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Nicotiana benthamiana plants were 
agroinfiltrated with an infectious 

clone of the Turnip mosaic virus (TuMV) 
that was engineered to tag replication 
vesicles with either GFP or mCherry 
fluorescent proteins. Punctuate vesicle 
structures were observed in the cyto-
plasm of infected cells corresponding to 
viral replication factories. The vesicles 
were highly motile and co-aligned with 
the microfilaments. Utilization of latrun-
culin B, an inhibitor of microfilament 
polymerization, reduced accumulation of 
the virus, suggesting that microfilaments 
are necessary during infection. To inves-
tigate biogenesis of the vesicles, leaves 
were infected simultaneously with two 
recombinant TuMV infectious clones, 
one that labeled vesicles in red and one 
that labeled them in green. We observed 
cell with green only and red only vesicles 
indicating a single viral genome origin. 
In some cases, vesicles exhibited sectors 
of green, red and yellow fluorescence 
were also observed, demonstrating that 
fusion among individual vesicles is pos-
sible. Based on those results we propose a 
model for the biogenesis of viral factory, 
where viral translation and replication 
are tightly coupled within virus-induced 
vesicles.

Over the past years, a large number 
of investigations have been devoted to 
understanding virus-host interactions at 
the molecular level. Concurrent to these 
molecular studies, an avenue of investiga-
tion at the interface of molecular virol-
ogy and cell biology has emerged. These 
studies have shown that animal as well 
as plant RNA viruses induce substantial 
cellular remodeling during infection.1 
Many of these virus-induced structures 

are organelles that house the RNA replica-
tion complex, and for that reason are given 
the generic term of replication factories. 
These factories contain positive and nega-
tive strand viral RNAs and the viral RNA-
dependent RNA polymerase (RdRp), 
along with non-structural viral and host 
proteins. It has been proposed that virus-
induced factories increase the local con-
centration of components required for 
replication, protect viral RNA from deg-
radation and prevent the activation of 
host defense functions. Current questions 
centre on the membrane origins that give 
rise to the virus-induced factories and the 
molecular motors as well as pathways that 
are involved in their trafficking from their 
site of origin to their final destination. The 
origin and nature of these virus-induced 
membrane structures differ according 
to the virus families.1 In most cases, the 
modifications involve the formation of 
spherules, vesicles or multivesicular bodies 
derived from membranes of the endoplas-
mic reticulum (ER), mitochondria, perox-
isomes, lysomes or chloroplasts. Electron 
tomography has recently been used for the 
generation of three-dimensional imaging 
of Dengue virus- and coronavirus-induced 
membrane alterations at high resolution. 
These alterations resulted in a reticulove-
sicular network of modified ER that inte-
grates convoluted membranes, numerous 
interconnected double membrane vesicles 
and “vesicle packets”.2,3 The three-dimen-
sional renderings of these membrane net-
works show a spatio-temporal platform 
for the virus replication cycle, and suggest 
that not only RNA replication but also 
translation and virion assembly are associ-
ated with these virus-induced structures.

Turnip mosaic virus (TuMV) is an 
excellent model to study plant virus 
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expression of both green and red vesicles. 
The rational is that in a cell infected by 
both viruses, if translation happens in the 
cytoplasm and proteins are exported ran-
domly to the vesicles, both green and red 
fluorescing vesicles should be observed.

However, if translation occurs within 
the vesicle, green- and red-only vesicles 
should be detected. What was observed 
were cells with individual green-only 
and red-only vesicles, suggesting a 
single-genome origin for each vesicle. 
Interestingly, vesicles exhibiting sectors 
of green, red and yellow colors were also 
observed, possibly resulting from a fusion 
between vesicles, a phenomenon that was 
noticed previously during vesicle traf-
ficking. Formation of vesicles derived 
from a single viral genome indicates the 
existence of a cis mechanism that incor-
porates the proteins synthesized from a 
same viral RNA into the same vesicle. A 
mechanistic explanation is that viral RNA 
translation and replication occurs within 
the factories, and this was shown by the 
co-localization of several host translation 
factors with viral double-stranded RNA, 
a marker of viral RNA replication. This 
close coupling between viral replication 
and translation was recently suggested by 
Hafren and co-authors.11

concerning TuMV vesicle biogenesis and 
content.

