
Modeling Core Metabolism in Cancer Cells: Surveying the
Topology Underlying the Warburg Effect
Osbaldo Resendis-Antonio*, Alberto Checa, Sergio Encarnación

Centro de Ciencias Genomicas-Universidad Nacional Autónoma de México, Cuernavaca, México

Abstract

Background: Alterations on glucose consumption and biosynthetic activity of amino acids, lipids and nucleotides are
metabolic changes for sustaining cell proliferation in cancer cells. Irrevocable evidence of this fact is the Warburg effect
which establishes that cancer cells prefers glycolysis over oxidative phosphorylation to generate ATP. Regulatory action over
metabolic enzymes has opened a new window for designing more effective anti-cancer treatments. This enterprise is not
trivial and the development of computational models that contribute to identifying potential enzymes for breaking the
robustness of cancer cells is a priority.

Methodology/Principal Findings: This work presents a constraint-base modeling of the most experimentally studied
metabolic pathways supporting cancer cells: glycolysis, TCA cycle, pentose phosphate, glutaminolysis and oxidative
phosphorylation. To evaluate its predictive capacities, a growth kinetics study for Hela cell lines was accomplished and
qualitatively compared with in silico predictions. Furthermore, based on pure computational criteria, we concluded that a
set of enzymes (such as lactate dehydrogenase and pyruvate dehydrogenase) perform a pivotal role in cancer cell growth,
findings supported by an experimental counterpart.

Conclusions/Significance: Alterations on metabolic activity are crucial to initiate and sustain cancer phenotype. In this
work, we analyzed the phenotype capacities emerged from a constructed metabolic network conformed by the most
experimentally studied pathways sustaining cancer cell growth. Remarkably, in silico model was able to resemble the
physiological conditions in cancer cells and successfully identified some enzymes currently studied by its therapeutic effect.
Overall, we supplied evidence that constraint-based modeling constitutes a promising computational platform to: 1)
integrate high throughput technology and establish a crosstalk between experimental validation and in silico prediction in
cancer cell phenotype; 2) explore the fundamental metabolic mechanism that confers robustness in cancer; and 3) suggest
new metabolic targets for anticancer treatments. All these issues being central to explore cancer cell metabolism from a
systems biology perspective.
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Introduction

In recent years we have witnessed significative advances for

identifying and understanding the role that individual genes have

in genesis, development and progression on cancer [1]. However,

despite significant advances in genomic sciences in identifying

oncogenes and tumor suppressors, a systemic explanation of how

these genes deregulate the normal function of genetic circuits and

how its control may be used to design effective drugs against

cancer still remains a great challenge in systems biology

[2,3,4,5,6].

In conjunction with this molecular view of cancer, detailed

studies monitoring the metabolic alterations in cells are a

promising avenue for understanding and controlling cell prolifer-

ation in cancer cells [2,7,8]. For instance, researchers have

extensively studied the p53 tumor suppressor’s ability to trigger

DNA repair, cell cycle arrest and apoptosis, but recently p53’s

capacity to influence mitochondrial respiration and energy

metabolism have been elucidated [9,10]. Similarly, enhanced

effect on glycolysis, lactate (lac) production and control of fatty

acids oxidation originated by Hypoxia inducible factors (HIF) and

LKB1 tumor suppressor are clear examples linking genes

expression, metabolism and cancer phenotype [3].

In this contextual scheme, development of computational

procedures capable of surveying the physiological responses on

cancer cells in terms of its metabolic topology and genetic

information constitutes an attractive strategy for understanding,

characterizing, designing and improving effectiveness of cancer

drugs [11]. In this work we present a constraint-based analysis of a

metabolic network integrated by a core of metabolic pathways

participating in cancer cell growth: glycolysis, TCA cycle, pentose

phosphate pathways (PPP) and oxidative phosphorylation. Constraint-

based modeling has proven to be a successful paradigm in systems

biology for describing and exploring the phenotype capacities for a
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variety of organisms based on its particular genome sequences and

metabolic topology [11,12,13,14,15].

This paper’s central aim is twofold: 1) the construction of a model

simulating metabolisms that serves as a computational framework

auxiliary to describe and understand physiological behavior in

cancer cells; and 2) the identification of potential metabolic targets

to induce a reduced phenotype on cancer cell growth. To

qualitatively assess the in silico results obtained from our metabolic

reconstruction with those experimentally observed, we accom-

plished a study of growth kinetics for Hela cell line. Furthermore,

based on computational criteria we identified some enzymes with a

relevant influence on cell growth and compared them with those

considered as potential therapeutic targets in the literature.

Overall, we supply evidence that constraint-based modeling can

be used as a platform for unraveling the biochemical mechanism

underlying cancer cell growth and potentially contribute toward

designing strategies for clinical treatments in cancer.

Results

Core Metabolism in cancer cells
Ever since the pioneering observation that aerobic glycolysis in

cancer [7] is preferred over oxidative phosphorylation as a mechanism

to generate ATP from glucose, numerous experiments have

supported and extended the significant role that metabolisms

have on transformation, proliferation, angiogenesis and metastasis

in cancer [16,17,18]. Thus, scanning human tumors with positron

emission tomography (PET) [17] has verified that a high uptake rate of

glucose constitutes a hallmark in cancer cells, presumably required

to confer adaptive advantages when facing acidic and hypoxic

environments [19].

