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Abstract
The purpose of this research was to develop a novel numerical procedure to deconvolute arterial
input function from contrast concentration vs. time curves and to obtain the impulse response
functions from dynamic contrast enhanced MRI data. Numerical simulations were performed to
study variations of contrast concentration vs. time curves and the corresponding impulse response
functions. The simulated contrast media concentration curves were generated by varying the
parameters of an empirical mathematical model within reasonable ranges based on a previous
experimental study. The arterial input function was calculated from plots of contrast media
concentration vs. time in muscle under assumption that they are well approximated by the two-
compartment model. A general simple mathematical model of the impulse response function was
developed and the physiological meaning of the model parameters was determined by comparing
them with the widely accepted ‘two compartment model’. The results demonstrate that the
deconvolution procedure developed in this research is a simple, robust, and useful technique. In
addition, ‘impulse response analysis’ leads to the derivation of novel parameters relating to tumor
vascular architecture, and these new parameters may have clinical utility.
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INTRODUCTION
Dynamic contrast enhanced MRI (DCEMRI) detects early cancer based on rapid uptake and
washout of contrast media. The clinical importance of DCEMRI for detection of cancers is
increasing – particularly for breast cancer screening and diagnosis (1,2). Regular MRI scans
are recommended for people who are at high risk for breast cancer (3). Early detection of
malignant breast tumors when they are small and relatively easy to treat may significantly
decrease morbidity and mortality, and in addition significantly reduce the financial cost of
treatment. However, methods currently available to analyze the DCEMRI data have poor
specificity and yield many false positives (4). In addition, improvements are needed in
sensitivity of DCEMRI to early pre-invasive cancers (5).

DCEMRI data are frequently analyzed clinically based on the change in signal-intensity as a
function of time following contrast injection. The change in signal intensity is evaluated
using qualitative parameters, for example using the Kuhl classification system (6), or using
semi-quantitative parameters related to contrast media uptake and washout. More
quantitative analysis is based on the change in contrast media concentration as a function of
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time (7) to reduce sensitivity to instrumental/pulse sequence characteristics. The kinetics of
contrast media uptake and washout can be evaluated using ‘model-free’ approaches such as
the ‘area under the curve’ (8), or the empirical mathematical model (EMM) (9) developed in
this laboratory. Alternatively, physiological models can be used to extract parameters more
directly related to perfusion/capillary permeability. The two-compartment model (TCM) is
widely accepted (10) and is used to fit DCEMRI data and extract physiological parameters
that are markers for disease. This model assumes that tissue can be modeled as two well-
mixed compartments – a vascular and an extra-vascular extra-cellular compartment.
However, tumors are generally heterogeneous, and are not well approximated by two well
mixed compartments. As a result, the TCM often does not provide good fits to experimental
data from tumors (9). Inaccurate fitting of the change in contrast media concentration as a
function of time is a primary factor limiting diagnostic accuracy of DCEMRI.

A general problem with conventional analysis of DCEMRI data is that variation in the
arterial input function (AIF) is not properly accounted for. Qualitative approaches such as
the Kuhl classification method (6), and semi-quantitative analysis of signal intensity changes
(11) do not take the AIF into account. This leads to errors because variations in contrast
media injection, cardiac output, and major arterial supply to the tumor containing tissue,
cause the AIF to vary significantly among patients (12). To account for these variations, the
AIF for each patient is sometimes determined from the change in signal intensity as a
function of time in a major artery (13). However, these measurements are subject to
significant systematic errors due to the very high concentration of contrast agent in the
artery and partial volume effects. It is rarely possible to find a large artery near the tumor, so
that the AIF’s obtained from direct measurements in arteries are usually global rather than
local. Other methods such as ‘Reference Tissue’ (14) approaches correct for the regional
AIF. However, they do not produce a truly local AIF that reflect the delivery of the contrast
media bolus directly to the tumor.

