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A new method for amplification and labeling of RNA
is assessed that permits gene expression microarray
analysis of formalin-fixed paraffin-embedded tissue
(FFPET) samples. Valid biological data were obtained
using gene expression microarrays of diffuse large
B-cell lymphoma (DLBCL) FFPET samples. We exam-
ined 59 matched DLBCL patient samples, FFPET, and
fresh/frozen. The samples contained both prognostic
subgroups of DLBCL: germinal center B-cell (GCB)
and activated B-cell (ABC). Fresh/frozen (FF) samples
were amplified by both the traditional Eberwine
oligo-dT method and a new method described herein.
The matching FFPET samples were also amplified
using the new method. Here we detail the compar-
ison of results from all three datasets of matched
samples. An established classification model built
from previous data accurately classified these new
samples. This new method provides a useful tech-
nology advance for microarray analysis of FFPET
archival samples. (J Mol Diagn 2010, 12:680–686; DOI:
10.2353/jmoldx.2010.090164)

Gene expression profiling with microarrays has led to
many valuable insights into the underlying molecular sta-
tus of disease tissues.1–4 Most efforts in microarray gene
expression profiling have relied on fresh or fresh/frozen
(FF) sources of tissue. The use of FF tissue as the sample
type of choice is necessitated because traditional meth-
ods of RNA amplification (eg, oligo-dT Eberwine-based
methods5) require microgram quantities of good quality
(ie, nondegraded) RNA. Formalin-fixed paraffin embed-
ded tissue (FFPET) is the method of choice for virtually all
routine diagnostic procedures (eg, H&E staining, immu-
nohistochemistry, fluorescent in situ hybridizations, etc) in

pathology. Most clinically relevant samples are routinely
archived as FFPET blocks, as this represents a minimum
requirement for diagnosis. FFPET samples are often the
only source of material available to allow correlation with
long-term clinical outcome data. Unfortunately, RNA ex-
tracted from FFPET archival samples is of poor quality
(eg, degraded and cross-linked) and recovered in very
small amounts.6,7 To date, robust methods for routine
high-density transcriptome microarray analysis of FF-
PET samples have not been described.

Diffuse large B-cell lymphoma (ie, DLBCL) com-
prises approximately 40% of all non-Hodgkin Lympho-
mas. DLBCL is well documented in multiple studies to
contain several distinct molecular subtypes of disease,
reflected in gene expression. Two of the subtypes, ger-
minal center B cell (GCB) and activated B-cell (ABC),
have been correlated with disease prognosis. GCB over-
all has a better prognosis than the ABC subclass.8–18

Specifically, GCB has a much higher overall survival than
the ABC class when treated with CHOP (60% and 30%,
respectively19). Lenz et al20 have confirmed that these
molecular subtypes maintain their prognostic signifi-
cance when Rituximab is introduced in the treatment
regimen together with standard multiagent chemother-
apy (R-CHOP). In the relapse setting, the proteosome
inhibitor Bortezimib, in combination with chemother-
apy, is associated with a superior OS in patients with
the ABC subtype of DLBCL.21 Thus, DLBCL molecular
subtypes may be a useful in the initial risk stratification
of patients with DLBCL and play a role in therapy
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selection in the relapse setting. Moreover, cell-of-origin
distinctions (GCB versus ABC) may gain an important
role in the choice of initial therapy, particularly in the
setting of phase III clinical trials testing new targeted
agents.

Here we report the use of a novel method of linear
amplification (ie, Ribo-SPIA; Nugen Technology22) to pro-
duce biologically relevant data from a collection of 59
matched FF and FFPET DLBCL samples.