In light of these observations, an explanation of why energy

production relies on glycolysis instead of on the more effective

pathway driven by oxidative phosphorylation in mitochondria [2,16]

requires computational models capable of taking into account not

only both pathways but a robust metabolic network containing its

metabolic interconnectivity.

Keeping in mind this systemic view, we constructed a metabolic

network with those metabolic pathways that have a pivotal role in

cancer cell growth: glycolysis, TCA cycle, pentose phosphate, glutamino-

lysis and oxidative phosphorylation [3,16]. According to reconstruction

protocols, our network was based on published knowledge about

metabolism in cancer cells, basic thermodynamics and compart-

mentalization information associated with each metabolic reaction

inside the cell, see Table S1. Thus, for example, studies on C13

NMR spectroscopy have demonstrated that glutaminolysis consti-

tutes an active metabolic pathway in human glioblastoma cell lines

[8], and consequently, a demand reaction of a-ketoglutarate

representing an intermediary compound along the conversion of

glutamine to lactate was included in the reconstruction. In

addition, the reconstruction was complemented by transport

reactions to resemble the physiological conditions prevailing in

cancer cells, particularly those associated with glucose consumption,

lactate production and hypoxia conditions, see Table S1. Overall, our

reconstruction integrates 66 metabolites participating in 80

metabolic reactions representing glycolysis, pentose phosphate, TCA

cycle, oxidative phosphorylation and glutaminolysis, as well as transport

reactions of essential metabolites for cellular proliferation,

specifically oxygen, hydrogen, carbon dioxide and water, see Table S1

in supplementary material. Figure 1 depicts the metabolic network

used in this study. Mathematical representation of this set of

reactions, through the stoichiometric matrix, constitutes our

central platform for exploring and estimating the metabolic

capacities potentially driving cancer cells [3,16].

Dynamic Constraint-based Modeling and its
experimental assessment

Experimental assessment of the results and hypothesis inferred

from computational modeling is needed to ensure a high-quality

metabolic reconstruction with a real scope for explaining and

predicting cell behavior. Given that self-sufficiency in growth

signals and mechanisms for evading apoptosis [20] in cancer cells

contribute to uncontrolled cell proliferation, the feasibility of our

model to simulate cancer cell growth constituted a principal issue

to evaluate. Therefore, dynamic constraint-based modeling was

applied to the metabolic reconstruction depicted in Figure 1.

According to this formalism, growth rate is calculated by assuming

the existence of a characteristic time scale, at which a steady state

condition for metabolite concentrations is a plausible assumption.

Thus, hypothesizing that physiological growth rate at each time

scale obeys optimization principles, linear programming was

applied to identify the metabolic flux profile that maximized a

function associated with growth rate [21], see methods section.

Malignant progression requires proper metabolic cell machinery

in order to supply the energy and biosynthetic demand required for

cancer cell growth. To quantify the cancer cell growth in terms of its

metabolic networks and to link the topology of the reconstruction

with the cancer cell physiology, we proceeded to construct an

objective function that mathematically represents the metabolic

demands required for successful cell growth [11,13,22,23].

The proper selection of an objective function is crucial for

reducing the steady-state stoichiometrically feasible solution to an

optimal solution space [22,24]. In this work the objective function

was created by taking into account the expected metabolites

supporting cancer cell proliferation [25]. Thus, based on a review

of literature and considering the set of metabolites integrating our

reconstruction, we suggest an objective function consisting of lactate

(lac), ATP, ribose 5-phosphate (r5p), oxaloacetate (oaa) and citrate(cit)

production, having been selected according to their fundamental

roles as 1) precursors required for energy production, 2) precursors

of amino acids and nucleotides and 3) intermediates in

maintaining glycolysis and the reductive power required for

biosynthesis of other cellular compounds [25,26]:

OF~lactate eð ÞzATP czmð Þzr5p mð ÞzNAD mð Þ

zNADPH mð Þzoxaloacetate mð Þzcitrate mð Þ,

where c, e and m denote the compartments utilized in the

reconstruction (cytoplasm, external environment and mitochondria

respectively).

In addition, proper computational representation of environ-

mental conditions is essential to obtain reliable results and

interpretations from in silico procedures [24]. Hence, sink and

demand reactions were included to define proper metabolic

boundaries to mimic the physiological conditions prevailing

around cancer cells, see Table S1. Through sink reactions (which

serve to introduce those metabolites that are produced or

consumed by nonmetabolic cellular processes), we represent

NADH, NAD, CO2, biphosphate, hydrogen, water, carbon dioxide, coenzyme

A, FAD and FADH2. In turn, through demand reactions (which are

unbalanced reactions that permit the accumulation of a compound

otherwise not allowed in steady-state models because of mass-

balancing requirements), we were able to include a source of

ACCOA, ADP and oxygen.