Ideally one would like to study contrast media uptake and washout from the tumor itself,
without systematic errors or bias caused by the use of inappropriate physiologic models and
incorrect AIFs. To find the hemodynamic characteristics of the tumor, it is necessary to
separate the effects of the AIF from the kinetics of uptake and washout of contrast media.
This can be done if the tissue is treated as a system that gives a linear, time invariant, and
purely ‘causal’ response to the ‘local’ AIF (15). The local AIF can be deconvolved from the
contrast concentration curves, so that the impulse response function (IRF) can be determined
(16) as a fundamental characteristic of tissue.

Theoretically the deconvolution is easy to accomplish utilizing the properties of Laplace or
Fourier transform. However, in practice the deconvolution is an ill-posed problem and noise
in the data is magnified during processing of real DCEMRI data. The most commonly used
deconvolution technique is singular value decomposition (SVD) (17). However, the
conventional singular value decomposition introduces unwanted oscillations across a
substantial portion of the IRF. Some regularization techniques have to be used as alternative
singular value decomposition method to reducing the oscillations (18). These techniques are
quite complicated and subject to error, and may not be appropriate for routine clinical
DCEMRI data analysis. Therefore, a simple, robust deconvolution method that does not
amplify noise is necessary to improve diagnosis of cancers.

Here, we describe a new deconvolution technique for determining the IRF. We test the
method using numerical simulations of realistic DCEMRI data. Simulated plots of contrast
media concentration as a function of time (referred to in the following as C(t)) for both
tumor and muscle were generated using an EMM that has been demonstrated to accurately
fit a wide range of experimental DCEMRI data (19,20). In additional to numerical
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simulations, the deconvolution technique was demonstrated directly with sample rodent
tumor DCEMRI data acquired at 4.7 T. The TCM was also used to fit the contrast media
concentration vs. time plots and the results of this procedure were compared with the results
obtained with the deconvolution method. The physiological meaning of IRF parameters was
determined by comparing them with Ktrans and ve derived from the TCM.

METHODS
Overview

Under assumption that muscle is well approximated by the TCM, the AIF was derived from
the simulated muscle C(t) using the ‘reference tissue method’ (14). To obtain the IRF, we
used two steps, namely ‘prediction’, and ‘correction’ to deconvolute the AIF from C(t). In
the prediction step, a numerical IRF was calculated using a recursive formula. Due to the
rapid variations in the tissue C(t) and the AIF at very early times, there were oscillations at
the early times (within the first one or two sampling periods) in the resulting numerical IRF.
Therefore, in correction step, an equation with a limited number of parameters was used to
fit the numerical IRF to eliminate these oscillations. These parameters were varied over a
limited range so that the convolution between the AIF and the final IRF matched the original
C(t).

The analysis described above produced IRF’s for tumors that generally included a rapid
enhancement phase. This is not physically realistic, since in principle, we are determining
the purely causal response to a delta function input of contrast agent. This ‘enhancement
phase’ is most likely due to the fact that the AIF derived from a reference tissue reflects
blood flow to a reference tissue near the tumor, i.e. a regional AIF. The contrast bolus is
likely to experience additional delay and dispersion on the way to specific voxels or regions
within the tumor, and this delay and dispersion produces an unrealistic IRF. Thus, we
modified the AIF derived from the reference tissue by introducing additional delay and
dispersion to produce a truly local AIF, and to obtain a monotonically decaying IRF.

Deconvolution of the AIF from the contrast concentration vs. time curve
For a causal system, the convolution integral gives the relationship between the input
function of a linear, time-invariant system with the impulse response and output response
functions. The contrast concentration curve vs. time (C(t)) can be considered as the
convolution between AIF (Ca(t)) and the IRF (Cδ(t)), i.e., mathematically:

[1]

Here we assume that the AIF is zero for time t < 0 and the system has no initial contrast
agent (zero initial conditions). The lower limit of zero is due to Cδ(t) = 0 for t < 0, and the
upper limit of t is due to the system being causal, i.e. Ca(t) = 0 for t < 0. To obtain the Cδ(t)
from above equation, a deconvolution has to be performed.

