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Abstract

There is increasing evidence that human pregnancy outcome can be significantly compromised by
suboptimal maternal nutritional status. Poor diet results in a maternal-fetal environment in which
the teratogenicity of other insults such as alcohol might be amplified. As an example, there is
evidence that zinc (Zn) can interact with maternal alcohol exposure to influence the risk for fetal
alcohol spectrum disorders (FASD). Studies with experimental animals have shown that the
teratogenicity of alcohol is increased under conditions of Zn deficiency, while its teratogenicity is
lessened when animals are given Zn supplemented diets or Zn injections prior to the alcohol
exposure. Alcohol can precipitate an acute phase response resulting in a subsequent increase in
maternal liver metallothionein, which can sequester Zn and lead to decreased Zn transfer to the
fetus. Importantly, the teratogenicity of acute alcohol exposure is reduced in metallothionein
knockout mice, which can have improved Zn transfer to the conceptus relative to wild-type mice.
Consistent with the above, Zn status has been reported to be low in alcoholic women at delivery.
Preliminary data from two basic science and clinical nutritional studies that are ongoing as part of
the international Collaborative Initiative on Fetal Alcohol Spectrum Disorders (CIFASD) support
the potential role of Zn, among other nutritional factors, relative to risk for FASD. Importantly, the
nutrient levels being examined in these studies are relevant to general clinical populations and
represent suboptimal levels rather than severe deficiencies. These data suggest that moderate
deficiencies in single nutrients can act as permissive factors for FASD, and that adequate
nutritional status or intervention through supplementation may provide protection for some of the
effects of prenatal alcohol exposure.

"Corresponding author Carl L. Keen, Ph.D., University of California, Davis, One Shields Avenue, Davis, CA 95616, Tel.:
+1-530-752-6331; fax: +1-530-752-8966. clkeen@ucdavis.edu.
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1. Introduction

It is estimated that, conservatively, 50% of human concepti are lost before or during
implantation, and of those that successfully implant, an additional 15-20% are lost prior to
delivery [1,2]. With respect to completed pregnancies, approximately 3% result in a child
with one or more severe malformations. These numbers, as discouraging as they are, do not
take into account the increased risk many children can have for chronic diseases later in life,
including obesity, diabetes, hypertension and vascular disease, as a consequence of select
prenatal or early postnatal insults [3,4]. While a diversity of factors can contribute to the
occurrence of developmental abnormalities, there is increasing evidence that human
pregnancy outcome can be significantly compromised by suboptimal maternal nutritional
status, and that poor nutrition may be a leading cause of preventable birth defects. A number
of investigators since the early 1940’s have reported that women who consume diets that can
be classified as “poor” have an increased risk for pregnancy complications compared to
women who consume diets that can be classified as “good” (Table 1). It is worth noting that
this association has been reported over a period of time where many would argue as to what
constitutes a good versus a poor diet; however, a consistent theme over the past seven
decades has been that “good” diets are characterized by high micronutrient content.
Importantly, data from a variety of nutrition intervention trials, ranging from the provision
of whole foods, to multivitamin-mineral supplements, to single nutrients such as folate and
iodine, provide evidence that improvements in a mother’s diet can result in marked
reductions in her risk for a complicated pregnancy [5-11]. When viewed in its totality, the
data supporting the concept that maternal nutritional status is a key predictor of human
pregnancy outcome seem overwhelming; however, a complication in the story is that while
the diets of women who consume “poor’ diets may not be ideal, pronounced essential
nutrient deficiencies are rare. This observation has led to the idea that the increased risk for
pregnancy complications observed in this group of women may, in many cases, be more due
to the fact that the poor diet results in a maternal-fetal environment in which the
teratogenicity of other insults is amplified, than due to a simple deficit of one or more
essential nutrients in the diet.

