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Abstract

Even though feedback is considered to play an important role in learning how to operate a brain-computer inter-
face (BCI), to date no significant influence of feedback design on BCI-performance has been reported in literature.
In this work, we adapt a standard motor-imagery BCI-paradigm to study how BCI-performance is affected by bias-
ing the belief subjects have on their level of control over the BCI system. Our findings indicate that subjects
already capable of operating a BCI are impeded by inaccurate feedback, while subjects normally performing on or
close to chance level may actually benefit from an incorrect belief on their performance level. Our results imply
that optimal feedback design in BCIs should take into account a subject’s current skill level.

Findings
Brain-computer interfaces (BCIs) enable subjects to
communicate without using the peripheral nervous sys-
tem by recording brain signals and translating these into
control commands [1]. To operate a BCI, subjects need
to learn how to intentionally modulate certain charac-
teristics of their brain signals in order to express their
intention. For example, in motor imagery, one of the
most frequently used experimental paradigms in BCIs
[2], subjects are instructed to haptically imagine move-
ments of either the left or right hand, which typically
induces a decrease in power of the electromagnetic field
of the brain over contralateral sensorimotor cortex in
the μ- and b-frequency ranges (roughly 10-14 Hz and
20-30 Hz, respectively) [3]. The observed lateralization
of this sensorimotor-rhythm (SMR) can then be used to
infer a subject’s intention.
As in any form of skill acquisition, subjects require

feedback on their performance in order to learn how to
optimally regulate their brain signals. While the impor-
tance of feedback in BCIs has long been recognized [1],
surprisingly little is known on how feedback should be
designed in BCIs in order to facilitate the skill acquisi-
tion process. In [4], the authors investigated whether
instantaneous or delayed feedback proved to be more
beneficial. While individual differences could be found,
on average no significant effect was observed. Recently,
the influence of realistic vs. abstract feedback on BCI

performance was investigated [5]. However, the authors
again found no evidence for a significant influence of
the type of feedback on BCI performance. As such, it
appears that the specfic feedback design has little influ-
ence on BCI performance.
It should be noted, however, that in previous studies

only accurate feedback was considered. While it is gen-
erally accepted that feedback in skill acquisition should
be timely and precise, motivation is also known to play
an important role in BCIs (cf. [6]). Accordingly, subjects
may benefit from feedback that trades feedback accu-
racy for motivation, e.g., by artificially biasing the belief
subjects have on their success in the skill acquisition
process.
In this work, we investigate the influence of such a

feedback bias on BCI performance. Subjects participated
in a standard BCI experiment, in which they were asked
to navigate a falling ball into a basket in either the left
or right corner of the screen by performing haptic
motor imagery of either the left or right hand. A depic-
tion of the visual interface is shown in Figure 1. Each
experimental trial lasted four seconds, and was consid-
ered successful if the ball ended up in the correct half-
side of the screen. While usually the horizontal position
of the ball on the screen reflects the belief of the BCI
system on a subject’s intention, we artificially distorted
this feedback. Specifically, every two milliseconds we
coded the classifier’s belief on a subject’s intention as a
value in the range [0-1]. Then, we drew a sample from a
Gaussian distribution, and added this to the classifier’s
belief. The mean of this sample was chosen as a func-
tion of the type of bias, and its variance was determined
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heuristically and identical for all type of feedback to pre-
vent subjects’ awareness of the feedback bias (s2 = 3·10-4).
If the resulting value was found to be larger/smaller than
the current horizontal position of the ball (0/1 repre-
senting the left/right border of the screen), the ball was
was moved one step (0.003 times the width of the
screen) to the right/left. At the beginning of each trial,
we pseudo-randomly chose one of five means for this
random distortion, such that without any meaningful
BCI control by the subject the falling ball would on
average end up in 1.) the intended corner of the screen
(strong positive bias), 2.) half-way between the center of
the screen and the intended corner (weak positive bias),
3.) in the center of the screen (no bias), 4.) halfway
between the center of the screen and the incorrect cor-
ner (weak negative bias), or 5.) in the incorrect corner
(strong negative bias). As such, in 80% of the trials we
biased the belief the subject had on her/his performance
in either a positive or negative manner, while in the
remaining 20% of trials subjects received accurate
feedback.
Eleven healthy subjects with a mean age of 26.18 ±

4.14 years, seven of them male and four female, partici-
pated in the study, all except one were naive to BCIs.
Every subject initially performed one session. Four sub-
jects attaining a good level of BCI-control were asked to
perform two additional sessions each, as we expected
effects to be most prominent in well-performing sub-
jects. Each session consisted of nine runs, with each run
being composed of 15 trials per condition in pseudo-

randomized order. The first three runs of each session,
during which no feedback was presented to the subject,
were used to train the classification system. During the
following six runs, biased feedback was presented as dis-
cussed above. For each session, this resulted in a total of
36 trials for each of the five feedback biases. Mean clas-
sification accuracy was then computed for each session
and feedback bias, using the undistorted classifier output
hidden from the subject. Subjects were not informed
that the presented feedback was biased until they had
completed their last session.
The BCI system employed in this study is described in

detail in [7]. Briey, classification was performed by logis-
tic regression with l1-regularization, using logarithmic
bandpower in frequency bands ranging from 7 to 40 Hz.
Before bandpower computation, the 128-channel EEG
data was spatially filtered using beamforming [7] (sub-
jects 1 to 7 and 11) or Common Spatial Patterns (CSP)
[8] (subjects 8 to 10).
Mean classification accuracies across all subjects and

