (*i.e.*, intron, exon, and 5'- and 3'-UTR), the proportion of associations with P < 0.05 was significantly higher for the 3'-UTR and the exon than for other regions (Figure 2). This fits with the general expectation that polymorphisms from functional regions would more frequently afford phenotypic changes detectable in association tests. In addition, silent polymorphisms yielded 40% fewer significant associations than nonsynonymous sites, indicating a strong bias toward SNP associations where an amino acid has been substituted.

SNP validation: The proportion of significant associations identified in the validation population with and without adjustment for population genetic structure is presented in Table 2. In total 12 associations, with three SNPs, were found to be significant after corrections for population structure and multiple testing were applied, or 1.47% of all tests. This is three times higher than for the discovery population. The cumulative *P*-value distribution was similarly skewed toward zero (Figure 1), resulting in several associations with significant or near significant q-values (Table 4). Trait means and standard errors categorized by genotype for two of these SNPs are presented in Figure 3, and box-and-whisker plots are presented in Figure S5. For one polymorphism (SNP 60) associations were validated directly with density, meaning that the SNP was significantly associated with this trait type in both populations. The allele effect was conserved between populations, with the TT and CC homozygotes conferring lower and higher trait values, respectively, across the board, with the heterozygote intermediate to these states (Figure 3). Although SNP 60 was not associated with average density (trait 8) in the discovery population, the trend across states was the same for this trait. Reduced power due to sample size and inability to adjust for within-site environmental variation may have affected the sensitivity of this test to detect associations with average density in the discovery

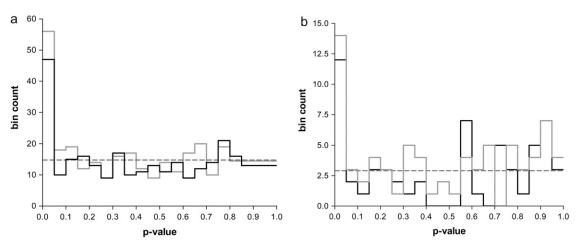


FIGURE 1.—(a) *P*-value density histograms for associations tested in the discovery population (a) and the validation population (b) under the general linear model, with adjustment for structure and multiple testing (solid line). *P*-values for the general linear model without adjustment for structure are provided for comparison (shaded line). Modal bins were observed in both populations at 0 < P < 0.05, demonstrating a skew in *P*-values near zero. The dashed line is the density histogram expected if all SNPs were null.

population. The frequency of the favorable genotype (GG) for density increased 15-fold in the validation population, suggesting that breeding selection for growth and form may have influenced allele frequency in this population. Association with growth (ring width) was also detected for SNP 60 in the validation population, but the effect was negatively correlated with density.

In the case of SNP 64, associations were detected in the validation population with density, which was strongly correlated (R = 0.79) with specific surface area (trait 39), the associated trait in the discovery population. Although not significant, the trend across genotypes was the same for average density (trait 8) in the discovery population (Figure 3). The allele effect was only partially conserved between populations: *i.e.*, the effect of the AA homozygote and the AG heterozygote remained constant (conferring lower and higher trait values, respectively), while the GG homozygote conferred lower trait values in the discovery population and trait values that were closer to those of the heterozygote in the validation population. Although it remains to be demonstrated, inconsistency in allele effect seen here may reflect between-site environmental interactions. In the case of SNP 146, associations with MFA were detected in the validation population, but this trait was not associated in the discovery population and was only moderately correlated with density (trait 4).

DISCUSSION

Associations with wood quality: In the present study, 10 SNP markers were identified in the natural populations of radiata pine that were significantly associated with solid wood phenotypes after accounting for population genetic structure and multiple testing. Of these SNPs, 3 were also associated in a second population, although only 2 of these validated associations detected in the discovery population. In these cases validation provided a mechanism to verify associations and improve confidence in the SNP effect detected. The effects attributed to SNP alleles were small, in line with association studies in other tree species (THUMMA et al. 2005, 2009; GONZALEZ-MARTINEZ et al. 2007, 2008; INGVARSSON et al. 2008; ECKERT et al. 2009), and consistent with their quantitative nature. The number of significant markers identified in the discovery population was high compared to that in other association studies of solid wood traits (THUMMA et al. 2005, 2009; GONZALEZ-MARTINEZ et al. 2007), which may bring into question those associations where validation failed. With the exception of SNP 60, markers yielding solid wood associations did not significantly affect growth, despite strong negative phenotypic correlations between these traits (BALTUNIS et al. 2007). This illustrates the utility of analyzing individual genetic components underlying wood variation to break negative correlations with growth that currently limit breeding programs.

Multiple associations (SNP 60 and SNP 61) were detected with phenylalanine ammonia lyase (PAL1), a lignin biosynthetic gene, homologous to ATPAL1 (AT2G37040), and the association with SNP 60 was detected in a second population. PAL1 catalyzes the conversion of phenylalanine to cinnamic acid, and its activity influences lignin content (NAKASHIMA *et al.* 1997). As a major constituent of the cell wall, lignin content is expected to influence wood density, and this is the first report of a PAL gene modulating this trait. The decrease in juvenile wood density associated with the minor allele of SNP 60 (T allele: 0.14) appears to be additive and suggests a mildly deleterious effect on gene function that may be under weak negative purifying selection in the natural populations. Comparison with

SNP	Gene	Trait	Description	Genotype	Minor allele	<i>P</i> -value	<i>q</i> -value	F_{ST}	Bayes factor	Año Nuevo ^a	Cambria ^a	Monterey ^a	$R_{\rm SQ}$	% trait
2^{b}	rac13	Trait 41	MFA	g/c	0.072	0.0015	0.0721	0.303	33.96		0.041	Ι	6.5	12.8
2^b	rac13	Trait 50	MFA	g/c	0.072	0.0035	0.0888	0.303	33.96		0.026		6.3	13.3
2^b	rac13	Trait 52	MFA	g/c	0.072	0.0055	0.0888	0.303	16.96		0.043		6.4	14.7
11^b	porin	PCA2	PCA2	g/a	0.053	0.0025	0.0721	0.038	33.98	0.006		0.013	3.1	
11^b	porin	Trait 35	Coarseness	g/a	0.053	0.0045	0.0888	0.038	25.43	0.017		0.008	3.1	13.3
45^{c}	comt	Trait 53	MOE	g/a	0.219	0.0065	0.0888	0.001	12.35	I	0.006		2.8	16.3
50^{b}	αexpan	Trait 18	Wall thickness	g/t	0.367	0.0025	0.0721	0.006	10.04	I	0.054		39	2.2
50^{b}	αexpan	Trait 37	Wall thickness	g/t	0.367	0.0045	0.0888	0.006	10.04	I	0.028		2.7	3.1
57^{b}	lp5	Trait 18	Wall thickness	a/g	0.183	0.0020	0.0721	0.035	10.02	0.002		0.013	3.2	4.6
57^{b}	lp5	Trait 37	Wall thickness	a/g	0.183	0.0055	0.0888	0.035	7.50	0.004		0.014	3.6	1.1
57^{b}	lp5	Trait 39	Specific surface area	a/g	0.183	0.0065	0.0888	0.035	5.99	0.004		0.003	3.7	4.9
57^{b}	lp5	Trait 19	Specific surface area	a/g	0.183	0.0075	0.0927	0.035	5.99	0.003		0.008	3.3	4.1
60^{b}	pall	Trait 10	Density	c/t	0.141	0.0005	0.0433	0.064	42.02			0.007	5	6.7
69^{b}	athb8	Trait 32	Cell population	c/g	0.139	0.0080	0.0944	0.012	88.12			0.083	2.7	11.5
84^b	cesa3	Trait 59	No. juvenile rings	t/c	0.016	0.0075	0.0927	0.111	7.32	I	0.013		2.3	16.1
118^{b}	rac13	Trait 16	Cell population	a/g	0.091	0.0065	0.0888	0.091	23.62	0.048		0.012	2.8	0.7
118^{b}	rac13	Trait 33	Cell population	a/g	0.091	0.0060	0.0888	0.091	14.12	0.04		0.01	2.9	15.2
131^{b}	sahh	PCA3	PCA3	c/\bar{t}	0.107	0.0015	0.0721	0.068	60.09	0.062	I		3.1	
$R_{\rm SC}$	y proport	ion of the	R ₅₀ , proportion of the phenotypic variance attributed to SNP; % trait, percentage change in trait mean associated with SNP	ributed to S	NP; % trait, pe	rcentage	change ir	ı trait m	ean associated	with SNP.				

Shortlisted SNP assocations identified in the Batlow association population

TABLE 3

5 ŝ R_{SQ} , proportion of the phenotypic * *Pvalues.* * Silent SNP.

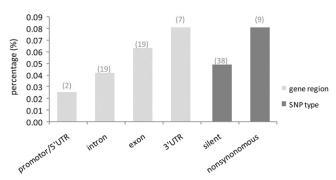


FIGURE 2.—Percentage of significant associations (P < 0.05) per gene region and SNP type. Differences in the proportion of significant associations for silent and nonsynonymous sites were significant (P < 0.01) (Z = 2.6) for the binomial test.

nine other Pinaceae species reveals that the "T" allele is not unique to radiata pine. This allele appears in at least two subgenera of Pinaceae (Figure S6), although its absence in spruce suggests that this allele may have been derived among pines. The overall low frequency of the T allele may reflect an evolutionary response to the associated phenotype. Density may be an important indicator of the hydraulic properties of wood that are under selection and has been shown to affect conductivity and drought survival in conifers, and high density may be an important adaptive trait linked to the prevention of vessel cavitation (MARTINEZ-MEIER et al. 2008; DALLA-SALDA et al. 2009). Both PAL1 polymorphisms occur in exonic sequences and are unlinked, and although SNP 60 lies within the PAL-HAL active domain, it is synonymous and does not interfere with the substrate binding sites (SCHWEDE et al. 1999). Silent SNPs can afford change via other mechanisms; for instance, a SNP in a *cis*-acting regulatory element is shown to influence allelic expression of COBRA in eucalyptus (THUMMA et al. 2009), and further examples

are emerging from association studies of human diseases (VEYRIERAS *et al.* 2008). Application of this SNP for breeding selection may require a trade-off on growth, since the favorable allele for density was associated with a 14% drop in growth for ring 4; however, associations were not detected for lower growth in the other rings.