In the current paper, we explore this concept using alcohol as an example of a
developmental insult whose teratogenicity can be modulated by maternal diet. It is now
widely accepted that excessive maternal alcohol intake during pregnancy can result in a
number of developmental abnormalities commonly referred to as the Fetal Alcohol
Syndrome (FAS), or more recently, the Fetal Alcohol Spectrum Disorder (FASD) [12].
FASD is now thought to be one of the most common causes of developmental mental
retardation in the human population. Due to space constraints we will focus our discussion
on the ability of zinc (Zn) to modulate the teratogenic expression of alcohol. In the last
section of this paper, preliminary data from an ongoing multi-nutrient supplementation trial
in Russia and the Ukraine with women who are at high risk for having a child with FASD
will be discussed. We would like to emphasize that while our comments are focused on Zn,
there is good evidence that numerous other nutrients, including copper (Cu), iron (Fe),
magnesium (Mg), selenium (Se), methionine, choline, vitamin B, and folate, can modulate
alcohol’s developmental toxicity. Owing to space constraints, review articles are cited in
several instances and the reader is directed to them for additional references.
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2. Alcohol-Zn Interactions

Although the concomitant effects of alcohol and specific nutrient deficiencies on the
developing brain are not well understood, animal studies have shown that compromised
nutrition can exacerbate ethanol’s teratogenic effects. Many adverse effects of prenatal
alcohol exposure including low birth weight [13], physical anomalies [14], brain damage
[15] and reduced IGF levels [16] have been reported to be more severe when the alcohol is
consumed along with poor diets; however, a complication of this finding is that blood
alcohol levels are often higher among malnourished subjects than in subjects thought to be
characterized by similar alcohol intakes, but better diets. On the positive side, results from
early animal studies suggest that select nutritional supplements can attenuate some of the
effects of prenatal alcohol exposure, although the effectiveness depends on many factors,
including the level of alcohol exposure and the outcome measure [17]. The contribution of
select nutritional factors to the risk for FASD in humans has not been well characterized,
however, the overall nutritional status of heavy drinkers is generally recognized to be poor
[18]. It is critically important to define the role that malnutrition or under-nutrition plays in
the risk for FASD. Of particular interest in the pregnant heavy drinker is assessing the status
for those micronutrients that are critical for normal neurulation and development of the
central nervous system (CNS). From work with experimental animals, it is well documented
that deficiencies of certain nutrients, including folate, vitamin B15, Zn, Fe and Cu, during
pregnancy can result in abnormal CNS development, and deficiencies of these nutrients are
commonly noted in alcoholics [18-23].

With respect to the above nutrients, the hypothesis that maternal Zn status is an important
predictor of the risk for FASD has received particular attention. Over 25 years ago, Flynn et
al reported that maternal plasma Zn and fetal cord plasma Zn were lower in pregnant women
who consumed alcohol versus non-alcohol drinking women [24]. Importantly, these
investigators reported that there were negative correlations between maternal plasma Zn
concentrations and the severity and frequency of birth defects in the infants, suggesting an
etiologic role for Zn deficiency in human FASD. Consistent with the idea that maternal Zn
status might be a predictor of the risk for FASD are the early data of Miller et al [25]; these
investigators reported that the reproductive toxicity of alcohol in rats was elevated in dams
fed marginal Zn diets (10 pg Zn/g diet) compared to that in dams fed diets with control
amounts of Zn (45 pg/g) [25]. It is important to note that in the above study by Miller et al,
the amount of Zn that was provided in the diet of the marginal Zn group would not be
viewed as “deficient”, as the consumption of this diet throughout pregnancy would not
typically result in marked developmental anomalies. Consistent with the data of Miller et al,
the teratogenicity of alcohol has been reported to be amplified in pregnant rats and mice fed
Zn deficient diets (1 pug Zn/g) [26-28].

The relevance of the above work by Miller et al is underscored by the observation that in
certain human populations, dietary Zn intake during pregnancy can be well below current
recommended dietary intakes [29-32], suggesting that suboptimal Zn status is common in
the human population. The concept that a deficit of Zn during early development presents a
risk to the human conceptus is reasonable, given that in experimental animals, the
teratogenicity of severe Zn deficiency is well documented, resulting in malformations that
affect multiple organ systems including the CNS [33]. Even moderate deficiencies of this
nutrient during development can result in persistent adverse effects on the immune system
and neurobehavioral abnormalities [2,34,35]. Mechanistically, Zn deficiency is thought to
influence embryonic and fetal development through multiple mechanisms including
abnormal nucleic acid metabolism, reduced protein synthesis, impaired cell migration and
cell signaling due to alterations in the cytoskeleton secondary to impaired tubulin
polymerization, excessive cellular oxidative stress, reduced binding of transcription factors
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and hormones that are dependent on Zn-finger regions, and reductions in insulin and 1GF-
signaling [2,23,34,36-40] (Table 2; Figure 1).