Materials and Methods

Lymph Node Processing

Samples were obtained with patient informed consent
and with IRB approval. Tumor containing lymph nodes
were excised and handled using routine diagnostic pro-
tocols used by the British Columbia Cancer Agency
(BCCA). After excision at the local hospital, the node was

Table 1. Classification Results

Sample ID
Class FF

(Eberwine)
Confidence FF

(Eberwine)
Class FF

(Ribo SPIA)
Confidence FF

(Ribo SPIA)
Class FPET
(Ribo SPIA)

Confidence FPET
(Ribo SPIA)

Sample_A1 GCB 0 GCB 0 GCB 0
Sample_A2 ABC 99.9% ABC 99.5% ABC 99.3%
Sample_A3 ABC 100% ABC 100% ABC 100%
Sample_A4 GCB 0 GCB 0 GCB 0
Sample_A5 ABC 99.9% ABC 99.8% ABC 95.5%
Sample_A6 GCB 7.6% Unclassified 19.2% Unclassified 17.5%
Sample_A8 ABC 100% ABC 100% ABC 98.8%
Sample_B1 GCB 0 GCB 0 GCB 0
Sample_B2 ABC 100% ABC 100% ABC 100%
Sample_B3 GCB 1.3% Unclassified 11.5% Unclassified 72.6%
Sample_B7 GCB 0 GCB 0 GCB 0
Sample_B8 GCB 0 GCB 0 ABC 93.6%
Sample_B9 GCB 0 GCB 0 GCB 0
Sample_C1 GCB 1.1% GCB 1.7% GCB 0.4%
Sample_C3 ABC 100% ABC 100% ABC 100%
Sample_C5 GCB 0.8% GCB 1.5% GCB 1.6%
Sample_C6 ABC 99.8% ABC 91.7% ABC 98.1%
Sample_C7 ABC 90.2% ABC 97.1% ABC 99.4%
Sample_C9 GCB 0 GCB 0 GCB 0
Sample_D1 ABC 99.6% ABC 93.6% ABC 98.7%
Sample_D2 GCB 0 GCB 0 GCB 0.1%
Sample_D3 ABC 94.8% Unclassified 60.5% ABC 99.6%
Sample_D4 ABC 99.9% ABC 99.8% ABC 96.0%
Sample_D5 GCB 0 GCB 0 GCB 0
Sample_D6 GCB 0.7% GCB 0 Unclassified 19.3%
Sample_D7 GCB 0 GCB 0 GCB 0
Sample_D9 GCB 0 GCB 0 GCB 0
Sample_E1 ABC 99.3% ABC 99.8% ABC 99.9%
Sample_E2 ABC 96.4% ABC 96.8% ABC 91.3%
Sample_E3 ABC 100% ABC 100% ABC 100%
Sample_E4 ABC 100% ABC 100% ABC 99.9%
Sample_E5 GCB 0 GCB 0 GCB 0
Sample_E6 ABC 99.6% ABC 99.1% Unclassified 78.2%
Sample_E7 GCB 0 GCB 0 GCB 0
Sample_E8 GCB 0 GCB 0 GCB 0.1%
Sample_E9 GCB 0 GCB 0 GCB 0
Sample_F1 GCB 0 GCB 0.2% GCB 9.2%
Sample_F2 GCB 0 GCB 0 GCB 0
Sample_F3 ABC 99.6% ABC 98.6% ABC 98.4%
Sample_F4 ABC 100% ABC 100% ABC 100%
Sample_F5 GCB 0 GCB 0 GCB 0.3%
Sample_F6 ABC 100% ABC 100% ABC 100%
Sample_F9 GCB 0 GCB 0 GCB 0
Sample_G1 GCB 0.1% GCB 0.2% GCB 0
Sample_G2 GCB 0 GCB 0 GCB 0
Sample_G3 ABC 99.7% ABC 99.6% ABC 98.6%
Sample_G4 GCB 1.5% GCB 2.3% GCB 3.3%
Sample_G5 ABC 100% ABC 100% ABC 100%

Fifty-nine DLBCL fresh frozen RNA samples analyzed by the Eberwine method were classified using a previously described model.19,23 Eleven
samples did not have signatures meeting the confidence needed to call ABC or GCB and were placed into the unclassified category.

The Bayesian classifier was used to classify the FF samples amplified by the Ribo-SPIA method �column: Class FFN; the confidence is reported in
Confidence (FFN)�.