We use two steps namely ‘prediction’ and ‘correction’ to obtain the IRF from the Eq. [1]. In
the prediction step, we divide the whole time period into N very small time intervals in Eq.
[1]. Then at time tj simply applying Riemann sums using right-hand endpoints yields:

[2]
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where we assume that Cδ(t) does not change much in the small time interval Δti = [ti−1, ti]
and take the value at ti. This is a good approximation when C(t) and Ca(t) were calculated
with high temporal resolution. Then a predicted IRF is obtained by solving Eq. [2], i.e.,

[3]

Obviously the Eq. [3] requires that Ca(0) ≠ 0. When Ca(0) = 0, we modify the Eq. [3] as
follows. In Eq. [2], we take Ca(tj-τ) as the left endpoint instead of right. In this way, the
Ca(0) in Eq. [3] was replaced by Ca(1) if Ca(0) = 0.

As previously mentioned, due to rapid variations in the Ca(t) and C(t) at very early times,
there are oscillations at the early times in the numerical IRF. Please notice that the
oscillations produced by the above calculation only appear during a short period of time
(generally less than 10 seconds, which is less than one or two sampling periods for
experimental MRI data). In contrast, the oscillations produced by ‘singular value
decomposition’ occur throughout the entire sampling period (21). To eliminate these
oscillations and obtain an accurate IRF, the following equation was used to fit the numerical
IRF:

[4]

where K (min−1) is the transfer constant of the tissue, κi (i=1, 2) are the decay constants, λ
(min−1) is uptake rate, ρ is related the slope of uptake, and ε is a scaling factor. Equation 4
can be related to the TCM with K = Ktrans, and κ1 = kep = Ktrans/ve, when λ ≫ 1 and ε ≈ 0.
Please notice that the IRF includes an uptake phase here. In principle the response of tissue
to a delta function input should be a monotonic decay. However, the results demonstrate that
in tumors the IRF contains an uptake phase when a regional or global AIF is used rather than
a truly local AIF (see below). In the correction step, we use the direct search technique to
vary the parameters of the fitted IRF, so that the result of Ca(t) convoluted with Cδ(t)
(AIF⊗IRF) accurately fits the original C(t) with highest possible goodness-fit (R2) values.
We refer to ‘AIF⊗IRF’ as a ‘convolution fit’ in the remainder of this paper.

Deriving the AIF from the reference tissue
Kovar et al. developed a method to estimate the AIF from contrast media dynamics in a
reference tissue with (approximately) known physiology (14). Under the assumption that the
reference tissue, such as muscle, was well approximated by the two-compartment model, the
AIF could be obtained from the muscle C(t) using the literature values of Ktrans and ve
following:

[5]

where Ktrans(min−1) is the volume transfer constant between blood plasma and extravascular
extracellular space (EES), and ve is the volume of EES per unit volume of tissue. For
muscle, Ktrans = 0.11 min−1 and ve = 0.2 were used in the simulations (14). In practice Ktrans

and ve can be varied within a reasonable range around the literature values to achieve an
optimal fit to experimental data, but in the case of the present simulation study the literature
values were used without modification.
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Calculating C(t) from empirical mathematical model
Previously studies showed that the following empirical mathematical model (EMM)
accurately fits the contrast media concentration vs. time curves generated from the DCEMRI
data for a variety of different tissues including tumors (9):

[6]

where A is the upper limit of the tracer concentration, α (min−1) is the rate of uptake, β
(min−1) is the overall rate of washout, γ (min−1) is the initial rate of washout, and q is
related to the slope of uptake. The EMM was used to produce a range of simulated contrast
media concentration vs. time curves. For numerical simulations, the temporal resolution of
0.6 s was used in the calculations of C(t) for muscle and tumor.