It is important to note that mechanistically, one would predict multiple synergistic
interactions between an alcohol insult and a condition of marginal Zn deficiency. As an
example of the above, it is well documented that Zn contributes to the oxidant defense
system through multiple means, including through its ability to: (1) regulate Cu-Zn
superoxide dismutase (Cuzn SOD) activity; (2) regulate metallothionein levels; (3) protect
sulfhydryl groups from oxidation; (4) modulate intracellular thiol groups; and (5) inhibit the
binding of redox active metals, such as Fe and Cu, to intracellular sites where they can
generate free radical reactions (e.g., Fenton-type reactions). Given the above, it is evident
that one functional consequence of Zn deficiency is an increased susceptibility to exogenous
oxidative stressors, such as smoking, endotoxin challenge, and, particularly germane to this
paper, alcohol [27,39,41]. The consequences of excessive tissue oxidative stress in the
embryo can include lipid, protein and DNA oxidative damage, and an increase in apoptosis,
all of which can trigger abnormal development. It is important to note that all of the above
are common findings in animal models for FASD [23].

Another potential point of interaction between Zn deficiency and an alcohol challenge
involves sonic hedgehog (Shh) signaling. Shh signaling is critical for polarizing activity, and
Shh null fetuses are characterized by a postaxial forelimb ectrodactyly in mouse models
[42]. Shh is a Zn-dependent developmental trigger [43], and reduced Shh expression has
been implicated in ethanol-induced postaxial forelimb ectrodactyly in the mouse [44].
Schreiner and co-workers [45] have suggested that a state of embryonic Zn deficiency
secondary to an alcohol-induced acute-phase response (see below; [46-48]) in the mother
results in reduced Shh signaling with subsequent dysmorphology [45]. This is an interesting
hypothesis that merits further investigation. Importantly, if it is shown to be correct, there
are numerous other Zn-dependent developmental proteins, many in the hedgehog signaling
pathway (e.g., Gli Zn finger transcription regulators), that might also be affected through the
mechanism described above.

A third finding that is common to experimental Zn deficiency, and alcohol challenges during
pregnancy, is a reduction in IGF levels and action [49,50]. Zn deficiency can alter IGF-1 and
IGF-binding protein metabolism in maternal and fetal blood [49] and may contribute to
growth retardation of the offspring. Growth deficit is also commonly noted in offspring of
alcohol-exposed women. Administration of ethanol by intubation (5.25 g/kg/day) on
postnatal days 4-9 results in motor coordination impairments that are significantly improved
with intranasal administration of IGF on postnatal days 10-13 [50].

Finally, a common finding in animal models for developmental Zn deficiency and FASD is
an elevated occurrence of apoptosis in the embryo and fetus. Multiple mechanisms have
been implicated in the inducing-effects of alcohol and Zn deficiency on apoptosis including
disruptions in growth factor signal transduction pathways mediated by receptor tyrosine
kinases, an increase in the expression of caspase-3, a down-regulation of NF-kB-dependent
anti-apoptotic genes, and an increase in cellular oxidative stress. [36,38,51].

Evidence that severe Zn deficiency presents a reproductive risk in humans is provided by the
observation that women with a congenital disorder in Zn absorption (acrodermatitis
enteropathica; AE) have a very high risk for pregnancy complications unless they are given
dietary Zn supplements [2]. It is now recognized that the AE is due to a defective Zn
transporter. The analogue of this transporter in mice is Zip4, and consistent with the human
literature, homozygous Zip4-knockout mouse embryos die during early embryogenesis and
are characterized by multiple defects [52]. As is depicted in Table 3, a number of studies
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have reported that low plasma Zn concentrations in the first or third trimester is associated
with an increased risk for several pregnancy complications, including birth defects and
growth retardation. In further support of the concept that maternal Zn status can be a
predictor of pregnancy complications, numerous investigators have reported that even in
non-AE populations, the provision of dietary Zn supplements during pregnancy results in a
reduced risk for pregnancy complications (Table 3). However, as is also provided in Table 3,
there are several studies in which the provision of Zn supplements during pregnancy had no
measurable positive effects. Indeed, in a recent Cochrane Review on the effects of Zn
supplementation on pregnancy outcome [53], the authors concluded that with the exception
of the risk for prematurity, there was no consistent positive effect of Zn supplements during
pregnancy. In our opinion, the somewhat negative finding by Mahomed et al [53] is due to
the fact that in many cases, the Zn supplementation trials have been done with relatively
healthy, non-stressed populations. This may be important since, in addition to low dietary
Zn intake, stressor-induced changes in the metabolism of Zn and other nutrients are often
secondary to an acute phase response (APR), which can be triggered by a diverse set of
cytokines that are released following tissue injury.