Furthermore, plasma, an abundant source of glucose and

glutamine in cancer cells, was represented by two demand

reactions in the reconstruction, see Figure 1 and Table S1. In

order to simulate glucose consumption, a simple transport of
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glucose was included in the metabolic reconstruction, while

consumption on glutamine was represented through an external

source of 2-oxoglutarate, one of the intermediary products of the

glutaminolysis pathway in cancer cells, see Figure 1 [8].

Finally, consistent with hypoxia conditions governing cancer cell

environment, all the simulations were constrained to low rates of

oxygen uptake [27], see details in Table S1.

Constraint-base modeling assessment : Evaluating
Objective Function

To evaluate the physiological significance of the proposed

objective function, we decided to explore the extent to which

growth rate derived from dynamic constraint-based modeling

coincided with that obtained from a kinetic growth study of Hela

cell lines. Therefore, the in silico temporal profile of growth rate

was calculated by defining an initial cellular density, an initial

available glucose concentration and a proper time scale for

assuming steady-state condition, see methods section. Meanwhile,

Hela cancer cell lines were cultivated in solution and a growth

kinetic study was accomplished. As described in the methods

section, experimental measurements of cellular density on Hela

cells were made with six replicates for estimated experimental

reproducibility and by monitoring the process every 24 hours for

five days, see also Figure 2 (B).

The contribution of metabolic entities in the objective function

has been assumed to carry equal weight on growth rate, in such a

way that instead of using a quantitative criteria to evaluate the

crosstalk between experiment and modeling, a qualitative

procedure based on the normalization of cellular density profile

was implemented. Thus, proceeding as described in the methods

section, we found that our modeling was capable of obtaining a

normalized temporal growth profile comparable with that

associated with Hela cell lines, see Figure 2.

In light of this result, we postulate that the objective function

associated with the metabolic reconstruction depicted in Figure 1 is

potentially able to elucidate the metabolic flux activity required for

supplying the metabolic demand for cancer cell growth. This is a

crucial contribution in this study and constitutes the backbone for

exploring the relationships among gene activity, metabolism and

phenotype in cancer.

Figure 1. Metabolic pathways with a significant role in cancer cells. As a result of a bibliography search, we have selected those metabolic
pathways that potentially can constitute a metabolic core on most cancer cells. Orange, red and green dashed lines indicate metabolites that
participate in other biosynthetic pathways, metabolites that can be transported from cytoplasm to mitochondrion and metabolites that can be
transported from mitochondrion to cytoplasm, respectively. Compartment information has been denoted by external environment [e], cytoplasm [c]
and mitochondria [m]. The set of reactions that integrates this reconstruction are listed in Table S1.
doi:10.1371/journal.pone.0012383.g001
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In silico simulations
Computational models on biological systems have two general

purposes: 1) to reproduce what is physiologically observed and

understand their biological principles, and 2) to create a platform

capable of predicting the cellular phenotype when metabolic

alterations are induced in the system. Having verified that in silico

phenotype qualitatively reproduces the growth rate of Hela cell

lines, we proceeded to survey the metabolic mechanisms

supporting cell proliferation through Flux Balance Analysis (FBA),

an in silico formalism that has been useful in exploring the

genotype-phenotype relation for a variety of organisms [11,12,13,

22,23,28]. Specifically, we have used our metabolic reconstruction

for identifying those biochemical reactions that have a strong

influence on controlling cancer cell growth, a worthy issue when

one desires to identify metabolic targets with effective results in

cancer treatments [6]. For this purpose, metabolic targets with a

central role in cancer cell growth were identified by two

constraints: low flux variability and high enzymatic essentiality for

cancer cell growth. Together, these constraints constitute compu-

tational criteria for selecting those reactions that ensure a low

redundancy on metabolite synthesis with a maximal effect for

decreasing its phenotype. Thus, this computational criteria lead us

to identify a set of target enzymes whose metabolic activity may

has a direct effect on cancer cell growth, see Figure 3.

The robustness of this set of target enzymes in terms of the ratios

among the objective function’s components was subsequently

verified: We repeatedly applied the in silico analysis to a set of

objective functions whose equimolar contributions on objective

function’s components were not assumed. With this in mind, 1,000

objective functions (with components selected from a random

uniform distribution ranging from 0 to 1 around numerical values

estimated for other organisms [22]) were reconstructed, and

enzymes with low flux variability and high enzymatic essentiality were

identified in each realization. Despite growth rates highly

dependent on the ratios of the objective function’s components,

we identified a set of enzymes that in 99% of all the realizations

obeyed selection criteria, see Figure 4. Among the target enzymes

identified in silico, we determined that some participate in glycolysis,

such as phosphoglucomutase (PGMT), enolase (ENO), glyceraldehyde-3-

phosphate dehydrogenase (GAPD), pyruvate kinase (PYK) and lactate

dehydrogenase (LDH). Consistent with this result, development of

drugs mainly targeting glucose transport and phosphorylation

steps in glycolytic pathways have shown to be a latent therapeutic

strategy for reducing cancer phenotype [19,27,29].