The association with intronic SNP 64 from phenylcoumaran benzylic ether reductase (PCBER), a homolog of isoflavone reductase (AT4G39230.1), was detected in both populations and affected wood density and specific surface area. Although not shortlisted in the discovery population, the q-value for this association was low and near significant ($q \sim 0.1$). The role of PCBER in wood development is not well established, but has previously been suggested to affect lignification of woody tissues due to its association with phenylpropanoid biosynthesis in poplar (VANDER MIJNSBRUGGE et al. 2000a,b). In P. taeda PCBER is localized to the secondary xylem parenchyma (Kwon et al. 2001), where it presumably catalyzes synthesis of protective secondary metabolites such as lignans. Downregulation of PCBER has been reported to reduce lignin content (BOERJAN et al. 2006), providing a possible mechanism for modulation of wood density. Similar to PAL1, selection against lower density associated with the minor allele (A allele: 11.9) in the natural populations could reflect the importance of density to vascular fitness.

Other associations: The strong association with Rac13 that cannot be tested in the validation population remains of interest. RAC13 is homologous to a small GTP-binding protein (RAC13) that has been associated with the onset of cellulose synthesis in secondary walls of cotton (DELMER *et al.* 1995; POTIKHA *et al.* 1999), Arabidopsis (ATRAC2/ROP7: AT5G45970) (BREMBU *et al.* 2005), and Zinnia (ZeRAC2) (NAKANOMYO *et al.* 2002) and accumulates preferentially in tracheary elements. An association between an intronic RAC13 site (SNP2) and MFA of secondary cell wall cellulose of

TABLE 4

Significant associations identified from 23 SNPs retested in the Flynn validation population

SNP	Gene	Trait	Description	Genotype	<i>P</i> -value	qvalue	R
60^a	pal1	Trait 81	Density	c/t	0.0010	0.0435	0.039
60^{a}	pal1	Trait 71	Ring Width	c/t	0.0035	0.0435	0.037
60^{a}	pal1	Trait 79	Density	c/t	0.0320	0.0653	0.029
60^{a}	pal1	Trait 65	Density	c/t	0.0330	0.0653	0.030
64	pcber2	Trait 65	Density	g/a	0.0045	0.1798	0.035
64	pcber2	Trait 8	Density	g/a	0.0155	0.1914	0.030
64	pcber2	Trait 79	Density	g/a	0.0245	0.1914	0.030
64	pcber2	Trait 81	Density	g/a	0.0305	0.1914	0.032
146	susy	Trait 85	MFA	g/t	0.0015	0.1914	0.038
146	susy	Trait 40	MFA	g/t	0.0300	0.1914	0.029
146	susy	Trait 66	MFA	g/t	0.0415	0.2188	0.028
146	susy	Trait 84	MFA	g/t	0.0495	0.2393	0.029

R, proportion of the additive genetic variance controlled by SNP.

^a SNP shortlisted in discovery population.

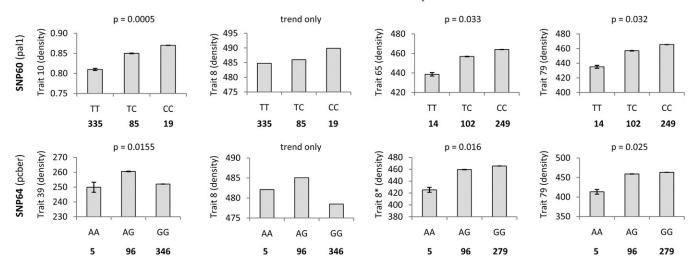


FIGURE 3.—Mean and standard error for trait values categorized by genotype for two SNPs in the discovery population (left) and the validation population (right). In each case associations with density were detected in both populations. Gene action observed for SNP 60 was additive in all cases. In the case of SNP 64 the gene model was dominant in the validation population; however, the effect of the GG homozygote "flipped" between populations.

mature wood fibers was first identified in the discovery population where the minor allele (C allele: 0.072) was linked additively with low MFA (Figure S7), controlling >6% of the trait variation. This SNP was highly structured ($F_{ST} = 30.3\%$) and was an outlier compared to the other SNPs in this data set (Figure S4), indicating that diversifying selection may have occurred at this locus. SNP 2 occurs at low frequency in Año Nuevo (C allele: 0.006) and Monterey (C allele: 0.002), but was common in Cambria (C allele: 0.38), and it is not surprising that this SNP does not segregate in the validation population, whose founders were primarily from Año Nuevo and Monterey. Importantly, SNP 2 was in low LD with the other five SNPs typed across this gene $(R^2 = 0.0002-0.0127)$, suggesting that selection may have acted locally on the intron where SNP 2 resides. When examined within Cambria, in isolation from structure ($F_{ST} = 4\%$), both the association and the effect of the C allele were reproduced (Table 3), controlling up to 9% of variation in MFA. Low MFA is considered advantageous from a commercial forestry perspective as it results in wood with greater strength. Adaptive selection in natural populations may have similarly favored trees with improved wood strength via modulation of MFA at the Cambria site. The mechanism by which RAC13 might alter MFA is not established; however, related RAC proteins have been found to regulate cvtoskeletal structure (ZHANG et al. 2005), and indeed ATRAC2 has been shown to affect polar cell expansion, providing a possible path for modulation of cellular MFA (WIGHTMAN and TURNER 2008).

Several of the genes harboring significant associations in this study have recently been associated with wood traits in other conifer species or show evidence of adaptive selection where fiber reinforcement may be a driving factor. Two polymorphic sites within AGP4, a cell

wall arabinogalactan protein, were associated with late wood density and cell population in the mature and juvenile wood, respectively, in the discovery population, and this gene has been shown to be under diversifying selection in environmentally contrasted P. pinaster populations (EVENO et al. 2008). A single SNP from LP5 that shows signatures of strong diversifying selection in the natural populations of radiata pine (data not shown) was associated with fiber wall thickness and specific surface area in both the whole-core and mature wood fractions. An LP5-like gene was previously associated with water use efficiency in P. taeda (GONZALEZ-MARTINEZ et al. 2008). Both COMT2 and CAD, genes in the lignin biosynthetic pathway, harbored associations in the discovery population with traits including fiber wall thickness, specific surface area, early wood density and MOE, late wood MOE, and density averaged over the whole core. These genes were previously shown to influence similar traits (early and late wood density) in P. taeda (GONZALEZ-MARTINEZ et al. 2007).

Factors affecting power: Wood quality traits are quantitative in nature and are regulated by many genes of small individual effect (NEALE and SAVOLAINEN 2004). In the present study a small proportion of the total phenotypic variation for each trait type was accounted for. In part this results from incomplete sampling of the candidate gene network in combination with low genomic LD. Power to detect SNPs of small effect across multiple populations is further limited by constraints on trial design. Population sizes of many thousands have been recommended from simulation experiments to be necessary to detect associations in trees (Purcell et al. 2003; Ball 2005; Gordon and FINCH 2005), and human studies employing large populations commonly detect SNPs with small effects (< 2%). Phenotypic variation arising from diverse gene-by-environment interactions within and between sites was not accounted for in this study, whereas the discovery (Snowy Mountain Range) and validation (coastal valley in Southern Victoria) trials are strongly contrasted with respect to altitude, evapotranspiration, temperature, and soil type (New LocClim V 1.10). Quantitative evidence suggests that significant geneby-environment interactions are limited for solid wood traits in radiata pine (BALTUNIS et al. 2007; WIELINGA et al. 2009). Although overall rankings may not change for quantitative studies that examine all loci simultaneously, such interactions could affect correlation of phenotype and allele segregation for individual SNPs and might explain the "flip" in effect of the GG homozygote for SNP64. Improved power to detect and validate associations in future experiments could be achieved by (1) ensuring populations are sufficiently large, (2) designing trials such that within-site and between-site environmental interactions can be accounted for, (3) avoiding genetically structured material, and (4) establishing validation populations with families, or clonal material, from the discovery population. Tailoring region-specific suites of markers for breeding selection may be necessary where SNP effects are sensitive to local environment. Markers such as SNP 60 (PAL1) and SNP 64 (PCBER1) are robust and will have greatest utility in breeding programs.

We sincerely thank Bala Thumma for reviewing the manuscript, Colin Matheson and Charlie Bell for their insightful discussions, and Philippe Matter for technical support. We also thank the Neale laboratory at University of California, Davis, for kindly providing primers for several candidate genes. This research was funded by the Commonwealth Scientific and Industrial Research Organisation, ArborGen LLC, Forest and Wood Products Australia, and the Southern Tree Breeding Association.

LITERATURE CITED

- AHUJA, M. R., and D. B. NEALE, 2005 Evolution of genome size in conifers. Silvae Genet. 54: 126–137.
- ALLONA, I., M. QUINN, E. SHOOP, K. SWOPE, S. ST. CYR et al., 1998 Analysis of xylem formation in pine by cDNA sequencing. Proc. Natl. Acad. Sci. USA 95: 9693–9698.
- ARANZANA, M. J., S. KIM, K. Y. ZHAO, E. BAKKER, M. HORTON *et al.*, 2005 Genome-wide association mapping in Arabidopsis identifies previously known flowering time and pathogen resistance genes. PLoS Genet. 1: 531–539.
- BALL, R. D., 2005 Experimental designs for reliable detection of linkage disequilibrium in unstructured random population association studies. Genetics 170: 859–873.
- BALL, R. D., 2007 Statistical Analysis and Experimental Design. Springer Science+Business Media, New York.
- BALTUNIS, B. S., H. X. WU and M. B. POWELL, 2007 Inheritance of density, microfibril angle, and modulus of elasticity in juvenile wood of Pinus radiata at two locations in Australia. Can. J. For. Res. 37: 2164–2174.
- BOERJAN, W., A. POLLE and K. VANDER MIJNSBRUGGE, 2006 Role in lignification and growth for plant phenylcoumaran benzylic ether reductase, U.S. patent 2006/0015967.
- BRADBURY, P. J., Z. ZHANG, D. E. KROON, T. M. CASSTEVENS, Y. RAMDOSS *et al.*, 2007 TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23: 2633– 2635.

