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Abstract
A novel method for high-throughput proteomic analysis of formalin-fixed paraffin-embedded
(FFPE) tissue microarrays (TMA) is described using on-tissue tryptic digestion followed by
MALDI imaging MS. A TMA section containing 112 needle core biopsies from lung-tumor
patients was analyzed using MS and the data were correlated to a serial hematoxylin and eosin
(H&E)-stained section having various histological regions marked, including cancer, non-cancer,
and normal ones. By correlating each mass spectrum to a defined histological region, statistical
classification models were generated that can sufficiently distinguish biopsies from
adenocarcinoma from squamous cell carcinoma biopsies. These classification models were built
using a training set of biopsies in the TMA and were then validated on the remaining biopsies.
Peptide markers of interest were identified directly from the TMA section using MALDI MS/MS
sequence analysis. The ability to detect and characterize tumor marker proteins for a large cohort
of FFPE samples in a high-throughput approach will be of significant benefit not only to
investigators studying tumor biology, but also to clinicians for diagnostic and prognostic purposes.
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1 Introduction
MALDI imaging MS (IMS) has emerged as a powerful technique for analyzing the spatial
arrangement of proteins, peptides, lipids, and small molecules in biological tissues [1–3].
The multichannel detection capability of MS enables the position sensitive analysis of
hundreds of different molecules in a single experiment [1,2]. This is achieved by acquiring
MALDI mass spectra across a tissue section at defined geometrical coordinates. Post-
acquisition processing compiles the mass spectra into a format in which any of the detected
species can be viewed as an ion-density map, where the relative abundance of the selected
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ion across the tissue is displayed on a color-intensity scale at each coordinate location
(pixel). Unlike other visualization techniques such as immunohistochemistry (IHC) or
fluorescence microscopy, MALDI IMS does not require a target-specific reagent and
therefore is a valuable discovery tool, since it can survey a broad range of proteins
simultaneously.

In the past decade, improvements to the IMS technology have been made in sample
preparation and handling [4], sectioning [4–6], matrix deposition [4,7,8], as well as data
acquisition and processing [5,9]. Of particular interest is the recent development of
methodologies to perform in situ chemistries prior to IMS analyses, e.g. using various
enzymes to expand the amount of protein information obtained in the analysis [10–12].
Thus, proteins in a tissue can be hydrolyzed in situ by exogenously added proteases, and the
resulting peptides spatially analyzed by MALDI IMS. Sequence determination of the tryptic
fragments by MS/MS analysis directly off the tissue followed by database searching can be
used to identify many of the proteins present in the native tissue.

IMS has been successfully used to identify subsets of markers that correlate with cancer
progression [13–18]. For example, in earlier studies, protein markers were obtained from the
direct MALDI IMS proteomic analysis of glioma biopsies that could differentiate stage
including the most aggressive form, glioblastoma multiforms, and with patient outcomes
[14]. Our laboratory has also investigated a large cohort of human non-small cell lung-
cancer (NSCLC) biopsies [13,19]. In these studies, sections from fresh frozen biopsies were
cut and spotted with matrix on areas identified as cancerous. From the resulting protein
profiles, statistical analyses identified markers that could be correlated with histological
assessment and patient outcomes. These patterns precisely distinguished healthy versus
cancerous tissue, and distinguished various subtypes of NSCLCs, such as adenocarcinoma,
squamous cell carcinoma and large cell carcinoma. Further, these patterns could be
correlated with patient survival. From this latter cohort, several of the proteins of the
survival signature were identified. These results highlight the use of this technology for the
rapid characterization of disease at the protein level to confirm diagnosis and potentially aid
in therapeutic management [20].

MALDI IMS is often carried out on fresh-frozen tissue sections, since this closely mimics
native tissue. However, the vast majority of clinical specimens stored in hospital tissue
banks are formalin-fixed paraffin-embedded (FFPE), representing an expansive archive of
diseased tissues mostly with known outcomes. Formalin fixation stabilizes proteins by
chemical cross-linking throughout a tissue section, preventing postmortem enzymatic
proteolysis while maintaining the cellular histology [21].