Furthermore, constraint-based modeling suggests that lactate

dehydrogenase can be used as a metabolic control point over

phenotype behavior in agreement with previous studies, see Figure 5

[2,3]. Specifically, there has been experimental evidence that

inhibition of lactate dehydrogenase induces a decreased activity of

some glycolytic enzymes and consequently reduces growth rate in

cancer cells [30]. Motivated by this fact and with the purpose of

further assessing our computational interpretation, we evaluated to

what extent a reduction of enzymatic capacity of lactate dehydrogenase

influences the metabolic activity on enzymes participating in

glycolysis, pentose phosphate and TCA cycle. As Figure 5 shows (panel A,

B and C), flux balance analysis exhibits that an increment on

enzyme activity for lactate dehydrogenase is followed by an increased

metabolic activity over glycolysis and some enzymes participating in

TCA cycle and pentose phosphate pathway. Consistent with this in silico

observation, an increase of lactate production has been proposed to

be a necessary condition supporting tumor cell transformation

through the Warburg effect [31]. To confirm that this property is a

consequence of the geometry of the flux steady-state solution space

and not of the particular selections of ratios in the objective

function’s components, a nonbiased Monte Carlo sampling

method was applied for characterizing the solution spaces [23],

Figure 2. Temporal profile of kinetic cell growth. (A) Comparative analysis between the growth rate obtained experimentally and in silico. (B)
Average and standard deviation obtained in the kinetics measurements for Hela cell lines. As described in methods, growth rate was monitored every
24 hours for five days, and six replicates were obtained for each absorbance measurement. Statistical properties characterizing the kinetic growth on
Hela cell lines are shown in Figure 2(B), while the temporal behavior of glucose uptake rate and external concentration predicted by in silico
procedures are depicted in (C) and (D), respectively. Coefficients of variation obtained at each measurement are reported by the red points in (B).
doi:10.1371/journal.pone.0012383.g002
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see methods section. As Figure 5 (D) shows, a significant

correlation emerged between metabolic activity of lactate

dehydrogenase (LDH) and the first enzyme in glycolysis:

phosphoglucomutase (PDGM). A decrease of LDH tends to be related

with a decrease on glucose metabolism through PDGM, hence, our

in silico analysis suggests LDH as a control point in cancer cell

metabolism.

On the other hand, our computational platform suggests that

pyruvate dehydrogenase (PDHm) can perform a central role in driving

cell proliferation due to its low flux variability and high enzymatic

essentiality for metabolism in cancer cell growth, see Figure 4 (A).

Consistent with this finding, there is evidence that metabolic

inhibition of PDHm contributes to Warburg metabolism and

enhances malignant phenotype in human neck and head

squamous carcinomas [26,32]. This observation could make sense

in light of additional regulatory components integrating this

metabolic puzzle. First, hypoxia condition in tumors induces the

activation of HIF (Hypoxia Inducible Factor), which in turn activates

pyruvate dehydrogenase kinase 1, an enzyme that negatively regulates

the catalytic activity of PDHm. In addition, aerobic glycolysis is

enhanced by the fact that HIF induces the overproduction of

enzymes participating in the glycolytic pathway and lactate

production [31]. Overall, enhancement of the Warburg effect

and diminishing activity of PDHm seems to be a metabolic

response that confers selective advantage for survival and cell

proliferation.

With the purpose of surveying how growth in cancer cells may

vary when changing the metabolic activities on both PDHm and

glucose transport, we have accomplished phenotypic phase plane analysis,

a computational procedure to visually explore how objective

function behaves when flux variations over two independent

metabolic reactions occurs [21,23]. Remarkably, as Figure 6 (B)

shows, our analysis suggests that at fix glucose uptake rate a

decrease on PDHm enzymatic activity may improve the phenotype

growth rate in cancer cell lines, arrow in region I. Despite the fact

that this result is in agreement with some experimental reports, our

computational model predicts the existence of a threshold on

PDHm whose reduced activity could be beneficial to arrest cancer

cell growth (region II), a result that requires posterior experimental

verification.

Optimization of the objective function leads us to conclude that

glutaminolysis, starting at glutamine uptake rate and ending with

lactate production, is an active pathway during cancer cell growth.