- BREMBU, T., P. WINGE and A. M. BONES, 2005 The small GTPase AtRAC2/ROP7 is specifically expressed during late stages of xylem differentiation in Arabidopsis. J. Exp. Bot. 56: 2465– 2476.
- BURTON, P. R., D. G. CLAYTON, L. R. CARDON, N. CRADDOCK, P. DELOUKAS *et al.*, 2007 Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature **447**: 661–678.
- CATO, S., L. MCMILLAN, L. DONALDSON, T. RICHARDSON, C. ECHT et al., 2006 Wood formation from the base to the crown in Pinus radiata: gradients of tracheid wall thickness, wood density, radial growth rate and gene expression. Plant Mol. Biol. 60: 565–581.
- DALLA-SALDA, G., A. MARTINEZ-MEIER, H. COCHARD and P. ROZENBERG, 2009 Variation of wood density and hydraulic properties of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) clones related to a heat and drought wave in France. For. Ecol. Manage. 257: 182–189.
- DELMER, D. P., J. R. PEAR, A. ANDRAWIS and D. M. STALKER, 1995 Genes encoding small Gtp-binding proteins analogous to mammalian rac are preferentially expressed in developing cotton fibers. Mol. Gen. Genet. 248: 43–51.
- DEVEY, M. E., S. D. CARSON, M. F. NOLAN, A. C. MATHESON, C. T. RIINI *et al.*, 2004a QTL associations for density and diameter in Pinus radiata and the potential for marker-aided selection. Theor. Appl. Genet. **108:** 516–524.
- DEVEY, M. E., K. A. GROOM, M. F. NOLAN, J. C. BELL, M. J. DUDZINSKI et al., 2004b Detection and verification of quantitative trait loci for resistance to Dothistroma needle blight in Pinus radiata. Theor. Appl. Genet. 108: 1056–1063.
- DOYLE, J. J., and J. L. DOYLE, 1990 Isolation of plant DNA from fresh tissue. Focus 12: 13–15.
- DUNGEY, H. S., A. C. MATHESON, D. KAIN and R. EVANS, 2006 Genetics of wood stiffness and its component traits in Pinus radiata. Can. J. For. Res. 36: 1165–1178.
- ECKERT, A. J., A. D. BOWER, J. L. WEGRZYN, B. PANDE, K. D. JERMSTAD et al., 2009 Association genetics of coastal Douglas Fir (Pseudotsuga menziesii var. menziesii, Pinaceae). I. Cold-hardiness related traits. Genetics 182: 1289–1302.
- EVANS, R., R. P. KIBBLEWHITE and S. STRINGER, 1997 Kraft pulp fibre property prediction from wood properties in eleven radiata pine clones. Appita J. 50: 25–33.
- EVENO, E., C. COLLADA, M. A. GUEVARA, V. LEGER, A. SOTO *et al.*, 2008 Contrasting patterns of selection at Pinus pinaster Ait. drought stress candidate genes as revealed by genetic differentiation analyses. Mol. Biol. Evol. **25**: 417–437.
- GAPARE, W. J., H. X. WU and A. ABARQUEZ, 2006 Genetic control of the time of transition from juvenile to mature wood in Pinus radiata D. Don. Ann. For. Sci. 63: 871–878.
- GONZALEZ-MARTINEZ, S. C., N. C. WHEELER, E. ERSOZ, C. D. NELSON and D. B. NEALE, 2007 Association genetics in *Pinus taeda* L. I. Wood property traits. Genetics 175: 399–409.
- GONZALEZ-MARTINEZ, S. C., D. HUBER, E. ERSOZ, J. M. DAVIS and D. B. NEALE, 2008 Association genetics in *Pinus taeda* L. II. Carbon isotope discrimination. Heredity **101**: 19–26.
- GORDON, D., and S. J. FINCH, 2005 Factors affecting statistical power in the detection of genetic association. J. Clin. Invest. 115: 1408– 1418.
- HARDY, O. J., and X. VEKEMANS, 2002 SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol. Ecol. Notes **2:** 618–620.
- HENDERSON, C. R., 1975 Best linear unbiased estimation and prediction under a selection model. Biometrics 31: 423–447.
- INGVARSSON, P. K., M. V. GARCIA, V. LUQUEZ, D. HALL and S. JANSSON, 2008 Nucleotide polymorphism and phenotypic associations within and around the phytochrome B2 locus in European aspen (Populus tremula, Salicaceae). Genetics **178**: 2217–2226.
- KARHU, A., C. VOGL, G. F. MORAN, J. C. BELL and O. SAVOLAINEN, 2006 Analysis of microsatellite variation in Pinus radiata reveals effects of genetic drift but no recent bottlenecks. J. Evol. Biol. 19: 167–175.
- KASS, R. E., and A. E. RAFTERY, 1995 Bayes factors. J. Am. Stat. Assoc. 90: 773–795.
- KEURENTJES, J. J. B., M. KOORNNEEF and D. VREUGDENHIL, 2008 Quantitative genetics in the age of omics. Curr. Opin. Plant Biol. 11: 123–128.

- KIBBLEWHITE, R. P., 1999 Designer fibres for improved papers through exploiting genetic variation in wood microstructure. Appita J. 52: 429.
- KUMAR, S., 2004 Genetic parameter estimates for wood stiffness, strength, internal checking, and resin bleeding for radiata pine. Can. J. For. Res. 34: 2601–2610.
- Kwon, M., L. B. DAVIN and N. G. LEWIS, 2001 In situ hybridization and immunolocalization of lignan reductases in woody tissues: implications for heartwood formation and other forms of vascular tissue preservation. Phytochemistry 57: 899–914.
- LI, X., H. WU, S. DILLON and S. G. SOUTHERTON, 2009 Generation and analysis of expressed sequence tags from six developing xylem libraries in Pinus radiata D. Don. BMC Genomics **10**: 41.
- LOISELLE, B. A., V. L. SORK, J. NASON and C. GRAHAM, 1995 Spatial genetic-structure of a tropical understory shrub, Psychotria officinalis (Rubiaceae). Am. J. Bot. 82: 1420–1425.
- LONG, A. D., and C. H. LANGLEY, 1999 The power of association studies to detect the contribution of candidate genetic loci to variation in complex traits. Genome Res. 9: 720–731.
- LU, J., H. Y. ZHAO, J. H. WEI, Y. K. HE, C. SHI *et al.*, 2004 Lignin reduction in transgenic poplars by expressing antisense CCoAOMT gene. Prog. Nat. Sci. 14: 1060–1063.
- MACKAY, J. J., D. M. OMALLEY, T. PRESNELL, F. L. BOOKER, M. M. CAMPBELL et al., 1997 Inheritance, gene expression, and lignin characterization in a mutant pine deficient in cinnamyl alcohol dehydrogenase. Proc. Natl. Acad. Sci. USA 94: 8255–8260.
- MADDOCK, R., 2001 Analyse—software for processing wood quality data from Silviscan.
- MARTINEZ-MEIER, A., L. SANCHEZ, M. PASTORINO, L. GALLO and P. ROZENBERG, 2008 What is hot in tree rings? The wood density of surviving Douglas-firs to the 2003 drought and heat wave. For. Ecol. Manage. 256: 837–843.
- MATHESON, A. C., M. E. DEVEY, T. L. GORDON, W. WERNER, D. R. VOGLER *et al.*, 2006 Heritability of response to inoculation by pine pitch canker of seedlings of radiata pine. Aust. For. **69**: 101–106.
- NAKANOMYO, I., B. KOST, N. H. CHUA and H. FUKUDA, 2002 Preferential and asymmetrical accumulation of a Rac small GTPase mRNA in differentiating xylem cells of Zinnia elegans. Plant Cell Physiol. 43: 1484–1492.
- NAKASHIMA, J., K. TAKABE, M. FUJITA and H. SAIKI, 1997 Inhibition of phenylalanine ammonia-lyase activity causes the depression of lignin accumulation of secondary wall thickening in isolated Zinnia mesophyll cells. Protoplasma **196**: 99–107.
- NEALE, D. B., and O. SAVOLAINEN, 2004 Association genetics of complex traits in conifers. Trends Plant Sci. 9: 325–330.
- NEWTON-CHEH, C., and J. N. HIRSCHHORN, 2005 Genetic association studies of complex traits: design and analysis issues. Mutat. Res. 573: 54–69.
- OH, S., S. PARK and K. H. HAN, 2003 Transcriptional regulation of secondary growth in Arabidopsis thaliana. J. Exp. Bot. 54: 2709–2722.
- OLSEN, K. M., S. S. HALLDORSDOTTIR, J. R. STINCHCOMBE, C. WEINIG, J. SCHMITT *et al.*, 2004 Linkage disequilibrium mapping of Arabidopsis CRY2 flowering time alleles. Genetics **167**: 1361–1369.
- bidopsis CRY2 flowering time alleles. Genetics 167: 1361–1369.
 ORAGUZIE, N. C., and P. L. WILCOX, 2007 An Overview of Association Mapping. Springer Science+Business Media, New York.
- PAUX, E., V. CAROCHA, C. MARQUES, A. M. DE SOUSA, N. BORRALHO et al., 2005 Transcript profiling of Eucalyptus xylem genes during tension wood formation. New Phytol. 167: 89–100.
- PAVY, N., C. PAULE, L. PARSONS, J. A. CROW, M. J. MORENCY *et al.*, 2005 Generation, annotation, analysis and database integration of 16,500 white spruce EST clusters. BMC Genomics **6**: 144.
- POTIKHA, T. S., C. C. COLLINS, D. I. JOHNSON, D. P. DELMER and A. LEVINE, 1999 The involvement of hydrogen peroxide in the differentiation of secondary walls in cotton fibers. Plant Physiol. 119: 849–858.
- PRITCHARD, J. K., and M. PRZEWORSKI, 2001 Linkage disequilibrium in humans: models and data. Am. J. Hum. Genet. 69: 1–14.
- PRITCHARD, J. K., M. STEPHENS and P. DONNELLY, 2000 Inference of population structure using multilocus genotype data. Genetics 155: 945–959.
- PURCELL, S., S. S. CHERNY and P. C. SHAM, 2003 Genetic power calculator: design of linkage and association genetic mapping studies of complex traits. Bioinformatics 19: 149–150.