To select realistic EMM parameters in the simulations, the ranges of parameters were
determined based on previous analysis of data from DCEMRI studies of rodent tumors (9).
In that previous study, T1-weighted gradient echo images (TR/TE = 15/6 ms) with temporal
resolution of ~5 s were acquired for 2 minutes before and ~60 min after I.V. contrast
injection on a SIGNA 1.5T scanner. A total of 24 Copenhagen rats with transplanted
prostate tumors (AT2.1 and AT3.1) in the hind limbs were studied. The dose normalized
contrast agent concentration vs. time curves were calculated for region of interests (ROIs) of
normal muscle, tumor rim, and tumor center. Those curves were accurately fitted with the
EMM. The pooled data provided EMM parameters (average ± standard deviations) for
normal muscle: A = 0.68 ± 0.11, q = 1.33 ± 0.33, α = 3.53 ± 1.35, β = 0.027 ± 0.009, γ =
0.17 ± 0.08; for tumor rim: A = 1.96 ± 0.53, q = 0.80 ± 0.32, α = 2.09 ± 1.39, β = 0.014 ±
0.008, γ = 0.04 ± 0.03; and for tumor center: A = 1.59 ± 0.96, q = 1.09 ± 0.39, α = 2.23 ±
1.90, β = 0.012 ± 0.009, γ = 0.06 ± 0.06. Therefore, the EMM parameters used in
simulations (Table 1) for muscle and tumor were selected close to the average, and the
average plus and minus one standard deviation. For each EMM parameter we tested values
equal to the mean value plus and minus one standard deviation, while the other EMM
parameters were kept at their mean value. This meant that a total of 10 different
combinations of parameters were tested. No simulated noise was added to the EMM fits; the
EMM fits came from experimental data and therefore the effect of noise is already
incorporated.

Contrast concentration curves from sample rodent tumor data
Real DCEMRI data acquired at 4.7 T was used to test the deconvolution technique. T1-
weighted gradient echo images (TR/TE = 40/3.5 ms, FOV = 4.0 cm, array size = 1282, slice
thickness = 1 mm, number of slice = 3, NEX =1) of rodent transplanted prostate tumor were
acquired with temporal resolution of ~5 s before and after 0.2 mmol/kg Gd-DTPA
(Omniscan, GE Healthcare, Piscataway, NJ) injection for a total of ~10 min. After contrast
media injection, the T1 in each image voxel was estimated by comparing signal intensity S(t)
in a region of interest (ROI), to the control signal intensity S(0) in a reference tissue (for
instance, muscle) with known T1. Since TR ≪ T1 for T1-weighted gradient echo imaging,
the signal intensity could be approximated as a linear function of T1 and contrast media
concentration (22), i.e.,

[7]
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where R1 (4.3 mM−1s−1) is the longitudinal relaxivity of the contrast agent Gd-DTPA at 4.7
Tesla (23), Sref(0) is the signal at the ROI containing the reference tissue – muscle for this
case, and T1(ref) = 1280 ms (24). To apply the deconvolution technique, the EMM was used
to fit the C(t) obtained in Eq. [7] first, then high temporal resolution (0.6 s) C(t) was
calculated from the EMM parameters.

RESULTS
Results for average values of EMM parameters

The average values of EMM parameters shown in Table 1 were used to produce typical
concentration versus time plots for muscle and tumor. Figure 1 (top) shows the contrast
concentration curves for muscle (open circles) and tumor (open triangles); (middle) the
corresponding AIF derived from the muscle curve; and (bottom) the IRFs obtained from
deconvolution for muscle (gray line) and tumor (black line). The final results of convolution
between AIF and IRFs (AIF⊗IRF) are also shown in the top row for muscle (gray line) and
tumor (black line). The AIF⊗IRF fits the simulated data very well (R2 > 0.99). This
demonstrates that the derived IRFs are accurate, under the assumption that the AIF
calculated from the reference tissue is accurate. The IRF model parameters are given in
Table 2 for the muscle and tumor. Thus, the parameter λ(=20.5) was about five times larger
and ε (=0.003) was about 30 times smaller in muscle compared to tumor. In other words, the
uptake component of the IRF for muscle was almost instantaneous and the amplitude of the
second exponential decay was negligible. As expected, the IRF for muscle could be modeled
as a single exponential decay, which was just the same as the two-compartment model with
K = 0.11 = Ktrans and K/κ1 = 0.20 = ve, so that the IRF parameters for muscle provide no
new information. However, in the tumor, a significant initial uptake component of the IRF is
evident, and the washout phase is bi-exponential. For tumor, the IRF parameter K was
almost the same as the corresponding TCM parameter Ktrans. However, K/κ1 = 0.63, which
is much less than the corresponding TCM parameter ve= 0.81. As a result, the TCM often
required unrealistically larger ve for tumor (see last two column in Table 2) in order to fit the
C(t) accurately. If ve was forced into the range between 0.10 and 0.35, the fits to the
simulated data were poor.