From a functional and biological point of view, glutaminolysis

performs a fundamental role in replenishing TCA cycle and

generating additional reductive power required for fatty acids

biosynthesis. Furthermore, our in silico analysis suggests that

fumarate hydratase (FUMm) and succinate dehydrogenase (SUCD1m) can

be independently used as metabolic targets for regulating cell

proliferation, see Figure 6A and C. Phenotype phase plane

accomplished over these enzymes allows us to conclude that when

activity of FUMm (SUCD1M) is reduced different regions separated

Figure 3. Flux Variability and Enzyme essentiality on metabolic reactions. To identify those reactions that could have a pivotal role in
cancer growth rate, flux variability and enzyme essentiality analysis were accomplished over all the reactions included in the reconstruction. In panel
(A), the metabolic reactions whose deletion produces a significant reduction on growth rate are highlighted in red. Those reactions that ensure a low
variability and high essentiality constitute 27% of the complete metabolic reconstruction and these appear in red in panel (B). Exchange and sink
reactions were excluded from this analysis. Abbreviation code: Enolase (ENO), glyceraldehyde-3-phosphate dehydrogenase(GAPD), phosphoglucomutase
(PGMT), pyruvate kinase (PYK), triose-phosphate isomerase (TPI), lactate dehydrogenase (LDH), ribose-5-phosphate isomerase (RPI), pyruvate
dehydrogenase (PDHm), 2-oxoglutarate dehydrogenase (AKGDm), cytrate synthase (CSm), Fumarate hydratase (FUMm), malate dehydrogenase (MDHm),
succinate dehydrogenase (SUCD1m), succinyl-CoA synthetase (SUCOAS).
doi:10.1371/journal.pone.0012383.g003
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by a threshold value are identified. As can be appreciated in

Figure 6 (A) and (B), when metabolic activity on FUMm or

SUCD1M is decreased, phenotype growth rate in region I is

enhanced while in region III is reduced. Interestingly, phenotype

behavior observed in region I is in accordance with the fact that

FUMm or SUCD1m can participate as a tumor suppressor when its

enzymatic activity is deficient [33]. Even though the model can

sense the influence that the enzymatic activity of FUMm or

SUCD1m has on cancer growth rate, further analysis is required to

assess if in silico interpretation on region II and III has a biological

meaning.

We highlight that in our simulations mitochondria-derived citrate

constitutes a fundamental metabolite to be optimized for

supporting cell proliferation. As a result, low citrate transport

from mitochondria toward cytoplasm induces a decreased effect

on in silico growth rate. Consistent with published findings,

inhibition of ATP citrate lyase participating in conversion of

mitochondria-derived citrate into acetyl-coenzyme A in cytoplasm

prevents cancer cell proliferation and tumor growth due to its

central role as a precursor for lipids [2,34]. Even though inhibition

of ATP citrate lyase and low citrate transport have the final effect of

reducing acetyl-coenzyme A, a more detailed analysis should be

considered in future reconstructions. Specifically, fatty acids

metabolism should be included in the reconstruction in order to

evaluate if cytoplasm acetyl-coenzyme A could be a more appropriate

component than cytoplasm citrate to simulate computationally

cancer cell growth.

The pharmaceutical design of drugs targeting the pentose phosphate

pathway (PPP) seems to be an appealing strategy to reduce growth

rate in cancer cells due to its essential role in synthesizing ribose-5-

phosphate (r5p), essential for biosynthesis of nucleotides and nucleic

acids [35]. To quantify the contribution of PPP to cancer cell

growth, we analyzed in silico how transketolase (TKT1) and glucose-6-

phosphate dehydrogenase (G6PDH), representing the nonoxidative and

oxidative branches in PPP respectively, affect cell growth pheno-

type, see Figure 5E. As Figure 3A shows, in silico mutation of TKT or

G6PDH predicts its nonessentiality in cancer cell growth, this due to

the fact that non-oxidative or oxidative branches in PPP can both

produce ribose-5 phosphate (r5p). Converse to this harmless effect of

simple mutations, however, in silico modeling suggests that

simultaneous mutation is lethal for phenotype in cancer cell growth,

a finding that agrees with already published reports. Thus,

enzymatic down-regulation of glucose-6-phosphate dehydrogenase

(G6PDH) and TKT1 is required to effectively arrest growth rate

Figure 4. Enzymes with high essentiality and low variability that are robust to the ratio of objective function’s components.
Reactions with high essentiality and low variability were identified through a set of 1000 objective functions with nonequivalent ratios among
function components. As panel (A) shows, reactions obeying both criteria (red on black regions) were plotted over the 1000 realizations. In each
realization, those enzymes that obey the in silico criteria were denoted in black; all others in white. The percentage of times reactions obeyed the
computational criteria are depicted in panel (B). Robust enzymes relevant to this study (excluding transporters, exchange and demand reactions)
were labeled in red. EX, DM and Sink denote exchange, demand and sink reactions in the cytoplasm [c] and mitochondria [m] compartments.
doi:10.1371/journal.pone.0012383.g004
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for cancer cells in animals [6,35]. Furthermore, phenotype phase

plane done with G6PDH and TKT1 allows us to infer not only that a

simultaneous reduction of TKT1 and G6PDH metabolic activity

clearly predicts a drop in growth rate but also that, although both

branches of PPP can produce r5p, the oxidative branch can be a

limiting factor for growth rate in cancer: it means if TKT1 flux is null

an increment of G6PDH metabolic activity can produce phenotype,

however the opposite situation does not occurs, see Figure 5(E), a

hypothesis that needs to be verified with more precise experimental

measurements [35].

All together, the complete set of benchmarks used for

supporting this reconstruction are shown in Figure 7. In light of

these results, our constraint-based modeling represents an effort to

construct a computational platform that serves as a guide for

accomplished descriptive and predictive analysis about cancer

metabolisms, thereby creating a dialogue with an experimental

counterpart.