- RITLAND, K., 1996 Estimators for pairwise relatedness and individual inbreeding coefficients. Genet. Res. 67: 175–185.
- SCHWEDE, T. F., J. RETEY and G. E. SCHULZ, 1999 Crystal structure of histidine ammonia-lyase revealing a novel polypeptide modification as the catalytic electrophile. Biochemistry 38: 5355– 5361.
- SHEN, R., J. B. FAN, D. CAMPBELL, W. H. CHANG, J. CHEN *et al.*, 2005 High-throughput SNP genotyping on universal bead arrays. Mutat. Res. 573: 70–82.
- SPOKEVICIUS, A. V., S. G. SOUTHERTON, C. P. MACMILLAN, D. QIU, S. GAN et al., 2007 Beta-tubulin affects cellulose microfibril orientation in plant secondary fibre cell walls. Plant J. 51: 717–726.
- STOREY, J. D., and R. TIBSHIRANI, 2003 Statistical significance for genomewide studies. Proc. Natl. Acad. Sci. USA 100: 9440–9445.
- THORNSBERRY, J. M., M. M. GOODMAN, J. DOEBLEY, S. KRESOVICH, D. NIELSEN *et al.*, 2001 Dwarf8 polymorphisms associate with variation in flowering time. Nat. Genet. 28: 286–289.
- THUMMA, B. R., M. R. NOLAN, R. EVANS and G. F. MORAN, 2005 Polymorphisms in cinnamoyl CoA reductase (CCR) are associated with variation in microfibril angle in Eucalyptus spp. Genetics 171: 1257–1265.
- THUMMA, B. R., B. A. MATHESON, D. ZHANG, C. MEESKE, R. MEDER et al., 2009 Identification of a cis-acting regulatory polymorphism in a eucalypt cobra-like gene affecting cellulose content. Genetics 183: 1153–1164.
- TSAI, C. J., J. L. POPKO, M. R. MIELKE, W. J. HU, G. K. PODILA *et al.*, 1998 Suppression of O-methyltransferase gene by homologous sense transgene in quaking aspen causes red-brown wood phenotypes. Plant Physiol. **117**: 101–112.
- VALERIO, L., D. CARTER, J. C. RODRIGUES, V. TOURNIER, J. GOMINHO et al., 2003 Down regulation of cinnamyl Alcohol Dehydrogenase, a lignification enzyme, in Eucalyptus camaldulensis. Mol. Breed. 12: 157–167.
- VANDER MIJNSBRUGGE, K., H. BEECKMAN, R. DE RYCKE, M. VAN MONTAGU, G. ENGLER *et al.*, 2000a Phenylcoumaran benzylic ether reductase, a prominent poplar xylem protein, is strongly associated with phenylpropanoid biosynthesis in lignifying cells. Planta **211**: 502–509.
- VANDER MIJNSBRUGGE, K., H. MEYERMANS, M. VAN MONTAGU, G. BAUW and W. BOERJAN, 2000b Wood formation in poplar: identification, characterization, and seasonal variation of xylem proteins. Planta **210**: 589–598.
- VEYRIERAS, J. B., S. KUDARAVALLI, S. Y. KIM, E. T. DERMITZAKIS, Y. GILAD et al., 2008 High-resolution mapping of expression-QTLs yields insight into human gene regulation. PLoS Genet. 4: e1000214.
- WIELINGA, B., C. A. RAYMOND, R. JAMES and A. C. MATHESON, 2009 Genetic parameters and genotype by environment interactions for green and basic density and stiffness of Pinus radiata D. Don estimated using acoustics. Silvae Genet. 58: 112–122.
- WIGHTMAN, R., and S. R. TURNER, 2008 The roles of the cytoskeleton during cellulose deposition at the secondary cell wall. Plant J. 54: 794–805.
- WU, H. X., M. B. POWELL, J. L. YANG, M. IVKOVIC and T. A. MCRAE, 2007 Efficiency of early selection for rotation-aged wood quality traits in radiata pine. Ann. For. Sci. 64: 1–9.
- YUAN, Z., X. YAO, D. B. ZHANG, Y. SUN and H. HUANG, 2007 Genomewide expression profiling in seedlings of the Arabidopsis mutant uro that is defective in the secondary cell wall formation. J. Integr. Plant Biol. 49: 1754–1762.
- ZHANG, X. G., J. DYACHOK, S. KRISHNAKUMAR, L. G. SMITH and D. G. OPPENHEIMER, 2005 IRREGULAR TRICHOME BRANCH1 in Arabidopsis encodes a plant homolog of the actin-related protein2/3 complex activator Scar/WAVE that regulates actin and microtubule organization. Plant Cell 17: 2314–2326.
- ZHAO, K., M. ARANZANA, S. KIM, C. LISTER, C. SHINDO *et al.*, 2007 An Arabidopsis example of association mapping in structured samples. PLoS Genet. 3: 71–82.

Communicating editor: M. KIRST

GENETICS

Supporting Information http://www.genetics.org/cgi/content/full/genetics.110.116582/DC1

Allelic Variation in Cell Wall Candidate Genes Affecting Solid Wood Properties in Natural Populations and Land Races of *Pinus radiata*

S. K. Dillon, M. Nolan, W. Li, C. Bell, H. X. Wu and S. G. Southerton

Copyright © 2010 by the Genetics Society of America DOI: 10.1534/genetics.110.116582

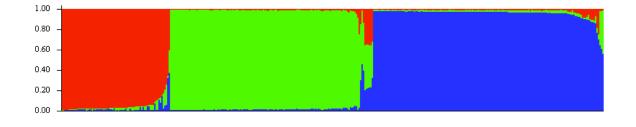


FIGURE S1.—Bar plot of individual population assignments in Flynn: cluster 1 (red), cluster 2 (green) and cluster 3 (blue).

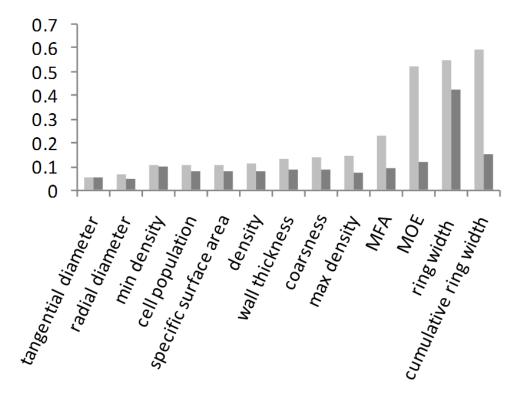


FIGURE S2.—Coefficient of variation calculated for the juvenile (light grey) and mature (dark grey) components of the core for 13 primary traits.

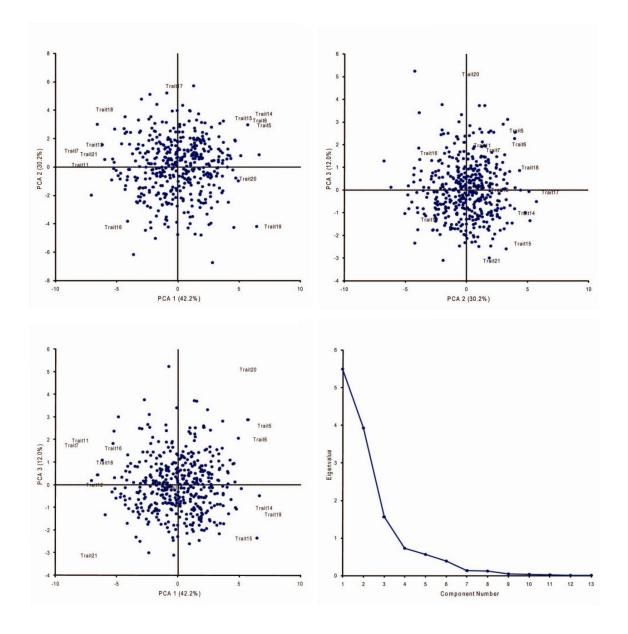


FIGURE S3.—Principal components derived from 13 primary traits. Scree plot (bottom right) indicates the strength of evidence for each component, where components with Eigen values < 1 were discarded. Primary traits are exploded on each PCA plot in proportion to the trait component loadings and reveal clustering for related trait types.

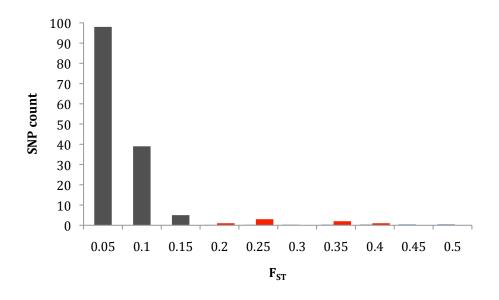


FIGURE S4.—Distribution of FST estimates for 149 loci. Red colour indicates SNP which exceeded the upper 95% confidence interval based on a simulated distribution under neutral expectations (Beaumont and Nichols 1996).

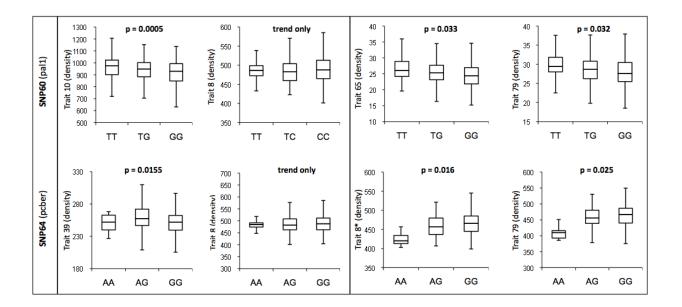
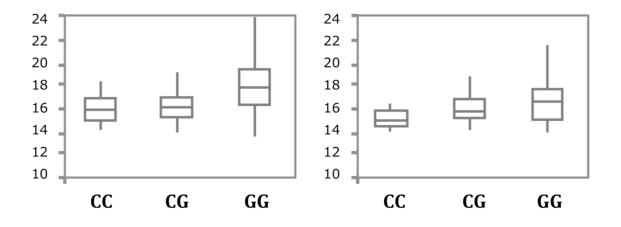



FIGURE S5.—Box and whisker plots for trait values categorised by genotype for two SNPs in the discovery population (left) and validation population (right). In each case associations with density were detected in both populations. Gene action observed for SNP 60 was additive in all cases. In the case of SNP 64 the gene model was dominant in the validation population, however the effect of the GG homozygote "flipped" between populations.

genus	species	Sub genus	Genbank ID	allele
Pice a	abies	Clade V	AM265583.1	С
Picea	glauca	Clade III	BT112211.1	С
Pice a	stichensis	Clade II	EF085404.1	С
Pinus	banksiana	Pinus	AF013481.1	С
Pinus	massoniana	Pinus	GQ142010.2	С
Pinus	monticola	Strobus	AF019965.1	т
Pinus	pin aste r	Pinus	AY641535.1	С
Pinus	tae d a	Pinus	U39792.1	С
Pinus	sylvestris	Pinus	AF353980.1	С
Pinus	radiata	Pinus	this study	т

FIGURE S6.—Comparison with 9 other *Pinaceae* species revealed that the T (minor) allele of SNP60 is not a newly derived mutation in *Pinus radiata* (from subgenus *Pinus*), but is also present in *Pinus monticola* (from subgenus *Strobus*). The presence of the C (major) allele in all other cases, including spruces, suggests that this allele is likely to be the ancestral allele and the minor allele was derived at some later time during Pinaceae evolution, at least as early as the *Strobus-Pinus* split 136-166 MYA (Williams, 2002 #199). It is likely that the T allele does exist in the other *Pinus* species, but was not detected due to the small number of individuals available in Genbank for this sequence region.

