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Abstract
Spatial priors, such as probabilistic atlases, play an important role in MRI segmentation. However,
the availability of comprehensive, reliable and suitable manual segmentations for atlas
construction is limited. We therefore propose a joint segmentation of corresponding, aligned
structures in the entire population that does not require a probability atlas. Instead, a latent atlas,
initialized by a single manual segmentation, is inferred from the evolving segmentations of the
ensemble. The proposed method is based on probabilistic principles but is solved using partial
differential equations (PDEs) and energy minimization criteria. We evaluate the method by
segmenting 50 brain MR volumes. Segmentation accuracy for cortical and subcortical structures
approaches the quality of state-of-the-art atlas-based segmentation results, suggesting that the
latent atlas method is a reasonable alternative when existing atlases are not compatible with the
data to be processed.

1 Introduction
Probabilistic atlases are crucial for most MR segmentation methods due to the absence of
well defined boundaries. Derived from comprehensive sets of manually labeled examples,
atlases provide statistical priors for tissue classification and structure segmentation
[1,9,13,14,18]. Although atlas-based segmentation methods often achieve accurate results,
the need for spatial priors can be problematic. First, the availability of suitable atlases is
limited since manual segmentation of a significant number of volumes requires expensive
effort of an experienced physician. Second, the suitability of existing atlases for images from
different populations is questionable. Examples include using normal adult brain atlas for
brain parcellation of young children or patients with severe brain pathologies.

Recently, a few methods have been proposed to reduce or avoid the dependency on possibly
incompatible atlases. In the atlas-based segmentation method in [3], topological constraints
are used to avoid possible bias introduced by the atlas. In [19], manually labeled structures
are used to support the automatic segmentation of neighboring structures within the same
image. Tu et al. [17] propose a discriminative approach for the segmentation of adjacent
brain structures using a set of discriminative features learned from training examples. Lord
et al. [11] suggest a group-wise smoothing, segmentation and registration method for cross
sectional MR scans. Bhatia et al. [5] update an initial atlas constructed from a different
population using the evolving segmentations of multiple images.

Here we propose and demonstrate a method that does not use a set of training images or
probabilistic atlases as priors. Instead we extract an ensemble of corresponding structures
simultaneously. The evolving segmentation of the entire image set supports each of the
individual segmentations. In practice, a subset of the model parameters, called the spatial
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parameters, is inferred as part of the joint segmentation processes. These latent spatial
parameters, which can be viewed as a ‘dynamic atlas’, are estimated exclusively from the
data at hand and a single manual segmentation. The latent atlas is used as a Markov Random
Field (MRF) prior on the tissue labels. The main novelty of the method with respect to other
group-wise segmentation methods such as [11,5] is the consistent statistically-driven
variational framework for MR ensemble segmentation.

Our contribution is two-fold. We introduce a level set framework, that is based on
probabilistic principles, in which segmentation uncertainty is expressed by the logistic
function of the associated level set values, similar to [15]. We then use it for group-wise
segmentation. We evaluate our method by segmenting the amygdala, temporal gyrus and
hippocampus in each hemisphere in 50 MR brain scans. The dice scores achieved by our
method approach the atlas-based segmentation results of [14].

2 Problem Definition and Probabilistic Model
Our objective is to segment a particular structure or region of interest in N aligned MR
images. Specifically, we consider the 2-partition problem where each voxel in image In (n =
1 … N) is assigned to either the foreground (structure of interest) or the background.

Let each image In: Ω → ℝ+, be a gray level image with V voxels, defined on Ω ⊂ ℝ3 and
Γn: Ω → {0, 1} be the unknown segmentation of the image In. We assume that each Γn is
generated iid from a probability distribution p(Γ| θΓ) where θΓ is a set of unknown
parameters. We also assume that Γn generates the observed image In, independently of all
other image-segmentation pairs, with probability p(In|Γn, θI,n) where θI,n are the parameters
corresponding to image In. We assign a specific set of intensity parameters to each image
since the acquisition conditions might vary across subjects.

Let {I1 … IN } be the given set of aligned images that form the observed variable in our
problem and let Γ = {Γ1 … ΓN} be the corresponding segmentations. The joint distribution
p(I1 … IN, Γ1 … ΓN|Θ) is governed by the composite set of parameters Θ = {θΓ, θI,1 …
θI,N }. Our goal is to estimate the segmentations Γ.