High throughput technology and cancer variability
Previous sections were devoted to constructing a metabolic

network, simulating growth rate and evaluating its predictive scope

based on published findings about cancer cells. From a conceptual

view, metabolic activity resulting from our constraint-based

analysis in nature represents an average behavior obtained from

a cancer cell population whose variability and stochasticity on

phenotype have been neglected. However, it is well known that the

cancer cell population in tumors is heterogeneous, and a

subsequent question is, then, to what extent cancer cell diversity

in tumors can display heterogeneous metabolic activity [18]. A

significant contribution to this issue was published regarding a

cervical uterine cancer study. It concluded that significant

variability within tumor regions mainly is concentrated on genes

participating in transcriptional regulatory and metabolic mecha-

nisms [18]. Thus, with the purpose of estimating the extent of the

cellular heterogeneity inherent in tumors could affect the

metabolic activity of our reconstruction, we have done a statistical

analysis of more than 33 samples of expression profiling stored in

the GEO repository at NCBI (accession GSE5787) obtained from

several regions of 16 patients with cervical cancer [18]. In contrast

to the methodology used by the original report [18], our variability

analysis was quantified through classical statistics over the

expression data obtained from affymetrix technology, see methods

section. In agreement with the original findings that the expression

of genes acting on signal transduction, regulatory mechanism and

metabolic pathways was significantly varied, we obtained that

genes participating in oxidative phosphorylation potentially induce a

variability on enzymatic activity within the population, see Table

S2 in supplementary material.

Guided by this result, we conclude that even though some genes

involved in metabolism can be expressed quite variably in tumors,

expression profiling reported for cervical cancer may suggest that

most of the metabolic pathways included in this reconstruction are

Figure 5. Lactate dehydrogenase and its influence on central pathways. Lactate dehydrogenase (LDH) has been suggested as a pivotal
metabolic control on cancer cell growth with a significant role in the Warburg effect. Panels (A), (B) and (C) show the effects that variations of LDH
activity have on some enzymes participating in glycolysis, TCA cycle and pentose phosphate, respectively. Metabolic activity of LDH increases from
bottom to top. Panel (D) shows the correlation between flux activity of LDH and phosphoglucomutase (PGMT) obtained through sampling the null
space of the stoichiometric matrix. Phenotype phase plane for glucose-6-phosphate dehydrogenase (G6PDH) and transketolase (TKT1), enzymes
quantifying the activity of the oxidative and non-oxidative branches of pentose phosphate, is depicted in panel (E). White arrows indicate the
direction at which the metabolic flux increases.
doi:10.1371/journal.pone.0012383.g005
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uniformly expressed at a population level, being the exception

oxidative phosphorylation. Computational and experimental assess-

ment for verifying this heterogeneity and exploring its biological

consequences will be an issue to address in future.

Discussion

Metabolic alterations constitute a hallmark in cancer cells: They are

required for driving transformation, progression and spreading cancer

in tissues [16]. Consequently, development of computational

procedures for identifying those enzymes with an influential role on

cancer cell growth constitutes an active line of research essential to

establishing the bases of a rationalized design of drugs with the desired

therapeutic effects [16]. In our study, a metabolic reconstruction

integrating the best-known metabolic pathways participating in cancer

development was accomplished: glycolysis, pentose phosphate pathway,

oxidative phosphorylation, glutaminolysis and TCA cycle.

To assess the practical scope of the metabolic reconstruction,

four criteria were evaluated: 1) the model’s ability to simulate

growth rate in Hela cells, 2) its ability to identify the global

metabolic activity during cell proliferation; 3) the expected

phenotype on growth rate when variations on enzymatic activity

are induced; and 4) the effect that cancer heterogeneity has on

metabolic reconstruction. Qualitative assessment of points 1 to 3,

summarized by Figure 2 and 6, were successfully evaluated in silico

and have led us to suggest that constraint-based modeling can be

used as a descriptive and predictive framework to study the

metabolic alterations supporting cancer in cells.

Although this computational study constitutes a good start in

genome scale modeling in cancer metabolisms, our reconstruction

and modeling is far from complete [36], and improvements,

additional tests and more specific studies should be undertaken in

future. Between the most relevant issues we name the follows:

1) It has been reported that the expression of M2-PK, a specific-

tumor pyruvate kinase, may enhance cell biosynthetic capabilities

by decreasing the transformation of phosphoenolpyruvate (PEP)