 $\label{eq:FIGURE S7.} FIGURE S7. \\ -Box plots SNP2, in the discovery population (left) and separately in Cambia (right), explaining > 6\% of trait variation in the discovery population and > 9\% of trait variation in Cambria.$

Detail for individual SNP markers genotyped in the discovery and validation populations

rac13 GTPase (6 hisuition) rac13 2 * * * silent intron rac13 GTPase (6 hisuition) rac13 2 * * * silent intron profine rich protein pp1 3 silent Ala - Ala exon profine rich protein pp1 3 silent con profine rich protein pp1 7 silent con profine rich protein pp1 7 silent con profine rich protein pp1 7 silent con quaporin pp1 8 silent intron aquaporin porin 10 silent intron aquaporin porin 11 * * silent intron aquaporin porin 12 silent intron aquaporin porin 13 <	gene	name	SNP	А	shortlist	validation	В	substitution	amino acid	region
proline rich proteinpp [1]3silent $Ah - Ah$ exonarabinogalactan protein 4 (P. tanda)agp44non - synonPhe - Tyrexonproline rich proteinprp5silent-exonproline rich proteinprp7silent-exonproline rich proteinprp7silent-exonquaporinproline rich proteinproline rich proteinproline rich protein-silent-aquaporinporin98silent-exonaquaporinporin10silent-silent-aquaporinporin11***silent-aquaporinporin12silent-intronaquaporinporin13-silent-silentin transcription factor (P. tanda)pal16silent-silentexonphetylalanine ammonia lyase 1 (P. tanda)pal17**silentLeu - Leuexonnyb 4 transcription factor (P. tanda)inil19**silentAla - Alaexonnyb 4 transcription factor (P. tanda)inil19**silent-silentnyb 4 transcription factor (P. tanda)inil19**silent-silentnyb 4 transcription factor (P. tanda)inil19**silent-silentsilentsilen	rac13 GTPase (G. hirsutism)	rac13	1					silent	-	intron
arabing altain protein 4 (P. taola)app4non - synonPhe - Tyrexonproline rich proteinpp5silent-exonproline rich proteinpp7silent-exonproline rich proteinpp7silent-exonproline rich proteinpp7silent-exonquaporinporin9silent-exonaquaporinporin10silent-intronaquaporinporin11***silent-aquaporinporin13-silent-intronaquaporinporin13-silent-intronaquaporinporin13-silent-intronaquaporinporin13-silent-intronaquaporinporin13-silent-intronaquaporinporin13-silent-intronpherylalanine ammonia lyase 1 (P. taoda)pal16-silent-exonnyb 4 transcription factor (P. taoda)intil19**silent-intronnyb 4 transcription factor (P. taoda)intil19*silent-intronnyb 4 transcription factor (P. taoda)intil20silent-intronnyb 4 transcription factor (P. taoda)intil21intilintil <t< td=""><td>rac13 GTPase (G. hirsutism)</td><td>rac13</td><td>2</td><td>*</td><td>*</td><td>*</td><td></td><td>silent</td><td>-</td><td>intron</td></t<>	rac13 GTPase (G. hirsutism)	rac13	2	*	*	*		silent	-	intron
proline rich protein prp 5 silent - exon proline rich protein prp 6 silent - exon proline rich protein prp 7 silent - exon aquaporin porin 9 3 silent - exon aquaporin porin 10 silent - intron aquaporin porin 11 * * silent - intron aquaporin porin 12 silent - intron intron aquaporin porin 13 silent - intron intron aquaporin perox 15 silent - intron peroxidase precursor perox 16 silent - intron phenylalanine ammonia lyse 1 (<i>P. toolo</i>) pal 16 silent - exon myb 4 transcription factor (<i>P. toolo</i>) pilnt 19 silent - exon<	proline rich protein	prp l	3					silent	Ala - Ala	exon
proline rich protein propin 9 6 silent - exon proline rich protein prop 8 silent - exon aquaporin porin 9 silent - intron aquaporin porin 10 silent - intron aquaporin porin 11 * * * * Silent - intron aquaporin porin 11 * * * * Silent - intron aquaporin porin 12 silent - intron aquaporin 13 silent - intron aquaporin 14 silent - intron aquaporin 15 silent - intron aquaporin 16 silent - intron aquaporin 19 silent - intron peroxidase precursor perox 15 silent Glu - Leu - Leu phenylalanin ammonia lyase 1 (<i>P. taoda</i>) pal 16 silent Glu - Glu - exon phenylalanin ammonia lyase 1 (<i>P. taoda</i>) pal 17 * * * into silent Glu - Leu - Leu unknown protein nb3702 18 * · Non - synon Asn - Lys nyb 4 transcription factor (<i>P. taoda</i>) lim1 19 silent - intron rac13 GTPase (<i>G. hirsutism</i>) rac13 21 - intron silent - intron rac13 GTPase (<i>G. hirsutism</i>) rac13 21 - intron silent - intron	arabinogalactan protein 4 (P. taeda)	agp4	4					non - synon	Phe - Tyr	exon
proline rich protein profer in profe	proline rich protein	prp	5					silent	-	exon
poline rich protein porin porin porin porin porin porin 10 silent - intron aquaporin porin porin 11 * * * * * Silent - intron aquaporin porin 11 * * * * * Silent - intron aquaporin porin 12 silent - intron aquaporin porin 13 silent Pro - Pro exon aquaporin porin 13 silent - intron aquaporin porin 13 silent - intron peroxidase precursor perox 15 silent Leu - Leu exon phenylalanine ammonia lyase 1 (<i>P. taeda</i>) pal 16 silent (<i>P. taeda</i>) pal 17 * * * silent Leu - Leu exon unknown protein nh3702 18 * * non - synon Asn - Lys exon nyb 4 transcription factor (<i>P. taeda</i>) limi1 19 silent - intron rac13 GTPase (<i>G. hirsutism</i>) rac13 21 non - synon (Ala - Ala korrigan (endo-1, 4- b-D-glucanase) kor 22 silent - intron immate 4-hydroxylase ch 23 ch 24 silent - intron	proline rich protein	prp	6					silent	-	exon
aquaporinporinporin10silentintronaquaporinporin11***silentintronaquaporinporin11***silentintronaquaporinporin12silentintronaquaporinporin12silentintronaquaporinporin13silentintronaquaporinporin14silentintronperoxidase precursorperox15silentLeu - Leuexonphenylalanine ammonia lyase 1 (P. taada)pal16silentLeu - Leuexonunknown proteinnh370218**silentAan - Lysexonmyb 4 transcription factor (P. taada)lim119silentintronract 3 GTPase (G. hirsutism)ract 321silentintroncinnamate 4-hydroxylasec4h23silentintroncinnamate 4-hydroxylasec4h24silentsilentsilentsilent <td>proline rich protein</td> <td>prp</td> <td>7</td> <td></td> <td></td> <td></td> <td></td> <td>silent</td> <td>-</td> <td>exon</td>	proline rich protein	prp	7					silent	-	exon
aquaporinporin10silent.intronaquaporinporin11***silentaquaporinporin12 <t< td=""><td>proline rich protein</td><td>prp</td><td>8</td><td></td><td></td><td></td><td></td><td>silent</td><td>-</td><td>exon</td></t<>	proline rich protein	prp	8					silent	-	exon
aquaporinporin11****silent-intronaquaporinporin12silent-intronaquaporinporin13silent-intronaquaporinporin13silent-intronin 1 transcription factor (P. taeda)lim114silent-intronperoxidase precursorperox15silentLeu - Leuexonphenylalanine ammonia lyase 1 (P. taeda)pal16silentLeu - Leuexonunknown proteinnh370218**non - synonAsn - Lysexonmyb 4 transcription factor (P. taeda)lim119silent-intronrac13 GTPase (C. hirsutism)rac1321non - synonAla - Valexoncinnamate 4-hydroxylasec4h23silent-introncinnamate 4-hydroxylasec4h24silent-intron	aquaporin	porin	9					silent	-	intron
aquaporinporin11statustatu-intronaquaporinporin12silent-intronaquaporinporin13silentPro - Proexonlim 1 transcription factor (<i>P. taeda</i>)lim114silent-intronperoxidase precursorperox15silentLeu - Leuexonphenylalanine ammonia lyase 1 (<i>P. taeda</i>)pal16silentLeu - Leuexonunknown proteinnh370218**silentLeu - Leuexonmyb 4 transcription factor (<i>P. taeda</i>)lim119silentAla - Alaexonmyb 4 transcription factor (<i>P. taeda</i>)lim120silent-intronrac13 GTPase (<i>G. hirsutism</i>)rac1321non - synonAla - Valexonkorrigan (endo-1,4- b-D-glucanase)kor22silent-introncinnamate 4-hydroxylasec4h23non - synonLeu - Pheexoncinnamate 4-hydroxylasec4h24silent-intron	aquaporin	porin	10					silent	-	intron
aquaporinporin13silentPro - Proexonlim 1 transcription factor (P. taeda)lim 114silent-intronperoxidase precursorperox15silentLcu - Leuexonphenylalanine ammonia lyase 1 (P. taeda)pal16silentGlu - Gluexonphenylalanine ammonia lyase 1 (P. taeda)pal17**silentLeu - Leuexonunknown proteinnh370218**non - synonAsn - Lysexonmyb 4 transcription factor (P. taeda)lim 119silent-intronrac13 GTPase (G. hirsutism)rac1321non - synonAla - Valexonkorrigan (endo-1,4- b-D-glucanase)kor22silent-introncinnamate 4-hydroxylasec4h23non - synonLcu - Pheexoncinnamate 4-hydroxylasec4h24silentsilent-	aquaporin	porin	11	*	*	*		silent	-	intron
International problemImini14silent-intronperoxidase precursorperox15silentLeu - Leuexonphenylalanine ammonia lyase 1 (P. taeda)pal16silentLeu - Leuexonphenylalanine ammonia lyase 1 (P. taeda)pal17**silentLeu - Leuexonunknown proteinnh370218**non - synonAsn - Lysexonmyb 4 transcription factor (P. taeda)lim119silent-intronrac13 GTPase (G. hirsutism)rac1321non - synonAla - Valexonkorrigan (endo-1,4- b-D-glucanase)kor22silent-introncinnamate 4-hydroxylasec4h23non - synonLeu - Pheexoncinnamate 4-hydroxylasec4h24silentyal - Yal	aquaporin	porin	12					silent	-	intron
peroxidase precursorperox15silentLeu - Leuexonphenylalanine ammonia lyase 1 (P. taeda)pal16silentGlu - Gluexonphenylalanine ammonia lyase 1 (P. taeda)pal17**silentLeu - Leuexonunknown proteinnh370218**non - synonAsn - Lysexonmyb 4 transcription factor (P. taeda)lim119silentAla - Alaexonmyb 4 transcription factor (P. taeda)lim120silent-intronrac13 GTPase (G. hirsutism)rac1321non - synonAla - Valexonkorrigan (endo-1, 4- b-D-glucanase)kor22silent-introncinnamate 4-hydroxylasec4h23non - synonLeu - Pheexoncinnamate 4-hydroxylasec4h24silentsilentval - Valexon	aquaporin	porin	13					silent	Pro - Pro	exon
phenylalanine ammonia lyase 1 (P. taeda)pal16silentGlu - Gluexonphenylalanine ammonia lyase 1 (P. taeda)pal17**silentLeu - Leuexonunknown proteinnh370218**non - synonAsn - Lysexonmyb 4 transcription factor (P. taeda)lim119silentAla - Alaexonmyb 4 transcription factor (P. taeda)lim120silent-intronrac13 GTPase (G. hirsutism)rac1321non - synonAla - Valexonkorrigan (endo-1,4- b-D-glucanase)kor22silent-introncinnamate 4-hydroxylasec4h23non - synonLeu - Pheexonwsilent24silentVal - Valexon	lim 1 transcription factor (P. taeda)	lim l	14					silent	-	intron
phenylalanine ammonia lyase 1 (P. taeda)pal17**silentLeu - Leuexonunknown proteinnh370218**non - synonAsn - Lysexonmyb 4 transcription factor (P. taeda)lim119silentAla - Alaexonmyb 4 transcription factor (P. taeda)lim120silent-intronrac13 GTPase (G. hirsutism)rac1321non - synonAla - Valexonkorrigan (endo-1,4- b-D-glucanase)kor22silent-introncinnamate 4-hydroxylasec4h23non - synonLeu - Pheexoncinnamate 4-hydroxylasec4h24silentVal - Valexon	peroxidase precursor	perox	15					silent	Leu - Leu	exon
unknown proteinnh370218**non - synonAsn - Lysexonmyb 4 transcription factor (<i>P. taeda</i>)lim119silentAla - Alaexonmyb 4 transcription factor (<i>P. taeda</i>)lim120silent-intronrac13 GTPase (<i>G. hirsutism</i>)rac1321non - synonAla - Valexonkorrigan (endo-1,4- b-D-glucanase)kor22silent-introncinnamate 4-hydroxylasec4h23non - synonLeu - Pheexoncinnamate 4-hydroxylasec4h24silentVal - Valexon	phenylalanine ammonia lyase 1 (P. taeda)	pal	16					silent	Glu - Glu	exon
ImplementationImplementationImplementationImplementationImplementationmyb 4 transcription factor (P. taeda)lim120silentAla - Alaexonmyb 4 transcription factor (P. taeda)lim120silent-intronrac13 GTPase (G. hirsutism)rac1321non - synonAla - Valexonkorrigan (endo-1,4- b-D-glucanase)kor22silent-introncinnamate 4-hydroxylasec4h23non - synonLeu - Pheexoncinnamate 4-hydroxylasec4h24silentVal - Valexon	phenylalanine ammonia lyase 1 (P. taeda)	pal	17	*		*		silent	Leu - Leu	exon
myb 4 transcription factor (P. taeda)lim120silent-intronrac13 GTPase (G. hirsutism)rac1321non - synonAla - Valexonkorrigan (endo-1,4- b-D-glucanase)kor22silent-introncinnamate 4-hydroxylasec4h23non - synonLeu - Pheexoncinnamate 4-hydroxylasec4h24silentVal - Valexon	unknown protein	nh3702	18	*		*		non - synon	Asn - Lys	exon
rac13 GTPase (G. hirsutism)rac1321non - synonAla - Valexonkorrigan (endo-1,4- b-D-glucanase)kor22silent-introncinnamate 4-hydroxylasec4h23non - synonLeu - Pheexoncinnamate 4-hydroxylasec4h24silentVal - Valexon	myb 4 transcription factor (P. taeda)	lim l	19					silent	Ala - Ala	exon
korrigan (endo-1,4- b-D-glucanase)kor22silent-introncinnamate 4-hydroxylasec4h23non - synonLeu - Pheexoncinnamate 4-hydroxylasec4h24silentVal - Valexon	myb 4 transcription factor (P. taeda)	lim l	20					silent	-	intron
cinnamate 4-hydroxylasec4h23non - synonLeu - Pheexoncinnamate 4-hydroxylasec4h24silentVal - Valexon	rac13 GTPase (G. hirsutism)	rac13	21					non - synon	Ala - Val	exon
cinnamate 4-hydroxylase c4h 24 silent Val - Val exon	korrigan (endo-1,4- b-D-glucanase)	kor	22					silent	-	intron
	cinnamate 4-hydroxylase	c4h	23					non - synon	Leu - Phe	exon
arabinogalactan protein 4 (<i>P. taeda</i>) agp4 25 silent - 5'UTR	cinnamate 4-hydroxylase	c4h	24					silent	Val - Val	exon
	arabinogalactan protein 4 (P. taeda)	agp4	25					silent	-	5'UTR