Over the past two decades, several methods have been reported that attempt to reverse
formalin-fixation, a process commonly referred to as antigen retrieval [22–24]. Antigen
retrieval typically involves the application of high-temperature treatment along with the use
of a buffer solution, in an effort to reverse the protein cross-linking and return a tissue to its
native state as much as possible [22] Development of methods to effectively and
reproducibly carry out antigen retrieval on FFPE tissue specimens has allowed for the
standardization of IHC protocols and has recently opened the door to a vast collection of
archival clinical samples to be analyzed for genomic and proteomic information. For protein
identification, approaches using either LC-MS/MS [24–27] or 2-DE [28,29] have been
reported. Recently, a 2-D gel-based study showed that the same proteins can be identified
independently of the type of preservation used; when the appropriate antigen retrieval
protocol is applied, the level of identification was found comparable to that of frozen tissues
[29].
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To comprehensively evaluate the diagnostic, prognostic, and therapeutic value of gene and/
or protein expression in clinical tissue samples, it is necessary to analyze a large number of
specimens from patients in different stages of disease [30]. In this regard, tissue microarrays
(TMA) were originally developed to facilitate the molecular and pathological analysis of
tissue specimens in a massively parallel and high-throughput approach [30–32]. A TMA
consists of a paraffin block in which as many as 1000 cylindrical tissue biopsies from
individual tumors are distributed into a precise array [30]. Sections cut from this array
enable investigation of DNA by fluorescence in situ hybridization (FISH), RNA by mRNA
in situ hybridization, or proteins by IHC, from each of the biopsy samples.

We have developed an IMS method incorporating antigen retrieval and in situ enzymatic
digestion to analyze the protein content of TMA containing FFPE NSCLC biopsies. The
TMA used in this study contained various types of NSCLC biopsies including squamous cell
carcinoma, adenocarcinoma, and bronchioloalveolar carcinoma as well as non-cancer tissue
from matched individuals. MALDI IMS was used to analyze these samples in a high-
throughput fashion, providing proteomic data from discrete regions of each biopsy. We
demonstrate, as previously observed at the protein level from fresh-frozen tissue [13], that a
histological classification of lung cancer can be effectively accomplished at the peptide
level. The ability to detect and characterize tumor marker proteins for a large cohort of
samples in a high-throughput approach will be of significant benefit not only to investigators
studying tumor biology, but also to clinicians for diagnostic and prognostic purposes.

2 Materials and methods
2.1 Materials

HPLC-grade ACN and TFA were purchased from Fisher Scientific (Pittsburgh, PA). CHCA
was purchased from Fluka (Buchs, Switzerland) and used without further purification.
Trypsin Gold was purchased from Promega (Madison, WI). The Indium Tin Oxide (ITO)-
coated conductive slides were purchased from Delta-Technologies (Stillwater, MN). TMA
consisted of 100 duplicate needle core biopsies (1 mm) from 50 patients diagnosed with
NSCLC and 10 adjacent normal lung tissue punches. The layout of the TMA includes
duplicate needle core punches from 21 adenocarcinoma biopsies, 21 squamous cell
carcinoma biopsies, 4 bronchioloalveolar carcinoma biopsies, 2 metastatic colon cancer
biopsies, 1 carcinoid biopsy, and 1 plasma cell granuloma biopsy. Due to limited numbers
for the other cancer types, only the adenocarcinoma and squamous cell carcinoma biopsies
were considered in these experiments. Several of the needle cores from the adenocarcinoma
and squamous cell carcinoma biopsies did not contain a sufficient amount of tissue or did
not contain regions of cancer. Therefore, the TMA contains 22 squamous cell-carcinoma
needle cores from 14 different patients (8 duplicates and 6 unpaired) and 18 adenocarcinoma
needle cores from 12 different patients (6 duplicates and 6 unpaired) that contain cancerous
regions and are considered in the study.