We jointly optimize for the segmentations Γ and the parameters Θ, assuming that I1 … IN
are independent:

(1)

(2)

(3)

We propose to alternate between estimating the maximum a posteriori (MAP) segmentations
and updating the model parameters. For a given value of the model parameters Θ ̂, Equation
(3) implies that the segmentations can be estimated by solving N separate MAP problems:
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(4)

We then fix Γ̂ and estimate the model parameters Θ = {θΓ, θI,1, … θI,N} by solving two ML
problems:

(5)

(6)

In the following sections we present a level-set framework that is motivated by this
probabilistic model. We reformulate the estimation problem stated in Eq. (4) such that the
soft segmentations p(Γn) rather then the Γn are estimated.

3 Probabilistic View of the Level Set Framework
Now we draw the connection between the probabilistic model presented above and the level
set framework for segmentation. Let φn: Ω → ℝ denote a level set function associated with
image In. The zero level Cn = {x ∈ Ω| φn(x) = 0} defines the interface between the partitions
of In. Vese and Chan [6] represent the image partitions by a regularized variant of the

Heaviside function of φn, e.g., . Alternatively, we can use the
hyperbolic tangent to achieve the same goal:

(7)

For ε = 1, the function H ̃ε(·) is the logistic function. Similar to [15], we define the level set
function φn using the log-odds formulation instead of the conventional signed distance
function:

(8)

The scalar ε determines the scaling of the level set function φn with respect to the ratio of the
probabilities. Substituting this definition into Eq. (7) we obtain

(9)

which implies that the function H ̃ε(φn(x)) can be viewed as the probability that the voxel in
location x belongs to the foreground region. The functions H ̃ε(φn(x)) and H(φn(x)) therefore
represent soft and hard segmentations, respectively. To simplify the notation we omit the
subscript ε in the rest of the paper.
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In the following subsections we relate the terms in Eq. (3) to the energy terms in the
classical level set functional.

3.1 Image Likelihood Term
Let us first consider the image likelihood term in Eq. (3):

(10)

where pin and pout are the probability distributions of the foreground and back-ground image
intensities, respectively.

Let EI ≅ −log p(In| Γn, θ ̂I,n) define the energy term associated with the image likelihood
term. Using the level-set formulation and replacing the binary labels Γn in Eq. (10) with a
soft segmentation represented by H ̃(φn), we get:

(11)

If we use, for example, Gaussian densities for pin and pout we get the familiar minimal
variance term [6,12]. Here, we use a Gaussian mixture to model the background, as
described later in the paper.

3.2 Spatial Prior Term
We define the prior probability p(Γn|θΓ) to be a Markov Random Field (MRF):

(12)

where Z(θΓ) is the partition function and (v) are the closest neighbors of voxel v. The
function f (·) accounts for the interactions between neighboring voxels. If we omit the
pairwise term in Eq. (12), the prior on segmentations p(Γn|θΓ) reduces to a Bernoulli
distribution, where the parameters θΓ represent the probability map for the structure of
interest. The introduction of the pairwise clique potentials complicates the model but
encourages smoother labeling configurations.

Using the continuous level set formulation with soft segmentation, we define the spatial
energy term. as follows:

(13)

As in [4] we ignore the partition function, approximating the MRF model above. The
logarithm of the pairwise clique potential term f (·) can be configured to act as a finite
difference operator approximating the gradient of Γn at the voxel v [10]. It can be therefore
viewed as an approximation of the continuous term
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(14)

which is the commonly used smoothness constraint as reformulated in [6].

3.3 The Unified Energy Functional
We now construct the cost functional for φ1 … φN and the parameters Θ by combing Eqs.
(11),(13) and (14):

(15)

where α = 1 − β − γ. As in [16] we tune the weights such that the contributions of the energy
terms ELEN, EI and ES to the overall cost are balanced.

4 Alternating Minimization Algorithm
We optimize the unified functional (15) in a set of alternating steps. For fixed model
parameters Θ, the evolution of each of the level set functions φn follows the gradient descent
equation:

(16)

where  is the derivative of the Heaviside function, i.e.,

For fixed segmentations φn the model parameters are recovered by differentiating the cost
functional (15) with respect to each parameter.