2.1. Acute Phase Response-Induced Fetal Zn Deficiency

It has been hypothesized that the developmental toxicity of a wide variety of toxicants and
environmental insults is mediated in part through the induction of the APR, which increases
maternal hepatic metallothionein synthesis and Zn sequestration, leading to reduced Zn
transfer to the conceptus. If severe enough, this can result in abnormal development
[2,46,54-56] (Figure 1). The potential human relevance of the above work with
experimental animals is illustrated by the finding that pregnant women who are infected
with cytomegalovirus, a common etiologic agent of intrauterine infection, are characterized
by high cytokine levels including TNF-a and IL-6, and lower than normal plasma Zn
concentrations [57]. Underscoring the potential significance of the above finding is the
recent report by Collier et al [58] that maternal infections during pregnancy are common. In
rats, disease and environmental factors that reduce maternal serum Zn concentrations can
disrupt Zn-dependent processes in the embryo and produce developmental defects, even
when the mother consumes a Zn “adequate” diet [54,59]. Significantly, the teratogenic
effects of the APR-induced hypozincemia can be amplified by marginal Zn diets, and
reduced with Zn supplementation [46,54]. Critical to the current paper, in rodent models,
acute alcohol exposure is associated with APR-induced reductions in fetal Zn uptake
[48,54-56,60,61]. That the above reductions in fetal Zn uptake are functionally significant is
suggested by the observation that the teratogenicity of alcohol is lessened when animals are
given Zn prior to the alcohol exposure [60-63]. Moreover, the teratogenicity of acute
alcohol exposure is reduced in metallothionein knockout mice compared to metallothionein
wild-type mice [55].

It is important to note that in the above discussion, the focus has been on the potential
positive effects of Zn supplementation on the expression of FASD in the offspring. Zn
supplementation has also been reported to be of value in attenuating ethanol-induced liver
damage in the adult [64—66] and mitigating lung epithelial and macrophage dysfunction
induced by chronic alcohol intake [67]. Thus, it can be speculated that Zn supplementation
of the high risk patient could directly benefit the mother, as well as her child.

In addition to pregnant women who are exposed to alcohol, infants with FASD have been
reported to have low plasma Zn concentrations and higher twenty-four hour urinary Zn
excretions compared to normal controls, indicating altered Zn homeostasis [68].
Interestingly Murillo-Fuentes and coworkers [69] reported that rat pups whose mothers were
given alcohol during the period of lactation were also characterized by higher than normal
levels of urinary Zn excretion. It is important to stress that the above reports are preliminary
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in nature. However, if the finding can be replicated, it represents a critical observation as it
could provide one explanation for the persistent immunological abnormalities that have been
reported for some children with FASD [70,71]. If these persistent immunological
abnormalities are secondary in part to persistent abnormalities in Zn metabolism, they could
be responsive to Zn supplements. In support of this concept, Zn given by injection [72], as
well as the feeding of diets high in Zn [73], have been reported to reduce neurobehavioral
abnormalities in mouse and rat offspring of ethanol-exposed dams. While these data are
compelling, others, using a rat model, did not observe a protective effect of Zn
supplementation on alcohol-induced developmental brain abnormalities [74]. In addition, it
is important to note that there can be adverse interactions among nutrients. For example,
supplementation of an alcohol-containing liquid diet with 300 pg/ml of Zn resulted in severe
fetal Cu deficiencies relative to controls [75]. Cu deficiency during pregnancy is also
teratogenic, affecting cardiac, vascular, neurological, pulmonary, skeletal, and immune
systems [21,76,77].