to pyruvate and shunting the intermediary substrates upstream

of PEP toward biosynthetic pathways required for cancer cell

growth [1,24]. This qualitative behavior was reproduced by

constraint-based modeling only when a proper ratio among

the objective function’s components is tune by one that may

quantify a more reliable conversion in cancer cell growth, see

Figure 6 D. According with previous studies, an isoform of

pyruvate kinase PKM1, PKM2, is highly represented during

cancer cell growth such that it induces a reduced metabolic

activity over pyruvate kinase producing a beneficial effects on

cancer cell growth [27]. Consistently with this fact, our model

can mirror this fact by identifying a region in phase plane

whose decreased activity of pyruvate kinase can induce an

Figure 6. Phenotype phase plane for glycolytic and TCA cycle enzymes. Panel (A) is a three-dimensional representation of how metabolic
activity of succinate dehydrogenase and glucose uptake rate influence growth. As Panels (B) and (C) show, in silico modeling leads us to identify some
regions where variations on pyruvate dehydrogenase and fumarate hydratase, both associated with tumor suppressor activity, can result in different
phenotypes. White lines indicate the direction at which the metabolic fluxes increase; black lines, the direction at which they decrease. The potential
effect that pyruvate kinase activity can produce on cancer cell growth is depicted in (D). In panel (D) objective function components were selected as
follows: cATP = 12.47, cLactate = 0.13, cNADPH = 0.93, cR5P = 0.6, cNAD = 0.89, cOAA = 0.75, cATP[m] = 17.09 and cCitrate = 0.55. The threshold flux activity is
denoted by a red line.
doi:10.1371/journal.pone.0012383.g006
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increment on cancer growth rate, such as occurs with the

switching between PKM1 and PKM2 during cell transforma-

tion. An inverse effect on cancer cell growth is observed at a

threshold activity of PKM1, red line in Figure 6(D), a result

that requires of additional experimental studies. This result

makes evident the need of determining proper coefficients in

the objective function’s components to obtain meaningful

biological interpretations, specially when exploring the finest

of details in metabolic behavior.

2) In this study, we have selected a partial metabolic

reconstruction in order to permit a comparison between in

silico predictions and published findings in literature, such

that, this approach facilitated a reliable assessment of the in

silico results, see Figure 7. This primer modeling functions as a

benchmarks that will allow us to sequentially introduce other

pathways into the description. The reconstructed human

metabolic network [36] constitutes an excellent source for

extending our studies and potentially evaluate the role that

new pathways have to sustain cancer phenotype.

3) From a genetic point of view, over expression of oncogenes and/

or dysfunction of tumor repressors induce changes in genetic

circuits that trigger the temporal transition between normal and

cancer cell phenotype. Additional analysis will be required to

explore how regulatory networks will constrain metabolic

phenotype [37,38] and to what extent the development of

dynamic formalism can contribute to unraveling the main

principles behind the robustness of cancer cells [39,40]. In our

opinion, both issues are relevant to distinguish the biological

mechanism governing proliferation in cancer and normal

functioning cell from a systems biology point of view.

Methods

Flux Balance Analysis
Constraint-based modeling is a computational frame for

analyzing and exploring the phenotype space of metabolic

networks obeying mass conservation and steady-state assumption

[21,22]. Thus, beginning from metabolic reconstruction of cancer

cells, we applied linear programming to identify those metabolic

fluxes (nj, j = 1,2…n) that maximize biomass production when

constrained by thermodynamics and mass balance principles;

max biomass~
X
i~1

ci
:Xi

" #

such thatP
Si,j
:nj~0 i~1,2:::m

{ajƒnjƒbj j~1,2:::n

where Si,j represents the stoichiometric coefficient of metabolite i

participating in the j reaction. In addition, biomass is represented

by a linear combination of metabolites essential to cell growth (Xi)

and whose contribution to biomass production are weighted by

coefficients (ci). Irreversible constraints and enzyme capacities for

each metabolic reaction are quantified by parameters aj and bj.

Dynamic Flux Balance Modeling
To model the temporal growth rate, we have assumed that

along the time line, it is possible to identify a time scale, Dt, where

the steady-state condition can be applicable. Briefly, assuming that

at the moment of initiation, the cell environment has a glucose

concentration, so
c and a cell density X0, the algorithm underlying

dynamic constraint-based modeling consists of an iterative process

among the following steps [21]. 1) Glucose concentrations sc

available for the cell must be identified. 2) The glucose

concentration then should be scaled to define quantity available

per unit of biomass and per unit of time:

sav~
sc

X :Dt

where sav denotes the initial concentration of glucose available in

Figure 7. Physiological assessment of in silico interpretations. A proper assessment of in silico results is required to ensure proper reconstruction.
Ten proofs were used here to evaluate the physiological consistency of the results from constraint-based modeling. In sequential order, columns
indicate the metabolic property computationally analyzed, in silico predictions and its consistency with some representative references. The blue text in
column 1 represents metabolic pathways, while red lines indicate the effects that enzyme mutation has on cancer cell growth.
doi:10.1371/journal.pone.0012383.g007
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the environment. 3) Assuming a steady-state condition for

metabolism, maximal growth rate, m, at the interval of time Dt is

calculated through the linear programming algorithm [21,23] and

consequently growth rate and the new substrate glucose uptake

rate Su are updated. 4) At the next described time step (t+Dt),

glucose concentration is obtained through the solution of the

classic set of differential equations:

dX

dt
~mX?X~X0 em Dt

LSc

L t
~Su

:X?Sc~Scoz
Su

m
Xo 1{em Dt
� �

where X is the cell density, Su is the available concentration of

glucose and m represents the growth rate. In our simulation, the

algorithm was repeated until null concentration of glucose was

reached. The algorithm was implemented using Cobra Toolbox

package in Matlab software [28].