Vesicle Movement 
on Microfilaments

Virus replication factories are dynamic 
structures.5-7 We thus investigated the 
trafficking of TuMV-induced vesicles by 
confocal microscopy with an infectious 
clone that was engineered to tag replica-
tion vesicles with either GFP or mCherry 
fluorescent proteins. The observed vesicles 
were irregular in shape and varied in size, 
ranging from 0.6 to 4.3 µm in diameter. 
Interestingly, some vesicles were highly 
motile with an average velocity of 0.45 
µm/s. Their movement was unidirec-
tional and was characterized by a stop 
and go activity. Occasionally, fusion was 
observed between vesicles in the peri-
nuclear zone. Because of the high viscos-
ity of the cytoplasm, movement of large 
complexes requires an active transport 
with implication of cytoskeleton elements. 
When an actin marker fused to GFP was 
co-expressed, it was observed that the 
TuMV vesicles co-aligned with the micro-
filaments (Fig. 1B). When a low concen-
tration (5 µM) of Latrunculin B (latB), 
which inhibits microfilament polymeriza-
tion, was applied factory movement was 
stopped and virus production was signifi-
cantly decreased.

Each Vesicle Derived from a 
Single Genome

One may also ask how viral proteins are 
imported within the replication factories. 
It is generally assumed that viral RNA 
translation is taking place in the cyto-
plasm and the newly synthesized proteins 
are exported in trans to virus-induced, 
pre-formed, vesicles. Since many transla-
tion factors have been found within the 
TuMV-induced vesicles,8-10 it is possible 
that translation instead occurs within 
the factories or is tightly associated with 
them. To resolve this issue, leaves were 
infected simultaneously with two recom-
binant TuMV infectious clones, one that 
labeled vesicles in red and one that labeled 
them in green. Following agro-infection, 
individual cells were screened for the 

replication factory formation. TuMV has 
a positive-strand RNA genome of approxi-
mately 10 kb long, with a viral genome-
linked protein (VPg) covalently linked to 
its 5' end and a poly(A) tail at its 3' end. 
The genomic RNA is translated into one 
polyprotein of 358 kDa that is processed 
into at least 10 mature proteins by viral 
proteases. Viral replication takes place 
in virus-induced vesicles derived from 
the ER (Fig. 1A) and the expression of a 
single viral protein (i.e., 6K

2
-VPg-Pro) is 

sufficient to induce vesicle formation (4). 
However, many questions are unresolved 

Figure 1. tumV replication factories are 
associated with er and co-allign with 
microfilaments. Nicotiana benthamiana cells 
expressing mCherry-tagged tumV-induced 
replication factories and er-resident GFP (A) 
or the actin domain of fimbrin fused to GFP 
(B) observed by confocal microscopy at 4 
days post-agroinfiltration. Photographs are 
a three-dimensional rendering of 40 1-µm 
thick slices that overlap by 0.5-µm. Scale bar, 
10 µm.

Figure 2. model for the formation of virus-
induced vesicles. the blue sphere represents 
the nucleus, while the brown structure 
the er. Partially transparent virus-induced 
vesicles are in light blue. Green ribbons and 
red spheres and rods depict viral rnAs and 
proteins, respectively. Host proteins are the 
orange cubes, and the brown and yellow 
structures are ribosomes.
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to the exterior (III). The clusters of large 
vesicles observed within the cytoplasm are 
produced during a second budding from 
the ER (IV-V).

Conclusion

Future issues will be to obtain a more 
refined 3-dimensional view of TuMV fac-
tories in order to better understand the 
interplay between virus RNA replication 
and various viral processes, such as trans-
lation and encapsidation. A corollary will 
be to determine the full content of host 
proteins and the mechanistic role for their 
presence in virus factories. Finally, traf-
ficking and the fate of virus factories in 
cell-to-cell and long distance transport 
need to be investigated.
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