2.2 Tissue preparation
Serial 5-μm thick sections were cut from all TMA blocks using a microtome. Sections from
the TMA were mounted either onto ITO-coated conductive slides for MALDI MS analysis
[33], or onto regular glass microscope slides for H&E staining. Paraffin removal was carried
out using washes in xylene (100%, twice for 20 min) and graded ethanol washes (100%,
twice for 5 min and in successive washes in 95, 80 and 70% for 5 min each). The slides were
then allowed to fully dry in an oven for 1 h at 65°C. Antigen retrieval was performed by
heating the section in a tris-EDTA buffer at pH 9 at 95°C for 20 min.
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2.3 On-tissue digestion
Trypsin (100 μg) was dissolved in 200 μL of 50 mM acetic acid to obtain a stock solution
with a concentration of 0.5 μg/μL. A 50-μL aliquot of this stock solution was activated by
adding 500 μL of 100 mM ammonium bicarbonate to reach a pH of ~8 and a final trypsin
concentration of 0.045 μg/μL. This trypsin solution was automatically spotted onto the TMA
tissue sections using a Portrait 630 reagent multi-spotter (Labcyte, Sunnyvale, CA) into an
array incorporating 250-μm center to center spacing between individual spots, each of which
were approximately 175 μm in diameter. The trypsin was spotted over a series of 30
iterations while depositing one drop (~160 pL per drop) each iteration to achieve a total spot
volume of ~4.8 nL. Between each iteration, the deposited trypsin solution was allowed to
dry (~5 min time intervals per iteration). The trypsin spotting proceeded at room temperature
(~21°C) over time of ~2.5 h, allowing ample time for digestion to take place. Following
digestion, a solution consisting of 10 mg/mL of CHCA in 1:1 ACN/0.5% TFA (aq.) was
spotted directly onto the array of tryptic spots over 30 iterations at one drop per iteration.

2.4 IMS of digested TMA section
The printed arrays were analyzed using an Ultraflex II MALDI-TOF/TOF mass
spectrometer (Bruker Daltonics, Billerica, MA) equipped with a smart beam laser [34] and
controlled by the Flex Control 3.0 software package. The mass spectrometer was operated
with positive polarity in reflectron mode and spectra acquired in the range of m/z 700–5000.
Image acquisition of the spotted arrays was carried out using the Flex Imaging 2.0 (Bruker
Daltonics) software package. A total of 1600 spectra were acquired at each spot position in a
customized spiral raster pattern in 200-shot increments at a laser frequency of 200 Hz. The
customized raster pattern was used to sample the entire spot area. Ion images were
assembled using the Flex Imaging 2.0 software package.

2.5 MS/MS sequence analysis of tryptic peptides
MALDI MS/MS measurements of selected peptides were acquired using TOF/TOF
fragmentation directly from the digested TMA sections. Each tryptic peptide sequenced was
selected and fragmented manually and the generated spectra were processed in Flex
Analysis 3.0 (Bruker Daltonics, Billerica, MA). Processing included 25 cycles of a
Savitzky-Golay smoothing algorithm with a width of 0.15 and baseline subtraction using a
median algorithm with a flatness value of 0.5 and a median value of 0.3. Monoisotopic
peaks with an S/N >8 were selected in each MS/MS spectrum using the SNAP peak picking
algorithm. All MS/MS spectra were loaded into Biotools 3.0 (Bruker Daltonics) and
converted into a single MASCOT generic format (.mgf) data file. This file was submitted
into a MASCOT (Matrix Science, Boston, MA) search engine and run against the Swiss-
Prot database to match tryptic peptide sequences to their respective intact proteins. The MS/
MS spectrum search was performed with a parent ion tolerance of 200 ppm and a fragment
ion tolerance of ±0.4 Da. The search criteria also included up to three missed cleavages and
variable modifications, including protein N terminus acetylation, histidine/tryptophan
oxidation, and methionine oxidation.