arabinogalactan protein 4 (P. taeda)	agp4	26				non - synon	Phe - Tyr	exon
arabinogalactan protein 4 (P. taeda)	agp4	27				non - synon	Ser- Ile	exon
arabinogalactan protein 4 (P. taeda)	agp4	28	*		*	silent	-	3'UTR
arabinogalactan protein 4 (P. taeda)	agp4	29	*		*	silent	-	3'UTR
arabinogalactan protein 6 (P. taeda)	agp6	30				non - synon	Asp - Tyr	exon
hdzip transcription factor	athb8	31				silent	-	intron
hdzip transcription factor	athb8	32	*		*	non - synon	Arg - Thr	exon
hdzip transcription factor	athb8	33				silent	Leu - Leu	exon
hdzip transcription factor	athb8	34				silent	-	intron
hdzip transcription factor	athb8	35				silent	Leu - Leu	exon
hdzip transcription factor	athb8	36				silent	-	intron
hdzip transcription factor	athb8	37				silent	-	3'UTR
cinnamyl-alcohol dehydrogenase	cad	38				silent	-	intron
cinnamyl-alcohol dehydrogenase	cad	39				silent	-	intron
cinnamyl-alcohol dehydrogenase	cad	40				silent	-	intron
cinnamyl-alcohol dehydrogenase	cad	41				silent	-	intron
cinnamyl-alcohol dehydrogenase	cad	42	*		*	silent	-	intron
cinnamyl-alcohol dehydrogenase	cad	43				silent	-	intron
caffeate 3-O-methyltransferase	comt2	44				silent	-	intron
caffeate 3-O-methyltransferase	comt2	45	*	*	*	non - synon	Asn - Ser	exon
alpha expansin	aexpl	46				silent	-	5'UTR
alpha expansin	aexpl	47				silent	-	intron
alpha expansin	aexpl	48				silent	Gly - Gly	exon
alpha expansin	aexpl	49				silent	Ala - Ala	exon
alpha expansin	aexpl	50	*	*	*	silent	-	intron
alpha expansin	aexp1	51	*		*	silent	-	3'UTR
glycine hydroxymethyltransferase	glyhmt	52				silent	-	intron
glycine hydroxymethyltransferase	glyhmt	53				silent	-	intron
glycine hydroxymethyltransferase	glyhmt	54				silent	-	intron

glycine hydroxymethyltransferase	glyhmt	55					silent	-	intron
glycine hydroxymethyltransferase	glyhmt	56					silent	-	intron
glycine rich cell wall protein	Lp5	57	*	*	*		silent	Asp - Asp	exon
myb 1 transcription factor (P. taeda)	lim l	58					silent	-	intron
myb 1 transcription factor (P. taeda)	lim l	59	*		*		silent	Ser - Asn	intron
phenylalanine ammonia lyase 1 (P. taeda)	pal	60	*	*	*	*	silent	Gly - Gly	exon
phenylalanine ammonia lyase 1 (P. taeda)	pal	61	*		*		silent	Leu - Leu	exon
phenylalanine ammonia lyase 1 (P. taeda)	pal	62					silent	Glu - Glu	exon
phenylalanine ammonia lyase 1 (P. taeda)	pal	63					silent	His - His	exon
phenylcoumaran benzylic ether reductase	pcber	64	*		*	*	silent	-	intron
phenylcoumaran benzylic ether reductase	pcber	65					silent	-	intron
phenylcoumaran benzylic ether reductase	pcber	66					silent	-	intron
alpha expansin	aexpl	67					silent	-	5'UTR
hdzip transcription factor	athbx	68					silent	-	intron
hdzip transcription factor	athbx	69	*	*	*		silent	His - His	exon
cinnamyl-alcohol dehydrogenase	cad	70					silent	-	intron
cinnamyl-alcohol dehydrogenase	cad	71					silent	-	intron
cinnamyl-alcohol dehydrogenase	cad	72					silent	-	intron
cinnamyl-alcohol dehydrogenase	cad	73					non - synon	Gly - Arg	exon
cinnamyl-alcohol dehydrogenase	cad	74					silent	-	intron
cinnamyl-alcohol dehydrogenase	cad	75					silent	-	intron
cinnamoyl-CoA reductase	ccrl	76					silent	-	intron
cinnamoyl-CoA reductase	ccrl	77					silent	-	5'UTR
cellulose synthase 3 (P. radiata)	cesal	78					silent	-	intron
cellulose synthase 3 (P. radiata)	cesal	79					silent	-	intron
cellulose synthase 3 (P. radiata)	cesal	80					silent	Ala - Ala	exon
cellulose synthase 3 (P. radiata)	cesal	81					silent	-	intron
cellulose synthase 3 (P. radiata)	cesal	82					non - synon	Gly - Ser	exon
cellulose synthase 3 (P. radiata)	cesal	83					silent	Thr - Thr	exon