Flux Variability and Enzyme Essentiality analysis
Flux Variability analysis was applied to explore metabolic

redundancy in optimal phenotype. Thus, this procedure identifies

the range of numerical values for each flux over the reconstruc-

tion, while still satisfying the given constraints and optimizing a

selected objective function [23]. Enzyme essentiality analysis was used

to quantify to what extent the deletion of an enzymatic reaction

affects the optimization of selected objective function. In order to

identify those metabolic reactions obeying low flux variability and

high essentiality we selected two threshold values. First, we defined

as essential those metabolic reactions whose deletion reduced by

50% or more the original objective function. Second, reactions

with low flux variability were those whose absolute values on flux

variability were less or equal to 50% of the maximal flux variation

along the entire distribution. Those reactions intersecting both sets

constituted the target enzymes reported in Figures 3 and 4. Both

computational analyses were accomplished in a Matlab environ-

ment and COBRA toolbox.

Sampling null space of the stoichiometric matrix
The identification of metabolic fluxes (n) obeying the steady-

state condition, S:n~0,with S as the stoichiometric matrix, was

accomplished by sampling the null space of S by an Artificial

Center Hit and Run Algorithm (ACHR) [41,42]. Basically, this

algorithm defines an initial point along the null space of S. Once

this point is defined, the algorithm calculates ‘‘warm-up’’ points by

an iterative procedure. These warm-up points are stored in a

matrix W by which a centroid xc is calculated. Finally the sample

points are calculated by selecting one point yn in the W matrix and

moving in the direction vector given by (xc2y). The new vector

yn+1 is substituted by the previous point yn in W. The centroid is

recalculated, and this process continues iteratively until a desired

number of sample points are reached. ACHR was done using the

COBRA tool box [28]. Overall, 10,000 sampled points belonging

to the null space of the stoichiometric matrix were included in the

analysis.

Comparative analysis between in silico and experimental
growth kinetics

To verify that the kinetic growth curve obtained in silico can

exhibit a comparable behavior with the experimentally obtained

growth curve from Hela cell lines, we have applied a normalization

procedure in both curves. We have denoted G as a cell growth

matrix whose entry gi,j represents the j replicate of cellular density

measured at time i, with i = 1….5 (five days) and j = 1…6 (six

replicates per day). In addition, ,A. represents the average

growth vector whose entries Ai indicate the average over rows of

G. The normalization applied on both curves, theoretical and

experimental, was obtained through this transformation

ANorm
i ~

Ai{min(Ai)

max(Ai{min(Ai))

where Ai represents the average cellular density at sample i, and

min and max represent the minimal and maximal numerical value

of the i row of ,A.. In other words, above normalization permits

selection of a framework in which the minimal value of Ai
Norm is

equal to zero and a maximal value equal to a unit.

Microarray analysis
In order to have an idea of how cancer heterogeneity can

influence metabolic phenotype, we accomplished a statistical

analysis of microarray data on 33 samples of cervical uterine

cancer among 16 women patients. The analysis used previously

published microarray data [18] stored in GEO (repository at

NCBI under accession GSE5787) and analyzed in R with affy

package in bioconductors, http://www.bioconductor.org/. To

identify those genes that significantly vary with in the 33

samples, a t-statistics was accomplished selecting those genes

with a log-ratio higher than 1.2 and a p-value less than 0.01. The

set of genes identified and its corresponding information (such

as symbol, description, reference chromosome location, gene

ontology, and participation in metabolic pathways) are shown

in Table S2.

Cell Culture Conditions and Growth Kinetics
Growth rate were obtained through standard technique of

crystal violet procedure. The cell line HeLa was obtained from the

Unidad de Diferenciacion Celular y Cáncer at FES-Zaragoza

UNAM. Cancer cell line was cultured in RPMI-advanced 1640

serum-free media (Gibco BRL, USA) with red phenol and

antibiotic-antimycotic solution (10,000 units penicillin, 10 mg

streptomycin, and 25 mg amphotericin B per mL). The cells were

incubated in 5% of CO2 and humidity saturation at 37uC. Cells

were cultured in 1mL of RPMI-Advanced medium in 24-well cell

culture plates (BD Falcon, USA) starting from an estimated

cellular population of 105 cells. Every day the medium for 6

different wells was removed and 100uL of glutaraldehyde at 1.1%

were added, until you have enough samples to complete the

kinetics. After this the glutaraldehyde is removed from each well

and the plate is left at room temperature until dryness is reached.

Violet crystal at 0.1% is added during 20 minutes and the wells are

then washed with bidistillate water. The water is removed and

then citric acid at 10% was added and shaken during 20 minutes.

The absorbance at 600 nm was obtained for the supernadant in

each well.

Supporting Information

Table S1 Metabolic reconstruction for central metabolism in

cancer.

Found at: doi:10.1371/journal.pone.0012383.s001 (0.03 MB

XLS)

Table S2 Genes with a significative variation on gene expression

in cervical cancer.

Found at: doi:10.1371/journal.pone.0012383.s002 (0.51 MB

XLS)
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