2.6 Data analysis
Statistical analyses of MS profiles were carried out using ClinPro Tools 2.0 (Bruker
Daltonics). Classes of spectra were loaded into the software and baseline correction was
achieved using a top hat algorithm with a 10% minimal baseline width. ClinPro Tools
automatically normalizes all spectra to their own TIC. Thus, for each spectrum the TIC is
determined as the sum of intensities from all data points in the spectrum. Subsequently, all
data point intensities of this spectrum are divided by the obtained TIC value bringing all
intensities into the range of [0,1]. Peaks in the spectra were selected manually and the
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maximum intensity within each of the defined peak integration areas was used as the
comparative value. The classification model used in this analysis was built using a support
vector machine algorithm (SVM) using 73 peaks determined through statistical comparison
by means of a t-test and minimum threefold intensity difference average. The number of
neighbors for the K-NN classification parameter in the SVM settings was set to 3.

3 Results
The FFPE TMA analyzed in this study contains 1-mm needle core biopsies from lung
tumors diagnosed as adenocarcinoma and squamous cell carcinoma, as well as adjacent
normal control tissue and other NSCLC tumors. Only the adenocarcinoma and squamous
cell carcinoma biopsies are considered in this study due to the limited number of samples for
the other cancer types. The layout of the TMA analyzed is such that there are duplicate
needle core punches for several of the biopsies. Therefore, the TMA contains 22 squamous
cell carcinoma needle cores from 14 different patients (8 duplicates and 6 unpaired) and 18
adenocarcinoma needle cores from 12 different patients (6 duplicates and 6 unpaired) that
contain cancerous regions and are considered in the study. In the discovery and protocol
development process, an H&E-stained section of the TMA was first analyzed by a
pathologist using light microscopy and the cancer, non-cancer, and normal regions were
marked in each biopsy. Non-cancer regions consist of tissue that is not cancerous but is not
normal either, including areas of inflammation, scar tissue, etc. The cellular regions that
could not be clearly identified were not marked and therefore were not used in the statistical
model generation step. This marked tissue section was then co-registered with a serial TMA
section analyzed by MALDI IMS (Fig. 1), enabling individual mass spectra obtained from
each coordinate position on the tissue (pixel) to be linked to that same precise histological
region in the TMA.

The mass spectrum generated at each spot on the digested tissue typically contains many
hundreds of peaks with S/N>3 (Fig. 2a). The ensemble of tryptic peptides at each position
represents a variety of proteins with a broad range of functionality and molecular weights.
The signal intensities of the tryptic peptides are mediated by several factors, i.e. protein
concentration differences, variations in enzymatic digestion efficiency, and differences in
desorption and ionization efficiencies. Nonetheless, mass spectra from similar histological
regions contain peak profiles with a high degree of concordance, demonstrating a consistent
and reproducible methodology as shown in Fig. 3. This figure illustrates, as expected, that
the average spectra generated from the cancer regions of two duplicate biopsies are
extremely similar. This reproducibility is further exhibited using a t-test and minimum 1.6-
fold intensity difference comparison for the 200 most intense peaks in the average spectrum
from the cancer regions of each biopsy. Based on these criteria, it was determined that there
were no statistically significant differences in any of the peak intensities between the two
biopsies. It should be noted that these are two different needle cores form the same biopsy
and thus are not identical pieces of tissue.

The protease hydrolysis step is essential to generate peptide fragments derived from non-
cross-linked domains and enable identification directly from their location in the tissue.
Typically, the process generates hundreds of tryptic peptides in a mass range (m/z 500–
3000) amenable for sequence analysis using a MALDI-TOF/TOF instrument. Thus, selected
peptides are desorbed and sequenced directly from the tissue and subsequently linked to the
respective intact proteins originally present. Currently, we have identified ~50 proteins
directly from the lung tumor TMA using MALDI MS/MS sequence analysis (Supporting
Information Table 1). An example of an MS/MS spectrum acquired directly from the FFPE-
TMA and sequenced as a peptide from the protein S100-A9 is shown in Fig. 2b. The ability
to visualize the spatial localization of a set of tryptic peptides generated from a single parent
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protein provides an additional level of validation, given that the distribution of these species
should be identical. For example, heat shock protein beta-1 was found to be localized almost
exclusively to the cancer regions of a subset of the squamous cell carcinoma biopsies. Three
tryptic peptides from this protein were detected and sequenced using MS/MS sequence
analysis, including m/z 987.60, 1163.62, and 1905.99. Figure 4a shows the average spectra
for three different squamous cell carcinoma biopsies, including two, from which the tryptic
peptides for heat shock protein beta-1 were detected and identified, using MS/MS sequence
analysis, as well as a third biopsy where this protein was not detected. The zoomed spectra
view for the three tryptic peptides from this heat shock protein beta-1 shows the consistent
peak distributions for proteins detected at similar levels in different tissue samples.
Furthermore, Fig. 4b illustrates the similar ion-density distribution of these three peptides
across the TMA.