cellulose synthase 3 (P. radiata)	cesal	84	*	*	*	silent	-	intron
cellulose synthase 3 (P. radiata)	cesal	85				silent	-	intron
cellulose synthase 3 (P. radiata)	cesal	86				non - synon	Pro - Leu	exon
cellulose synthase 3 (P. radiata)	cesal	87				non - synon	Lys - Glu	exon
cellulose synthase 3 (P. radiata)	cesal	88				silent	-	intron
cellulose synthase 3 (P. radiata)	cesal	89	*		*	silent	-	intron
cellulose synthase 3 (P. radiata)	cesal	90				silent	-	intron
cellulose synthase 3 (P. radiata)	cesal	91				silent	Thr - Thr	exon
cellulose synthase 3 (P. radiata)	cesal	92				non - synon	Val - Val/Met	exon
cellulose synthase 3 (P. radiata)	cesal	93				silent	-	intron
cellulose synthase 3 (P. radiata)	cesal	94				silent	Gln - Gln	exon
cellulose synthase 3 (P. radiata)	cesal	95				silent	-	intron
cellulose synthase 3 (P. radiata)	cesal	96				silent	-	intron
cellulose synthase 7 (P. radiata)	cesa2	97	*		*	silent	Pro - Pro	exon
cellulose synthase 1 (P. radiata)	cesa3	98				silent	-	3'UTR
cellulose synthase 1 (P. radiata)	cesa3	99				silent	-	intron
cellulose synthase 1 (P. radiata)	cesa3	100				non - synon	Lys - Ala	exon
cellulose synthase 1 (P. radiata)	cesa3	101				silent	-	intron
cellulose synthase 1 (P. radiata)	cesa3	102				silent	-	intron
COBL4 (A. thaliana)	cobl4	103				silent	Lys - Lys	exon
COBL4 (A. thaliana)	cobl4	104				silent	-	intron
COBL4 (A. thaliana)	cobl4	105				silent	-	intron
COBL4 (A. thaliana)	cobl4	106				silent	-	intron
dehydrin 2 (A. thaliana)	dh2	107				non - synon	Thr - Ala	exon
dehydrin 2 (A. thaliana)	dh2	108				non - synon	Gly - Asp	exon
dehydrin 7/8 (A. thaliana)	dh7/8	109				non - synon	Arg - Gly	exon
dehydrin 7/8 (A. thaliana)	dh7/8	110				non - synon	Val - Ile	exon
katanin (fragile fibre mutant 2) (A. thaliana)	fra2	111				silent	-	intron
katanin (fragile fibre mutant 2) (A. thaliana)	fra2	112				silent	-	intron

katanin (fragile fibre mutant 2) (A. thaliana)	fra2	113	*		*	silent	-	intron
korrigan (endo-1,4- b-D-glucanase)	kor	114				silent	-	intron
korrigan (endo-1,4- b-D-glucanase)	kor	115				silent	-	intron
korrigan (endo-1,4- b-D-glucanase)	kor	116				silent	Ala - Ala	exon
korrigan (endo-1,4- b-D-glucanase)	kor	117				silent	-	intron
rac13 GTPase (G. hirsutism)	rac13	118	*	*	*	silent	-	5'UTR
sucrose synthase	susy	119				silent	-	intron
xyloglucan endotransglycosylase 1 (P. taeda)	xetl	120				silent	-	5'UTR
xyloglucan endotransglycosylase 1 (P. taeda)	xetl	121				silent	-	5'UTR
lim 1 transcription factor (P. taeda)	lim1	122				non - synon	Cys - Phe	exon
S-adenosyl-L-homocysteine hydrolase	sahh l	123				silent	-	3'UTR
S-adenosyl-L-homocysteine hydrolase S-adenosyl-L-methionine synthase 2 (P.	sahh l	124				silent	-	3'UTR
<i>taeda</i>) S-adenosyl-L-methionine synthase 1 (<i>P</i> .	sam2	125				silent	-	5'UTR
<i>taeda</i>) S-adenosyl-L-methionine synthase 2 (<i>P</i> .	sam l	126				silent	Val - Val	exon
<i>taeda</i>) S-adenosyl-L-methionine synthase 1 (<i>P</i> .	sam2	127				silent	-	5'UTR
taeda)	sam l	128				silent	Asp - Asp	exon
rac13 GTPase (G. hirsutism)	rac13	129				silent	-	3'UTR
rac13 GTPase (G. hirsutism)	rac13	130				silent	-	intron
S-adenosyl-L-homocysteine hydrolase S-adenosyl-L-methionine synthase 1 (P.	sahh l	131	*	*	*	silent	-	3'UTR
<i>taeda</i>) S-adenosyl-L-methionine synthase 1 (<i>P</i> .	sam l	132				silent	Phe - Phe	exon
<i>taeda</i>) S-adenosyl-L-methionine synthase 1 (<i>P</i> .	sam l	133	*		*	silent	-	3'UTR
<i>taeda</i>) S-adenosyl-L-methionine synthase 1 (<i>P</i> .	saml	134				silent	-	3'UTR
<i>taeda</i>) S-adenosyl-L-methionine synthase 2 (<i>P</i> .	saml	135				silent	Val - Val	exon
<i>taeda</i>) S-adenosyl-L-methionine synthase 2 (<i>P</i> .	sam2	136				silent	-	5'UTR
<i>taeda</i>) S-adenosyl-L-methionine synthase 2 (<i>P</i> .	sam2	137				silent	-	5'UTR
taeda)	sam2	138				silent	-	5'UTR

chloroplastic superoxide dismutase	sodchl	139				silent	-	intron
chloroplastic superoxide dismutase	sodchl	140				silent	-	intron
chloroplastic superoxide dismutase	sodchl	141				silent	Ile - Ile	exon
alpha tubulin	atub	142				silent	-	intron
alpha tubulin	atub	143				silent	Ala - Ala	exon
cellulose synthase 1 (P. radiata)	cesa3	144				silent	-	3'UTR
proline rich protein	prp	145				silent	-	3'UTR
sucrose synthase	susy	146	*	*	*	silent	-	intron
xyloglucan endotransglycosylase 1 (P. taeda)	xetl	147				silent	-	5'UTR
xyloglucan endotransglycosylase 1 (P. taeda)	xetl	148				silent	Val - Val	exon
xyloglucan endotransglycosylase 1 (P. taeda)	xetl	149				silent	-	intron

A = p-value < 0.05 in discovery population

short-list = SNP in discovery population shortlisted based on q-values (Table 3)

validation = SNP re-tested in validation population

B = p-value < 0.05 in validation population

Squared correlation coefficient (R^2) between pairs of sites in the 149 SNP data set where R^2 is > 0.2

LocusName1	LocusName2	R^2
61SNP	17SNP	1.000
69SNP	32SNP	0.949
138SNP	125SNP	0.935
68SNP	31SNP	0.894
87SNP	85SNP	0.894
149SNP	147SNP	0.830
101SNP	98SNP	0.818
99SNP	98SNP	0.814
101SNP	99SNP	0.803
102SNP	98SNP	0.792
102SNP	101SNP	0.781
102SNP	99SNP	0.778
74SNP	41SNP	0.745
94SNP	87SNP	0.704
29SNP	28SNP	0.694
94SNP	85SNP	0.682
27SNP	26SNP	0.669
135SNP	126SNP	0.651
67SNP	46SNP	0.626
137SNP	127SNP	0.624
62SNP	16SNP	0.571
83SNP	79SNP	0.566
20SNP	14SNP	0.560
43SNP	38SNP	0.558
67SNP	50SNP	0.553
134SNP	128SNP	0.549
115SNP	114SNP	0.544
50SNP	46SNP	0.542
55SNP	54SNP	0.530
67SNP	51SNP	0.496
51SNP	50SNP	0.490
51SNP	46SNP	0.486
141SNP	140SNP	0.480
134SNP	126SNP	0.480
135SNP	134SNP	0.476
6SNP	5SNP	0.464
147SNP	120SNP	0.454
70SNP	41SNP	0.454
128SNP	126SNP	0.453
135SNP	128SNP	0.449
37SNP	36SNP	0.448

74SNP	70SNP	0.446
149SNP	120SNP	0.443
28SNP	27SNP	0.443
34SNP	31SNP	0.439
12SNP	98NP	0.427
68SNP	34SNP	0.423
143SNP	142SNP	0.420
29SNP	27SNP	0.418
51SNP	48SNP	0.416
149SNP	148SNP	0.412
117SNP	22SNP	0.405
148SNP	147SNP	0.397
67SNP	48SNP	0.391
145SNP	5SNP	0.390
48SNP	46SNP	0.383
50SNP	48SNP	0.372
105SNP	104SNP	0.371
106SNP	105SNP	0.364
7SNP	6SNP	0.364
83SNP	81SNP	0.354
137SNP	136SNP	0.337
28SNP	26SNP	0.336
29SNP	26SNP	0.322
137SNP	125SNP	0.301
138SNP	137SNP	0.301
81SNP	79SNP	0.299
136SNP	127SNP	0.297
91SNP	87SNP	0.296
127SNP	125SNP	0.288
138SNP	127SNP	0.288
88SNP	80SNP	0.280
124SNP	123SNP	0.260
89SNP	87SNP	0.256
89SNP	85SNP	0.254
131SNP	124SNP	0.241
42SNP	40SNP	0.235
94SNP	91SNP	0.232
73SNP	42SNP	0.229