4.1 Intensity Parameters
We assume that the intensities of the structure of interest are drawn from a normal

distribution, i.e., . The distribution mean and variance of the
foreground region of In are updated at every iteration. The intensities of the background
tissues are modeled as a K-Gaussian mixture:

where  is the mixing proportion component k in the mixture. The Gaussian mixture model
parameters are estimated using expectation maximization (EM) [7].

4.2 Spatial Parameters
We estimate the spatial function θΓ(x), constructing a dynamically evolving latent atlas, by
optimizing the sum of the energy terms the depend on θΓ:
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yielding .

5 Experimental Results
We test the proposed approach on 50 MR brain scans. Some of the subjects in this set are
diagnosed with the first episode schizophrenia or affective disorder. The MR images (T1,
256 × 256 × 128 volume, 0.9375 × 0.9375 × 1.5 mm3 voxel size) were acquired by a 1.5-T
General Electric Scanner. The data was originally acquired for brain morphometry study [8].
In addition to the MR volumes, manual segmentations of three structures (superior temporal
gyrus, amygdala, and hippocampus) in each hemisphere were provided for each of the 50
individuals and used to evaluate the quality of the automatic segmentation results. MR
images are preprocessed by skull stripping. The volumes were aligned using B-spline
registration according to [2].

Assuming that the manual segmentation of a single instance is given, we initialize the latent
atlas θΓ by the Heaviside function of a single manual segmentation smoothed with a
Gaussian kernel of width σ (σ = .35 in our experiments). We ran the experiments twice,
initializing the level-set functions of the signed distance function of the given manual
segmentation or a sphere, with center and radius corresponding to the manually segmented
structure. The results obtained using the first mode of initialization were slightly better. We
excluded the image associated with the given manual segmentations from the ensemble. The
algorithm was implemented in Matlab and ran on the average 7.5 minutes for 50 cropped
volumes, excluding the time of the initial estimate of the background intensity of the
Gaussian mixture. About 7 iterations were needed until convergence which was obtained
when the update of the level-set functions did not induce changes in the corresponding
boundaries.

We used the Dice score to evaluate segmentations. The results are shown in Figure 1. In
contrast to [14] we do not use spatial priors, neither do we use hierarchical multi-stage
segmentation model. Nevertheless, the Dice scores obtained by our method approache the
state-of-the-art atlas-based segmentation results reported there. To exemplify the
significance of a latent atlas, generated concurrently with the segmentation, we also show a
comparison to the segmentation results obtained by using an atlas constructed from a single
manual segmentation smoothed by a Gaussian kernel, without the update procedure. Figure
2 shows segmentation examples of the three pairs of structures in representative individual
brains. Coronal views of the resulting 3D atlases for each pair of structures are shown in the
fourth column of Figure 2.

6 Discussion and Conclusions
We presented a level set framework for segmentation of MR image ensembles, that is
motivated by a generative probabilistic model. Unlike most previous methods, we do not use
spatial priors in the form of a probabilistic atlas. Instead, spatial latent parameters, which
form a ‘dynamic atlas’, are inferred from the data set through an alternating minimization
procedure.
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The quality of the segmentation results obtained for ensembles of brain structures shows that
the proposed method presents a reasonable alternative to standard segmentation techniques
when a compatible atlas is not available.

An on-going research is now conducted to demonstrate the ability of the proposed algorithm
to handle pathological cases (e.g., in a longitudinal or a multimodal study) where the atlas-
based approach still fails.
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Fig. 1.
The mean and standard deviation of the Dice scores calculated for six structures in the
ensemble. The latent atlas segmentation (green) is compared to the atlas-based segmentation
(blue) reported in [14] and to the segmentation obtained by using a single manual
segmentation as an atlas (red).
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Fig. 2.
Three cross-sections of 3D segmentations of Hippocampus, Amygdala and Superior
Temporal Gyrus in the left and right hemispheres. Automatic segmentation is shown in red.
Manual segmentation is shown in blue. Fourth column: Coronal views of the resulting
atlases for each pair of structures.
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