Ethanol exposure has also been shown to alter Fe regulation and homeostasis. Chronic
ethanol consumption increases body stores of Fe and is associated with a significant risk of
Fe overload [78-81]. Levels of non-transferrin-bound Fe are higher in alcohol abusers [78],
which could contribute to reactive oxygen species formation via its involvement in Fe-
catalyzed Fenton reactions [82]. When antioxidants, Fe chelators or sulfhydryl compounds
that increase cellular glutathione are administered, ethanol toxicity is significantly reduced
[83]. Miller and coworkers [84] reported that ethanol consumption by rat dams perturbs the
temporal patterns between Fe concentrations and Fe-regulatory proteins in brain regions of
offspring. That fetal alcohol exposure can result in low Fe stores in the human infant has
been reported by Carter et al [85].

It is critical to note that the metabolism of Fe, Zn and Cu are interrelated, and it has been
demonstrated in experimental animal models that a maternal deficit of any one of the above
elements can result in alterations in the metabolism of the other elements in the mother as
well as the fetus [86]. The above observation underscores the potential risk of focusing on a
signal nutrient when one is studying alcohol-nutrient interactions with respect to the risk for
FASD. In this regard, it is important to note that while hypozincemia is a hallmark of an
APR, as is depicted in Figure 1, an APR can also result in marked disturbances in the
metabolism of Fe, Cu, folate and vitamins, as well as other essential nutrients. The extent to
which APR-induced changes in theses nutrients might affect fetal development has been
largely unexplored.

3. Testing of the Zn/Alcohol Hypothesis: The Need for Large-Scale
Prospective Trials

There is a need for multiple prospective studies investigating whether alterations in maternal
Zn status can affect fetal outcome in alcohol-exposed women. These studies should be
designed in a way that they could later be analyzed via meta-analysis as is done in Cochrane
reviews to determine whether suboptimal Zn status is a predictor of adverse fetal outcomes.
Moreover, maternal nutrient supplementation could be instituted as this is easily modifiable.
Towards this goal, a longitudinal prospective study that aims to examine maternal nutritional
status and its contribution to risk for FASD, as well as to test a multi-micronutrient
intervention with or without choline supplementation, is currently underway at sites in
Ukraine, as part of the Collaborative Initiative on Fetal Alcohol Spectrum Disorders
(CIFASD). The study protocol was approved by institutional review boards in Russia and
Ukraine and institutional review boards at the University of California, San Diego and the
University of California, Davis; all study participants provided informed consent.
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In the above study, alcohol-exposed and comparison group subjects are selected from
prenatal patients at each of the two sites who were screened by prenatal care providers at
first prenatal visit, using a short standardized screening tool. Subjects are considered eligible
for the alcohol-exposed group based on quantity and frequency of alcohol consumption
during pregnancy. A positive screen for quantity and frequency of alcohol consumption is
defined as at least four episodes of five or more standard drinks, at least five episodes of 3—4
standard drinks, or at least 10 episodes of 1-2 standard drinks either in the month around the
time of conception, or the most recent month of pregnancy. Subjects are considered eligible
for the comparison group based on minimal to no alcohol consumption during either time
period, as reported at the time of the initial screening.

All eligible alcohol-exposed women are invited to enroll, and comparison group women are
recruited in an approximate 1:1 ratio. This is accomplished following enroliment of each
alcohol-exposed woman by approaching the next pregnant woman presenting for prenatal
care who reports low to no alcohol exposure in response to the screening questionnaire and
who agrees to participate in the study.

As part of the pregnancy follow-up procedure, enrolled women participate in comprehensive
standardized interviews, newborn physical examinations, and standard neurobehavioral
testing of infants. For the nutrition component of this study, all subjects are randomized to
receive a nutritional intervention involving three arms: multi-micronutrient supplement
provided from time of enrollment to delivery, multi-micronutrient supplement with choline
supplement provided from the time of enrollment to delivery, or no treatment (current
standard of care in Russia and Ukraine). Maternal blood samples are drawn at the time of
enrollment to establish baseline nutritional status, and again in the 3" trimester to evaluate
change in status, and to validate the impact of treatment group on change in nutritional
status.

The samples collected to date in Russia have been analyzed in the laboratory of one of the
authors (AS) at the Institute for Biotech Medicine in Moscow. The samples collected to date
from the Ukraine have been analyzed by three of the authors in the U.S. at the University of
California, Davis (CLK, JYUA, KG). Due to potential variability in the laboratory
procedures, and to differences in the characteristics of subjects, preliminary data from these
two sites are presented separately. Baseline maternal blood samples were collected in
heparinized tubes and analyzed for Zn, Cu, Mg, Fe and Ca by inductively coupled plasma
optical emission spectrometry (ICP) (Trace scan; Thermo Elemental, Franklin, MA) [87].
Certified reference solutions (QC 21, Spec Centri Prep, Metuchen, NJ) were used to
generate standard curves for each element. National Bureau of Standards reference samples
were included with each run to ensure accuracy and reproducibility.