The layout of the TMA used in these analyses is shown in Fig. 5a. This TMA was
constructed to contain duplicate needle cores from several of the tumor biopsies along with
unpaired biopsies and a set of biopsies from adjacent non-involved normal lung tissue. For
statistical analysis, the biopsies are separated into two datasets; set 1 is used as a training set
to build the classification models and set 2 is used to evaluate the accuracy of this model
through cross-validation. The first step in analyzing the dataset generated from the imaging
experiment is to develop a classification model that can differentiate the different cancer
regions from the non-cancer and normal regions. The classification models are generated by
first grouping together the spectra from each of the cancer and non-cancer regions into
separate folders for each biopsy in the TMA. This is completed using the cancer diagnoses
and marked histological regions on each biopsy as shown in Fig. 5b. Since the average size
of a matrix spot in these analyses is ~175 μm, it is possible that some matrix spots are
positioned across multiple histological regions, creating a mass spectrum partially
representative of each of the underlying cell types. In the training phase, only spectra that
are clearly located within a single histological region are included for generating the
statistical classification models. The spectra, that meet this positional criterion in set 1 of the
TMA patient biopsies, are exported into the appropriate adenocarcinoma, squamous cell
carcinoma, non-cancer, or normal class groupings to be used for model generation. For
example, Fig. 6 shows the average spectra for a squamous cell carcinoma needle core biopsy
overlayed with the average spectra from a needle core biopsy taken from adjacent normal
tissue from the same patient. The peak distributions in these two spectra are very different
and there are clearly a large number of ions present that can be used as class identifiers.

Several approaches can be used to systematically identify peaks that sufficiently distinguish
the various tumor classes from each other. The most straightforward way to do this is to
combine the spectra in each group to create an average spectrum representative of a class
identified through histology. The peaks present in these average spectra can then be
compared through statistical analysis to identify a subset of peaks that are significantly
different between each group and can therefore be used as the class identifiers. To do this,
the statistical software (Bruker Clin-Pro Tools) was used to create a table of average
intensity and standard deviations for a set of the 200 most intense peaks in the average
spectrum for both the adenocarcinoma and squamous cell carcinoma samples. The set of 200
peaks were evaluated between samples using a t-test and minimum threefold intensity
difference average comparison to determine a list of class identifiers. The limitation of this
method is that it is possible that peaks, which may be significant among a small subset of
spectra in a group, will become insignificant when averaged with the other spectra in that
group. For example, the peptide at m/z 1410.7, a tryptic peptide from keratin, type II
cytoskeletal 5, shows a distribution localized exclusively to a subset of the squamous cell
carcinoma biopsies (Fig. 7). This is further illustrated when a statistical comparison of the
average peak intensity in the squamous cell carcinoma biopsies for m/z 1410.7 is compared
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to the set of adenocarcinoma biopsies. A significance analysis using a minimum twofold
intensity difference threshold and a t-test shows that when all spectra from each of the
adenocarcinoma and squamous cell carcinoma biopsies in the training set are combined into
two average spectra, m/z 1410.7 is not a significant class identifier. However, when a
subgroup of squamous cell carcinoma biopsies that do express cytokeratin 5 are averaged
and compared to the adenocarcinoma biopsies, this peak is a significant classifier.