sessions are shown in Table 1. While subject-specific
effects of feedback bias could be observed (not shown
here), mean classification accuracy was found to be
around 68% for each type of feedback bias. In agreement
with previous studies, this appears to indicate that the
specific type of feedback had no general effect on BCI
performance. However, Figure 2 shows the change in
classification accuracy within a session due to each type
of bias relative to the no-bias condition, with each dot
representing one session and different subjects coded by
number. Interestingly, for each type of feedback bias a
negative correlation between unbiased classification
accuracy and change in classification accuracy due to
the bias could be observed. This correlation was found
to be highly significant for a strong positive or negative
bias (p++ = 0.0045, p- - = 0.0057), and only close to or
weakly significant for a weak positive or negative bias
(p+ = 0.0762, p- = 0.0384). All p-values were computed
by random permutation analysis with 10,000 permuta-
tions and n = 648. Furthermore, the points of intersec-
tion of the regression lines in Figure 2 with zero change
in classification accuracy roughly coincide with the
unbiased classification accuracy required to reject

Figure 1 Setup of visual feedback. Arrangement of the elements
present in the visual feedback interface of the used BCI system. The
subject is told to look at the fixation cross, which is always present
on the screen. During each trial an arrow showing the objective
basket appears on screen. The position of the baskets is fixed, and
the falling ball always starts at the shown position at the beginning
of each trial.

Table 1 Mean classification results

Feedback bias Classification accuracy

Strong positive bias (++) 68.06%

Weak positive bias (+) 67.44%

No bias 68.21%

Weak negative bias (-) 67.90%

Strong negative bias (- -) 66.82%

Mean classification accuracies across all subjects and sessions for each type of
feedback bias.
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chance-level classification accuracy (for each session, an
accuracy of 63.9% is required to reject the null-hypoth-
esis of chance-level classification accuracy at significance
level a = 0.05). Our results hence appear to indicate
that capable subjects, i.e., those with good classification
accuracy without feedback bias, performed worse when
given inaccurate feedback. Incapable subjects on the
other hand, i.e., those that performed around chance-
level, appeared to benefit from a feedback distortion.
While it is not surprising that inaccurate feedback
decreases performance for able subjects, an increase in
classification accuracy due to a feedback bias in bad-per-
forming subjects appears counterintuitive. To further
probe this result, we computed mean classification
accuracies with and without feedback-bias across all ses-
sions for which the regression analysis suggested a bene-
ficial effect of feedback bias, i.e, for sessions on the left
hand side of the intersection of the regression line with
zero-change in classification accuracy in Figure 2. This

resulted in mean classification accuracies of 54.41% for
the unbiased case, and 58.98%, 56.94%, 59.87%, and
61.78% for a strong negative, a weak negative, a weak
postitive, and a strong positive bias, respectively (n =
256 for each type of bias). Using a binomial distribution,
these classification accuracies were found to be suffi-
cient for rejecting the null-hypothesis of chance-level
performance at significance level a = 0.05 for a strong
positive bias (p = 0.0003) as well as for a weak positive
and strong negative bias (p = 0.0035 and p = 0.0120,
respectively), but not for the unbiased case (p = 0.3761)
and a weak negative bias (p = 0.0713) (Bonferroni cor-
rection for multiple comparisons).
As the study design required trials with different types

of feedback to be interleaved as well as subjects remain-
ing ignorant of the feedback distortion, we could not
ask subjects to report their experiences regarding differ-
ent types of feedback. As such, any interpretation of the
observed effects currently remains speculative. We

Figure 2 Unbiased classification accuracy vs. deviation in accuracy due to feedback bias. Unbiased classification accuracy vs. deviation
from this accuracy due to feedback bias. A +10% value in the y-axis represents a 10% improvement in absolute mean accuracy. Each dot
corresponds to one session, the numbers identificating the subjects. Least squares regression lines for each type of feedback bias are shown in
grey along with their correlation coefficient. The x2 maker denotes overlapping datapoints corresponding to the same subject.
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hypothesize that subjects already capable of utilizing a
BCI for means of communication are able to make use
of instantaneous and accurate feedback in order to opti-
mally regulate their SMR. In these subjects, any type of
feedback bias appears to interfere with this feedback
loop and hence leads to degraded performance. Accu-
rate feedback in incapable subjects, on the other hand,
may be perceived as random noise, as the horizontal
movement of the falling ball is uncorrelated with the
intended movement direction. We hypothesize that this
perceived lack of control leads to frustration and demo-
tivation, impeding an effective skill acquisition process.
In these subjects, biased feedback may reduce the per-
ceived randomness of the visual feedback. Specifically,
our results indicate that a strong positive bias may be
particularly helpful for focussing on the intended task.
In terms of feedback design for future BCI systems,

our results suggest that a subject’s current skill level
should be taken into account. Subjects already capable
of modulating their sensorimotor rhythm to some extent
should receive accurate feedback. Subjects not yet cap-
able of utilizing a BCI, on the other hand, may benefit
by designs that aim to induce a beneficial state-of-mind.
While further investigations into the behavioral and
neural correlates of a beneficial state-of-mind for BCIs
are required (cf. [9,10] for two recent studies on this
topic), the results presented here suggest that incapable
subjects may particularly benefit if their belief on the
level of control over the BCI-system is positively biased.
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