Effect of variations in EMM parameters about the mean values
Figures 2 – 6 show the results of changing one of the EMM parameters - A, q, α, β, or γ –
while keeping the other parameters at their mean values. In each case, AIF⊗IRF was
compared with the TCM fit. The detailed results of these simulations are given in Table 2.

Figure 2 shows the results for the parameter A set to 0.5 (mM) and 3.5 (mM). The contrast
concentration vs. time plots were scaled when parameter A was changed and the shapes of
IRFs were similar for these two cases but the value of K differed by a factor of seven.
AIF⊗IRF fitted the simulated data very well (R2 > 0.99), but the TCM had trouble fitting
the curve for A = 3.5 (mM) with R2 = −1.56. Figure 3 shows the results for q equal to 0.5
and 1.5, resulting in small changes in the slope of the uptake portion of C(t). This resulted in
a large change in the IRF parameter λ = 25.5 min−1 and 2.8 min−1 for q = 0.5 and 1.5,
respectively. Therefore, the IRF for q = 0.5 could be modeled simply with a double
exponential decay using four parameters, while the IRF for q = 1.5 required an uptake
component. Again, the fit obtained with AIF⊗IRF (R2 > 0.96) was better than the TCM fit
(R2 > 0.66).

Figure 4 shows the results for the parameter α set to 0.25 min−1 and 3.75 min−1. For slow
contrast uptake (α = 0.25 min−1), the IRF had a strong uptake component and double
exponential decay. On the other hand, for fast contrast uptake, the IRF was accurately
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modeled simply as double exponential decay due to the large λ (= 52.1 min−1) value. The
TCM fit was more accurate for slow contrast uptake than for fast uptake (R2 = 0.93 vs.
0.78), but overall the AIF⊗IRF fits (R2 > 0.98) were better than the TCM fits. Figure 5
shows the results when the parameter β changed to −0.005 and 0.025 min−1. The IRFs
obtained for these two values of β were similar at early time points, but very different at
later time points (where curve shape was dictated primarily by the second, slower
component of the exponential decay) because of large differences in the values of ε and κ2.
The TCM fitted the curve better for the β = 0.025 (R2 = 0.99) than β = −0.005 min−1 (R2 =
0.95), but even for the large β value, fits obtained for the TCM were not as good as those
obtained with convolution fits (R2 > 0.99). For the parameter γ, there were a similar trends,
see Fig. 6. This is because both parameters control the contrast media washout.

In above results, we changed EMM parameters one at a time from their average values. We
also changed all five EMM parameters simultaneously (Table 2) to generate two more
examples: (i) slow uptake and slow washout; and (ii) fast uptake and fast washout. The
results of deconvolution between concentration curves and the AIF are shown in Fig. 7. The
IRF for case (i) requires a rapid uptake component and a double exponential decay; and for
case (ii) only a double exponential decay is required. Once again, the convolution fits (R2 >
0.96) of the contrast concentration curves were better than the TCM fits (R2 > 0.45).

Effect of AIF in the deconvolution
Figure 8 (top dash line) shows the IRF deconvoluted from a tumor contrast concentration
curve using a regional AIF (Fig. 8 bottom dash line). The IRF contains a rapid enhancement
phase with significant amplitude. To minimize the rapid enhancement phase, the regional
AIF was modified with increased delay and dispersion. An AIF with increased delay of
approximately 7 s and width-at-half-height increased by a factor of two (shown in Fig. 8
bottom, gray line), produced an IRF with a minimal uptake phase, but with bi-exponential
decay (shown in Fig. 8 top gray line).