To address the heterogeneity of peak distributions for biopsies with the same diagnosis, it
may be necessary to first cluster the samples within each histology class based on a
similarity criteria. This is done by comparing the average intensity and SD calculated in the
average spectrum for each individual adenocarcinoma sample in the TMA to the values in
the average spectrum for each individual squamous cell carcinoma sample and vice versa. A
similarity value for each comparison was calculated by assessing the number of peaks out of
the 200 that were determined to be significantly different between the two samples. This
value is used to evaluate the heterogeneity of peak distributions within a class (i.e.
adenocarcinoma) and between classes (i.e. adenocarcinoma vs. squamous cell carcinoma).
This similarity value is used as a general measure of the reproducibility for this method by
comparing the peak distributions of two different needle core biopsies that were taken from
the same patient sample. A list of class identifiers was developed by tabulating the
frequency that each peak is determined to be statistically different between the individual
adenocarcinoma and squamous cell carcinoma samples. These peaks are used to cluster
patient samples with the same pathological diagnosis into subclasses with other samples
having a similar peak distribution (data not shown).

It was also possible to classify the adenocarcinoma and squamous cell carcinoma regions
successfully using the combined average spectra for each group to develop a peak list of
class identifiers. The classification models were built using a support vector machine (SVM)
algorithm that can then classify spectra based on the supervised learning from the training
set. The SVM algorithm used in these experiments incorporated 73 peaks, determined
through statistical comparison of the peaks in the training sets for both adenocarcinoma and
squamous cell carcinoma as described above. The SVM model was run against all spectra in
the dataset and the outcome of each classification was visualized using the class imaging
function in FlexImaging 2.0. For example, Fig. 8 displays the statistical classification of four
TMA biopsies that are in agreement with the diagnosis made by the pathologist. This model
classified the spectra from regions marked as adenocarcinoma by the pathologist with an
accuracy of 97.9% (140/143 spectra) and squamous cell carcinoma with an accuracy of
98.6% (141/143 spectra). Another way to evaluate these data is a comparison of individual
patients and on this basis, all 18 of the adenocarcinoma biopsies and all 22 of the squamous
cell carcinoma biopsies were classified correctly. In the adenocarcinoma, the 3 mis-
classified spectra were dispersed randomly throughout the dataset as single occurrences and
therefore had little effect on the overall patient classifications. In the squamous cell
carcinoma dataset, the 2 misclassified spectra came from a single biopsy in which the
remaining 9 out of the total 11 spectra were classified correctly as squamous cell carcinoma.
It is noted that the MS data was compared to normal histology/pathology, itself not a gold
standard.

4 Discussion
Lung cancer is the primary cause of cancer deaths in the United States and worldwide [35].
The exceptionally high mortality rate associated with lung cancer can be attributed to the
fact that it is usually diagnosed once the disease has progressed to an advanced stage [35].
The prognosis for lung cancer patients is generally poor with 5-year survival rates below
15% [36]. This unfortunate prognosis is highlighted when considering that at diagnosis 50%
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of patients already have distant metastases [36]. Treatment of late stage lung cancer is
mostly palliative and despite improvements in therapy regimens, approximately 90% of lung
cancer patients will die from their disease [35,37]. However, if the neoplasm is detected
sufficiently early so that the disease is localized at the time of diagnosis, prompt surgical
removal can increase the 5-year survival to 52% [36]. Therefore, much interest has been
placed in the development of novel methods focused on the early detection of lung cancer.

A comprehensive understanding of the mechanisms behind carcinogenesis, tumor
progression, and metastasis will require an in-depth analysis of not only the genome, but
also the proteome, that direct central components in the signaling pathways that drive
neoplasia [36]. Whereas mutations in the genomic contents of cells are known to be the
principal cause of the onset of carcinogenesis, detecting the changes induced at the protein
expression level should prove invaluable in characterizing the molecular machinery
responsible for neoplasia [36]. These protein patterns should provide information of the
underlying cellular processes that control the development of cancer and subsequent
metastasis. Although mRNA patterns can be used to define subclasses and prognostic
subsets of lung carcinomas [13,38–40], they generally are not able to identify the proteins
expressed in a tissue and how these proteins are modulated. Therefore, direct analysis of the
proteome in cancer tissues may provide a more accurate representation of the current
pathological state.