Preliminary data on analysis of mineral status at the time of enrollment is available for a
total of 69 subjects from the two sites. Women in the alcohol-exposed groups at the two sites
were similar in age, primigravidity, and years of education to their respective no or low-
exposed groups, but more likely to be single mothers and to be current smokers relative to
their comparison groups (Table 4).

Table 5 describes the characteristics of maternal alcohol use as reported at the time of
enrollment regarding the month around the time of conception. Consistent with the group
selection criteria, women in the alcohol-exposed groups were predominately binge drinkers,
with almost no women reporting daily drinking, even in small amounts.

As shown in Table 6, although numbers are small in each sample, for most of the minerals,
consistently lower mean values were observed in the alcohol-exposed groups than in the

Biofactors. Author manuscript; available in PMC 2011 March 1.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Page 8

controls; these differences were statistically significant for Zn at both sites, and for Cu at the
Ukraine site.

4. Summary and Concluding Comments

The above comments have been aimed at the overarching hypothesis that the occurrence of
numerous features of FASD, including growth deficiency, structural features, persistent
immunological defects and neurobehavioral impairment, is influenced by the nutritional
status of the mother, as well as the conceptus. Current data support the concept that select
micronutrient deficiencies increase the risk for the occurrence of FASD in high-risk
populations. In theory, these nutritional deficiencies can arise as a consequence of poor
diets, as well as a consequence of tissue injury-induced alterations in the metabolism of
select nutrients. If the above concepts are correct, it is reasonable to predict that the use of
select micronutrient supplements could reduce the frequency and severity of FASD in these
populations.

Consistent with this hypothesis, preliminary data from the ongoing studies in Ukraine and
Russia show that plasma Zn and Cu concentrations are low in pregnant women who report
high alcohol intakes. In addition to the mounting evidence that certain micronutrients can
affect normal structural development, it is evident that prenatal nutrition is an important
factor both in prenatal growth and in postnatal cognitive performance [88,89]. As described
above, Zn, as well as Cu, is involved in multiple biochemical pathways that are critical for
brain growth and function.

As the toxicity of alcohol is thought to be due, in part, to free radical-induced oxidative
damage [83], deficits of Zn and Cu would both be predicted to increase the sensitivity of the
developing conceptus to alcohol, given that these nutrients contribute to the oxidative
defense system [90]. The reported blunting of alcohol’s adverse effects by folate, vitamin
B19, choline and Zn supplementation indicates that there may be some commonalities
among these nutrients [22,91-93]. For example, all of these nutrients can affect redox stress,
as well as gene methylation patterns, underscoring the fact that none of these nutrients
should be looked at in isolation. Important future research directions include determination
of the mechanisms underlying the developmental effects of the “suboptimal” nutritional
status that can occur with alcohol exposure as well as delineation of how specific, persistent,
and important these effects are.

A major aim of the ongoing CIFASD trial is to evaluate nutritional risk modifiers for FASD
and to determine if maternal micronutrient supplementation during pregnancy in drinking
women has substantial promise as an easily accomplished environmental manipulation that
should substantially improve pregnancy outcome for both the mother and infant. Large
prospective FASD studies that utilize well-“validated” biomarkers for maternal nutritional
status (acute and chronic) prior to and during early pregnancy are a critical research need. In
these studies, maternal nutritional status should be evaluated at regular intervals to capture
environment-induced changes. These large prospective nutrient supplementation trials
should be implemented with populations of pregnant women who are at a high risk for
FASD. Moreover, nutrient supplementation trials should also be done with FASD children
to determine whether nutritional intervention can alleviate long-term adverse outcomes in
the offspring.

In closing, it should be noted that the concept that women who abuse alcohol during
pregnancy should be encouraged to use multivitamin, multimineral supplements is not new.
Indeed, in 1990, the American Institute of Medicine identified this group of women who
should be particularly encouraged to use these supplements during pregnancy [94]. To date,
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our experience in Russia, as well as in Ukraine, is that women at high risk for having a
FASD child are very receptive to using supplements. Obviously, the most appropriate
message to these women is to stop drinking. However, on a practical level, combining this
message with one that is aimed at improving their overall nutritional status would seem to be
an appropriate public health strategy.
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Figure 1.