Phenotypes assessed in the Batlow and Flynn populations

Trait no.	Trait description	Trait type	Trait	Population
raitl	max density	late wood/ juvenile	Derived	Batlow
rait2	max density	late wood/ mature	Derived	Batlow
rait3	max density 1997	mature	Derived	Batlow
rait4	max density 1991	juvenile	Derived	Batlow
rait5	ring width	whole core	Primary	Batlow
rait6	cumulative ring width	whole core	Primary	Batlow
rait7	density	whole core	Primary	Batlow
rait8	density	juvenile	Derived	Batlow
rait9	density	mature	Derived	Batlow
rait10	% juvenile density of mature density	whole core	Derived	Batlow
rait11	min density	early wood/ whole core	Primary	Batlow
rait12	max density	late wood/ whole core	Primary	Batlow
rait13	% min dens of max dens	whole core	Derived	Batlow
rait14	radial diameter	whole core	Primary	Batlow
rait15	tangential diameter	whole core	Primary	Batlow
rait16	cell population	whole core	Primary	Batlow
rait17	coarseness	whole core	Primary	Batlow
rait18	wall thickness	whole core	Primary	Batlow
rait19	specific surface area	whole core	Primary	Batlow
rait20	MFA	whole core	Primary	Batlow
rait21	MOE	whole core	Primary	Batlow
rait22	min density	early wood/ juvenile	Derived	Batlow
rait23	min density	early wood/ mature	Derived	Batlow
rait24	ring width	juvenile	Derived	Batlow
rait25	ring width	mature	Derived	Batlow
rait26	cumulative ring width	juvenile	Derived	Batlow
rait27	cumulative ring width	mature	Derived	Batlow
rait28	radial diameter	juvenile	Derived	Batlow
rait29	radial diameter	mature	Derived	Batlow
rait30	tangential diameter	juvenile	Derived	Batlow
rait31	tangential diameter	mature	Derived	Batlow
rait32	cell population	juvenile	Derived	Batlow
rait33	cell population	mature	Derived	Batlow
rait34	coarseness	juvenile	Derived	Batlow
rait35	coarseness	mature	Derived	Batlow
rait36	wall thickness	juvenile	Derived	Batlow
rait37	wall thickness	mature	Derived	Batlow
rait38	specific surface area	juvenile	Derived	Batlow
rait39	specific surface area	mature	Derived	Batlow
rait40	MFA	juvenile	Derived	Batlow
rait41	MFA	mature	Derived	Batlow
rait42	MOE	juvenile	Derived	Batlow
rait43	MOE	mature	Derived	Batlow
rait44	% mature MFA of juvenile MFA	whole core	Derived	Batlow
rait45	% juvenile MOE of mature MOE	whole core	Derived	Batlow
rait45 rait46	LWP	whole core	Derived	Batlow
rait47	min MFA	early wood/ whole core	Derived Derived	Batlow
rait48	max MFA	late wood/ whole core	Derived	Batlow
rait49	min MFA	early wood/ juvenile	Derived	Batlow
rait50	min MFA	early wood/ mature	Derived	Batlow
rait51	max MFA	late wood/ juvenile	Derived	Batlow
rait52	max MFA	late wood/ mature	Derived	Batlow

trait53	min MOE	early wood/ whole core	Derived	Batlow
trait54	max MOE	late wood/ whole core	Derived	Batlow
trait55	min MOE	early wood/ juvenile	Derived	Batlow
trait56	min MOE	early wood/ mature	Derived	Batlow
trait57	max MOE	late wood/ juvenile	Derived	Batlow
trait58	max MOE	late wood/ mature	Derived	Batlow
trait59	juvenile rings	juvenile	Derived	Batlow
trait60	PCA1	PCA	Derived	Batlow
trait61	PCA2	PCA	Derived	Batlow
trait62	PCA3	PCA	Derived	Batlow
trait40*	Average MFA (4-7)	juvenile	primary	Flynn
trait42*	Average MOE (4-7)	juvenile	primary	Flynn
trait8*	Average Density (4-7)	juvenile	primary	Flynn
trait63	Core Length	whole core	primary	Flynn
trait64	core area	whole core	primary	Flynn
trait65	Area Weighted Density	whole core	primary	Flynn
trait66	Area Weighted MFA	whole core	primary	Flynn
trait67	Area Weighted MOE	whole core	primary	Flynn
trait68	Ring 1 Width	individual ring	primary	Flynn
trait69	Ring 2 Width	individual ring	primary	Flynn
trait70	Ring 3 Width	individual ring	primary	Flynn
trait71	Ring 4 Width	individual ring	primary	Flynn
trait72	Ring 5 Width	individual ring	primary	Flynn
trait73	Ring 6 Width	individual ring	primary	Flynn
trait74	Ring 7 Width	individual ring	primary	Flynn
trait75	Ring 1 Density	individual ring	primary	Flynn
trait76	Ring 2 Density	individual ring	primary	Flynn
trait77	Ring 3 Density	individual ring	primary	Flynn
trait78	Ring 4 Density	individual ring	primary	Flynn
trait79	Ring 5 Density	individual ring	primary	Flynn
trait80	Ring 6 Density	individual ring	primary	Flynn
trait81	Ring 7 Density	individual ring	primary	Flynn
trait82	Ring 1 MFA	individual ring	primary	Flynn
trait83	Ring 2 MFA	individual ring	primary	Flynn
trait84	Ring 3 MFA	individual ring	primary	Flynn
trait85	Ring 4 MFA	individual ring	primary	Flynn
trait86	Ring 5 MFA	individual ring	primary	Flynn
trait87	Ring 6 MFA	individual ring	primary	Flynn
trait88	Ring 7 MFA	individual ring	primary	Flynn
trait89	Ring 1 MOE	individual ring	primary	Flynn
trait90	Ring 2 MOE	individual ring	primary	Flynn
trait91	Ring 3 MOE	individual ring	primary	Flynn
trait92	Ring 4 MOE	individual ring	primary	Flynn
trait93	Ring 5 MOE	individual ring	primary	Flynn
trait94	Ring 6 MOE	individual ring	primary	Flynn
trait95	Ring 7 MOE	individual ring	primary	Flynn
	0 · -		I	/

Table of p-values for associations using the mixed linear model (MLM) and general linear model (GQ) in the discovery population

Table S4 is available for download as an Excel file at http://www.genetics.org/cgi/content/full/genetics.110.116582/DC1.

Table of p-values for associations using the mixed linear model (MLM) and general linear model (GQ) in the validation population

Table S5 is available for download as an Excel file at http://www.genetics.org/cgi/content/full/genetics.110.116582/DC1.

Correlation matrix for primary traits measured in the discovery population

	trait1	trait2	trait3	trait4	trait5	trait6	trait7	trait8	trait10	trait9	trait11	trait12	trait13	trait14	trait15	trait16	trait17	trait18	trait19	trait20	trait21
trait1	1																				
trait2	0.33	1																			
trait3	0.31	0.76	1																		
trait4	0.46	0.33	0.35	1																	
trait5	-0.17	-0.32	-0.35	-0.09	1																
trait6	-0.15	-0.24	-0.27	-0.03	0.74	1															
trait7	0.43	0.56	0.56	0.38	-0.34	-0.23	1														
trait8	0.48	0.23	0.22	0.23	-0.05	-0.07	0.65	1													
trait10	0.08	-0.37	-0.38	-0.16	0.34	0.25	-0.31	0.49	1												
trait9	0.39	0.59	0.59	0.39	-0.40	-0.35	0.95	0.46	-0.54	1											
trait11	0.34	0.44	0.43	0.24	-0.41	-0.34	0.88	0.62	-0.22	0.83	1										
trait12	0.55	0.78	0.76	0.61	-0.28	-0.14	0.75	0.47	-0.26	0.72	0.57	1									
trait13	-0.14	-0.23	-0.22	-0.31	-0.22	-0.27	0.28	0.25	-0.01	0.26	0.60	-0.31	1								
trait14	-0.15	-0.28	-0.28	-0.06	0.49	0.53	-0.44	-0.30	0.17	-0.47	-0.49	-0.25	-0.33	1							
trait15	-0.06	-0.17	-0.14	0.02	0.27	0.42	-0.32	-0.17	0.19	-0.36	-0.39	-0.11	-0.35	0.44	1						
trait16	0.15	0.30	0.29	0.05	-0.51	-0.59	0.47	0.29	-0.22	0.51	0.54	0.24	0.40	-0.90	-0.77	1					
trait17	0.19	0.16	0.16	0.26	0.26	0.43	0.34	0.25	-0.03	0.26	0.18	0.35	-0.14	0.59	0.55	-0.66	1				
trait18	0.39	0.47	0.47	0.40	-0.05	0.11	0.83	0.55	-0.22	0.77	0.65	0.70	0.07	0.06	0.12	-0.09	0.80	1			
trait19	-0.36	-0.40	-0.40	-0.35	0.02	-0.15	-0.79	-0.59	0.12	-0.70	-0.66	-0.63	-0.15	-0.09	-0.16	0.13	-0.81	-0.97	1		
trait20	-0.12	-0.30	-0.28	-0.24	0.38	0.09	-0.28	0.03	0.31	-0.27	-0.17	-0.41	0.19	0.01	-0.15	0.05	-0.26	-0.34	0.31	1	
trait21	0.28	0.53	0.53	0.35	-0.52	-0.25	0.67	0.21	-0.48	0.70	0.55	0.64	0.01	-0.24	-0.06	0.22	0.31	0.61	-0.56	-0.84	1

47 SNP associations where p-values < 0.05 using the general linear model in discovery population

SNP	gene	trait	p-value	a-value
<u> 2</u>	gene rac13	Trait41	0.0015	<u>q-value</u> 0.0721
2	rac13	Trait50	0.0015	0.0721
2	rac15 rac13	Trait50 Trait52	0.0035	0.0888
		Trait56		
2	racl3		0.0245	0.1755
2	rac13	PCA3	0.0275	0.1879
2	racl3	Trait58	0.0480	0.2652
11	porin	PCA2	0.0025	0.0721
11	porin	Trait35	0.0045	0.0888
17	pal	Trait33	0.0105	0.1091
17	pal	Trait29	0.0310	0.2027
18	nh3702	PCA3	0.0415	0.2395
28	agp4	Trait2-2	0.0440	0.2484
29	agp4	Trait2-2	0.0115	0.1149
32	athb8	Trait32	0.0395	0.2385
42	cad	Trait36	0.0105	0.1091
42	cad	Trait38	0.0320	0.2027
45	comt2	Trait53	0.0065	0.0888
45	comt2	Traitll	0.0120	0.1154
45	comt2	PCA1	0.0125	0.1159
45	comt2	Trait7	0.0135	0.1169
45	comt2	Trait14	0.0220	0.1680
45	comt2	Trait28	0.0320	0.2027
45	comt2	Trait54	0.0405	0.2390
50	aexpl	Trait18	0.0025	0.0721
50	aexpl	Trait37	0.0045	0.0888
51	aexpl	PCA1	0.0220	0.1680
57	Lp5	Trait18	0.0020	0.0721
57	Lp5	Trait37	0.0055	0.0888
57	Lp5	Trait39	0.0065	0.0888
57	Lp5	Trait19	0.0075	0.0927
58	lim l	Traitll	0.0005	0.0380
59	lim l	Trait44	0.0390	0.2385
60	pal	Trait10-2	0.0005	0.0433
61	pal	Trait33	0.0135	0.1169
64	pcber	Trait39	0.0155	0.1298
69	athbx	Trait32	0.0080	0.0944
84	cesal	Trait59	0.0075	0.0927
89	cesal	Trait13	0.0235	0.1744
97	cesa2	Trait13	0.0250	0.1755
113	fra2	Trait9-2	0.0160	0.1298
118	rac13		0.0060	

118	rac13	Trait16	0.0065	0.0888
131	sahh l	PCA3	0.0015	0.0721
133	sam l	Trait3	0.0065	0.0888
133	sam l	Trait2-2	0.0095	0.1073
133	sam l	Trait40	0.0005	0.0380
146	susy	Trait4	0.0020	0.0721