In this work, we provide evidence that using on-tissue digestion coupled with IMS and
statistical analysis can be used to distinguish different lung cancer histologies and
subclassify individual cancer types. Protein expression and relative quantification data can
be generated for multiple patient tissue samples in a single experiment. This creates a
platform for comparison that could be valuable in determining protein markers indicative of
various disease states and other clinical information such as prognosis and treatment
effectiveness.

The data presented are based on a single TMA for a small group of patients. The
experiments described in this work were aimed at demonstrating the feasibility of
classification of tumor samples in a TMA at the molecular level using MALDI IMS. In
order to carry out a more systematic biomarker discovery, it will be necessary to evaluate
the classification models built using this sample group on a much larger set (>200) of patient
biopsies. This will also be essential in determining the true diagnostic and prognostic value
this method of tissue analysis can offer. In order to effectively manage the enormous dataset
generated in such experiments, new bioinformatics tools will need to be developed, allowing
for better evaluation of the model generation and classification processes.

In terms of clinical applicability, it will be important to determine how effective the
classification models generated using archived FFPE samples will be in diagnosing a fresh-
frozen biopsy sample removed from a patient. Work in our laboratory comparing the results
from an on-tissue digestion experiment on a fresh-frozen rat brain to those on an FFPE rat
brain showed remarkably similar profiles (data not shown). Nevertheless, a more systematic
and in-depth study will need to be carried out to determine the comparability of these two
types of samples. One of the primary advantages of IMS is the visualization of the molecular
content of a sample while maintaining the spatial integrity. This aspect proves essential for
the analysis of samples that contain a heterogeneous distribution of cell types. For example,
resected lung tumor biopsies exhibit a wide range of cellular morphologies, often containing
areas of cancer cells dispersed within normal and preneoplastic tissue regions. Analysis of
the proteome from these various regions requires that the cellular structure of the tissue be
maintained. In situ trypsin digestion provides this distinct capability and, when coupled with
IMS, provides a descriptive analysis of a tissue’s protein contents relatively quickly in a
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single experiment. Protein identification directly from tissue is not always straightforward
because of the large number of peptides generated from proteolysis. We have recently begun
analyzing these samples using an FT-ICR MS in an effort to address the complexity of the
spectra through high-resolution and high-mass accuracy detection. Although the TOF mass
analyzer has extraordinary analysis speed and throughput, it lacks the mass resolution
needed to resolve all off the detected ions. Nonetheless, the advantage of maintaining the
spatial location of the identified species is critical in achieving a comprehensive analysis of
these highly heterogeneous tissue samples.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
(a) TMA H&E with histological regions marked (b) TMA spotted with trypsin/matrix for
MS analysis.
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Figure 2.
(a) Representative spectrum from an individual digest spot. (b) Example of an MS/MS
spectrum acquired directly from the FFPE TMA and sequenced as a tryptic peptide from
S100-A9.
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Figure 3.
Overlay of the average spectra for two duplicate needle cores in the TMA from the same
adenocarcinoma biopsy.
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Figure 4.
(a) Overlay of average spectrum from three separate squamous cell carcinoma biopsies in
the TMA. (b) The distribution of three tryptic peptides from heat shock protein beta-1 across
the TMA.
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Figure 5.
(a) H&E stain of a TMA section with pathological diagnosis outlining each biopsy. (b) Each
individual spectrum is grouped based on the histological region from which it was acquired.
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Figure 6.
Overlay of average spectra from a squamous cell carcinoma needle core biopsy and an
adjacent normal tissue needle core biopsy taken from the same patient.
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Figure 7.
Ion density map of m/z 1410.70 showing an exclusive distribution to a subset of the
squamous cell carcinoma biopsies.
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Figure 8.
Visual representation of the statistical classification of four biopsies compared to the
marking and diagnosis based on histology.
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