Alcohol-induced acute phase response (APR) and precipitation of conceptal Zn deficiency.
An APR can also lead to changes in the metabolism of other essential nutrients. Multiple
mechanisms underlie the teratogenicity of alcohol.
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Table 1

Maternal Diet and Pregnancy Outcome: “Good” vs. “Poor” Diet

Author

Study

Ebbs et al., 1941

Intervention

Burke et al., 1943

Observational

Jeans et al., 1955

Observational

Primrose and Higgins, 1971

Intervention

Laurence et al., 1983

Intervention

Friel et al., 1995

Observational

Wright, 1995

Observational

Torfs et al., 1998

Observational

Velie et al., 1999

Observational

Di Cintio et al., 2001

Observational

Krapels et al., 2004

Observational

Rees et al., 2005

Observational

Lam and Torfs, 2006

Observational

Knudsen et al., 2008

Observational

Yang et al., 2008

Observational

Baker et al., 2009

Observational

Haggarty et al., 2009

Observational
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Table 2

Potential mechanisms of Zn deficiency teratogenicity

Indirect

Zinc deficiency-induced changes in maternal metabolism

Direct

Impaired DNA replication and transcription

Chromosomal damage

Decreased binding of growth factors and hormones to their receptors

Excessive oxidative damage

Altered patterns of cell death

Altered cell signaling

Impaired cell migration

Low activities of numerous zinc enzymes
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Table 3

Evidence for an influence of Zn on human pregnancy outcome

Poor pregnancy outcome in women with acrodermatitis enteropathica

Hambidge et al., 1975

Low Zn status (low blood and hair Zn concentrations) is associated with

an increased risk for complications

Jameson

Meadows et al.

Cavdar et al.

Neggers et al.

Srinivas et al.

Scheplyagina

Golalipour et al.

Zn supplements are associated with improved pregnancy outcome

Kynast and Saling, 1986

Cherry et al., 1989

Cavdar et al., 1991

Goldenberg et al., 1995

Osendarp et al., 2001

Saaka et al., 2009

Hozyasz et al., 2009

Danesh et al., 2009

Zn supplements do not reduce pregnancy complications

Hunt et al., 1985

Mahomed et al., 1989

Jonsson et al., 1996

Caulfield et al., 1999

Hafeez et al., 2005
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Characteristics of pregnant women enrolled in nutrition and FASD study in Russia and Ukraine

Table 4

Russian Sample

Ukraine Sample

Alcohol Alcohol Alcohol Alcohol

Maternal Exposed | Unexposed | Exposed | Unexposed
Characteristic N=10 N=10 N =28 N=21
Maternal Age — 27.7(8.0) | 275(6.0) | 239(4.6) | 24.2(4.9)
years, mean (SD)
Primigravid n (%) | 5 (50.0) | 5(500) | 11(52.4) | 19(67.9)
Education — years, 14.7 (2.2) 16.4 (2.0) 13.0(2.4) 14.1(1.6)
mean (SD)
Marital Status n (%)

Single 4 (40.0) 1(10.0) 7 (25.0) 2(9.5)

Married 2(20.0) 8(80.0) 21 (75.0) 19 (90.5)

Separated 3(40.0) 1(10.0) 0 0
Smokers n (%) | 8 (80.0) | 2 (20.0) | 7 (25.0) | 1(48)
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Reported alcohol consumption in month around time of conception among pregnant women enrolled in

Table 5

nutrition and FASD study in Russia and Ukraine

Russian Sample Ukraine Sample
# Drinks per Alcohol Alcohol Alcohol Alcohol
Occasion in Exposed | Unexposed | Exposed | Unexposed
Month N =10 N =10 N =28 N=21
5ormoren (%) | 4(40.0) 0 12 (42.9) 0
# of occasions 0-5 0-3
3or4n (%) 10 (100) 0 24 (85.7) 0
# of occasions 2-5 0-10
1or2n (%) 9(90.0) 7 (70.0) 28 (100) 7(33.3)
# of occasions 0-7 0-3 1-28 0-2
Daily n (%) 0 0 2(7.1) 0
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