Example of deconvolution for real DCEMRI animal data
Figure 9 illustrates the application of this approach to raw data from a non-metastatic rodent
prostate tumor. The Figure shows dose normalized Gd-DTPA C(t) curves (open circles) for
ROIs in muscle (30 pixels) and tumor rim (35 and 33 pixels for ROI1 and ROI2,
respectively) fitted with the TCM (red line), and convolution (blue line). The convolution
(AIF⊗IRF) fits the data more accurately than the TCM. The calculated goodness-fit (R2)
values for the three ROIs were 0.98, 0.99, and 0.99 for convolution fit, and 0.95, 0.98 and
0.45 for the TCM. The corresponding IRFs (black line – calculated directly from Eq. [3] and
dash line - after correction) from muscle and two different tumor rim ROIs are shown in Fig.
10. As in previous examples, the tumor IRFs include a large uptake component, and the two-
compartment model does not provide good fits to the raw data from tumor ROI2.

DISCUSSION
The results presented here demonstrate a simple and effective algorithm for deconvoluting
the global AIF from DCEMRI data and evaluating the resulting IRF. The deconvolution
technique was tested on simulated contrast concentration vs. time curves. The simulations
were based on EMM fits to a large number of experimental datasets, and thus accurately
represent the range of data that would be seen in typical experiments. The results
demonstrate that the deconvolution technique produces excellent fits to DCEMRI data
without artifacts and is straight forward and easy to use. This is a new approach to analysis
of DCEMRI data that could lead to improvements in diagnostic accuracy and assessment of
response to therapy.
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Because muscle is well approximated by the simple two compartment model, the IRF’s for
muscle were accurately fit with a single exponential decay equivalent to the two
compartment model, with K = Ktrans, and κ1 = kep = Ktrans/ve, when λ ≫ 1 and ε ≈ 0. No
initial uptake phase was required for muscle impulse response functions.

However, the IRF required for tumors was much more complicated than for normal tissue;
this reflects the complex physiology and micro-anatomy of tumors. When a ‘regional’ AIF
derived from a nearby muscle reference tissue was used, the resulting tumor IRF included an
initial exponential enhancement phase. This is physically unrealistic, since the response of
the tumor to a delta function bolus should decay monotonically. This suggests that the
‘regional’ AIF derived from reference tissue must be modified by adding delay and
dispersion terms to produce a local AIF for each tumor region. The results illustrated in Fig.
8 demonstrate that the ‘local’ AIF gives a physically realistic IRF that is a (approximately)
bi-exponential decay. The additional delay and dispersion terms that modify the ‘regional’
AIF to produce a ‘local’ AIF may be related to tumor interstitial pressure, and blockage and
intermittent flow in tumor microvessels. As a result, these are novel parameters that may
have diagnostic utility and may be sensitive to changes in tumors during therapy. However,
the potential clinical application of these new parameters is speculative at present, and
further work is needed to determine whether they can be useful in routine clinical practice.

In this study, the deconvolution to obtain an IRF assumed that an accurate AIF was used.
The AIF was derived from reference tissue – muscle, and did not include a second pass.
Although improvement in accuracy of the AIF was not the subject in the present study,
future work will evaluate the effect of an AIF with a second pass. In addition, we will test
AIF’s calculated using the more accurate ‘double reference tissue method’ developed by
Yang et al (25), and AIF’s derived from direct arterial measurements.

The widely used two-compartment model approach requires that the impulse response
function is simply a mono-exponential decay. The present results demonstrate that this is the
case for muscle. However, this simple model is not consistent with the IRF calculated for
most tumor ROIs. The tumor IRF usually included an initial uptake phase followed by a
multi-exponential decay. These characteristics of the tumor IRF produce systematic errors
when the two compartment model is used to fit raw data. The approach presented here
provides solutions to these problems. First, the initial IRF and AIF can be adjusted to
produce a local AIF and a more realistic, monotonically decaying IRF. Second, the
monotonically decaying IRF can be well approximated by a multi-exponential decay. In
general, given the signal-to-noise ratio of typical data, a bi-exponential decay is sufficient.
Thus, the present approach leads to calculations of IRF’s that accurately model experimental
data. Biases due to use of the two compartment model or other physiologic models are
avoided. Although the IRF approach is a ‘model free approach’, it can be analyzed to
approximate physiological parameters, as illustrated here.

The present work demonstrates that impulse response analysis has potential advantages
compared to more widely used methods. We describe a simple, robust deconvolution
method that produces artifact-free IRF’s. An extension of the method allows calculation of a
local AIF and provides new parameters that describe delay and dispersion of the contrast
media bolus in tumor vasculature, and these parameters may have diagnostic utility. The
results of this preliminary study suggest that the parameters of the model for the IRF can
provide good discrimination between cancer and normal tissue (see Table 2). Future work
will further evaluate the use of this approach to distinguish between benign and malignant
cancers, and detect tumor response to therapy.
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Figure 1.
(top) The contrast concentration curves for muscle (open circle) and tumor (open triangle)
calculated using the average EMM parameters given in Table 1; (middle) The AIF obtained
from the muscle reference tissue; and (bottom) the IRFs for muscle (gray line) and tumor
(black line) obtained by our technique. The convolution fit (AIF⊗IRF) to the original
contrast concentration curves are shown for muscle (gray line) and tumor (black line).
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Figure 2.
The calculated contrast concentration curves for tumor (gray line) using the average EMM
parameters but with parameter A changed to 0.5 mM and 3.5 mM, top and bottom left panel,
respectively. The corresponding IRF is shown in the right panel. The convolution fit
(AIF⊗IRF) (dash line) and the TCM fitting (black line) to the original contrast
concentration curves are shown in the left panel.
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Figure 3.
The calculated contrast concentration curves for tumor (gray line) using the average EMM
parameters but with parameter q changed to 0.5 and 1.5, top and bottom left panel,
respectively. The corresponding IRF is shown in the right panel. The convolution fit
(AIF⊗IRF) (dash line) and the TCM fitting (black line) to the original contrast
concentration curves are shown in the left panel.
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Figure 4.
The calculated contrast concentration curves for tumor (gray line) using the average EMM
parameters but with only parameter α changed to 0.25 (min−1) and 3.75 (min−1), top and
bottom left panel, respectively. The corresponding IRF is shown in the right panel. The
convolution fit (AIF⊗IRF) (dash line) and the TCM fitting (black line) to the original
contrast concentration curves are shown in the left panel.
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Figure 5.
The calculated contrast concentration curves for tumor (gray line) using the average EMM
parameters but with parameter β changed to −0.005 (min−1) and 0.025 (min−1), top and
bottom left panel, respectively. The corresponding IRF is shown in the right panel. The
convolution fit (AIF⊗IRF) (dash line) and the TCM fitting (black line) to the original
contrast concentration curves are shown in the left panel.
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Figure 6.
The calculated contrast concentration curves for tumor (gray line) using the average EMM
parameters but with parameter γ changed to 0.0 (min−1) and 0.1 (min−1), top and bottom left
panel, respectively. The corresponding IRF is shown in the right panel. The convolution fit
(AIF⊗IRF) (dash line) and the TCM fitting (black line) to the original contrast
concentration curves are shown in the left panel.
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Figure 7.
The calculated contrast concentration curves for tumor (gray line) using the EMM
parameters given in Table 2 to simulate slow uptake/slow washout and fast uptake/fast
washout, top and bottom left panel, respectively. The corresponding IRF is shown in the
right panel. The convolution fit (AIF⊗IRF) (dash line) and the TCM fitting (black line) to
the original contrast concentration curves are shown in the left panel.
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Figure 8.
The IRFs obtained by deconvoluting two different AIFs from the same contrast
concentration curves generated from tumor average EMM parameters.
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Figure 9.
Typical dose normalized Gd-DTPA contrast concentration vs. time curves (open circles)
obtained from a typical non-metastatic rodent prostate tumor. Fits obtained with the two-
compartment model (red line) and the convolution (AIF⊗IRF) (blue line) for selected ROIs
in muscle (top), and two different ROIs in tumor rim (middle and bottom).
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Figure 10.
The IRFs for each contrast concentration curve displayed in Fig. 9 deconvoluted from the
AIF derived from muscle. Solid black and gray dashed lines indicate IRFs determined
directly from numerical calculations, and modified by Eq. [4], respectively. Insets
demonstrate oscillations in the IRFs calculated specifically from Eq. [3].
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