The Bayesian classifier was used to classify the FFPET samples amplified by the Ribo-SPIA method �column: Class FFPET; the confidence is
reported in Confidence (FFPET)�.
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processed in a timely manner and fresh tissue was
shipped on saline-soaked gauze overnight to BCCA.
Fresh material was immediately frozen on arrival at the
BCCA. Formalin-fixed paraffin-embedded material was
processed in a timely manner at the local site and sub-
sequently shipped to BCCA. This study was approved by
the British Columbia Cancer Agency Ethics board and is
in accordance to the declaration of Helsinki.

RNA Extraction

RNA from freshly frozen biopsied samples was prepared
using TRIzol, following manufacturer’s recommendations.
RNA was prepared from the FFPET samples using the
RNeasy FFPE kit (Qiagen #74404) following manufacturers
recommendations. Supplemental Table 1 (see http://jmd.
amjpathol.org) contains the RNA recovery from each sam-
ple and sample type (eg, FF or FFPET). The range of recov-
ery was 3.94 up to 771 ng/�l of FFPET RNA and 7.19 up to
86.03 ng/�l from fresh frozen samples. All samples yielded
sufficient RNA for input to Ribo-SPIA amplification 10 ng for
Fresh RNA and 50 ng for FFPET RNA (see Supplemental
Table 1 at http://jmd.amjpathol.org).

RNA Amplification and Labeling

Five micrograms of FF RNA was transcribed into double
stranded cDNA (GeneChip One-cycle cDNA Synthesis
Kit; Affymetrix) and linearly amplified by the traditional
method described by Eberwine5 using the GeneChip IVT
Labeling Kit (Affymetrix).

Ten nanograms of FF or 50 ng FFPET RNA was tran-
scribed into double-stranded cDNA and linearly ampli-

fied using WT-Ovation FFPE System (Nugen). The cDNA
was fragmented and biotin labeled using FL-Ovation
cDNA Biotin Module V2 (Nugen).

GeneChip Hybridization

Ten micrograms of Eberwine-labeled cRNA or 5 �g of
WT-Ovation amplified cDNA was applied to U133plus 2
GeneChips (Affymetrix) and hybridized overnight per
manufacturer’s recommendations. GeneChips were
washed, stained, and scanned using the Fluidic Station
450 and GeneChip Scanner 3000 (Affymetrix) using man-
ufacturer’s recommendations. Affymetrix.cel files have
been deposited into GEO (http://www.ncbi.nlm.nih.gov/
geo/, accession number GSE19246).

Data Analysis and Classification

Microarray signal was generated using Affymetrix MAS 5.
A Bayesian model was used for classification. The clas-
sification algorithm was based on previously described
methods19 and the normalization dataset updated with
the use of gene expression data for DLBCL samples.23

As described previously by Wright, 100 genes were se-
lected and weighed based on the DLBCL samples used
in the referenced manuscript.19 This updated model was
applied to the samples from each of the three datasets in
this study as a blinded test.

Results

A collection of 59 matched samples, where RNA was
extracted from the same lymph node biopsy but derived
from either fresh frozen tissue or FFPET, were used in this
study. The initial experiment was performed using 5 �g of
total RNA extracted from the fresh frozen samples. The
RNA was prepared for microarray analysis using the
standard Eberwine-based amplification methodology.5

Amplified cRNA was hybridized to Affymetrix U133plus2
GeneChips. The resulting microarray data served as a
means for classification of ABC or GCB DLBCL sub-
classes. This process was accomplished by using an
updated classifier built on previous Affymetrix GeneChip
experimental results.23 Gene expression classification of
DLBCL using this Bayesian model can result in some
samples not exhibiting the distinct signatures of either
GCB or ABC, such that there is less than 90% confidence
in assigning to either of the two classes. These samples

Figure 1. Kaplan-Meier survival plot of DLBCL samples included in this
study.

Figure 2. Representative electropherogram of
total RNA extracted from FFPET archived lym-
phoma sample and a freshly frozen lymphoma
sample as analyzed on an Agilent BioAnalyzer.
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have been called Unclassified (U) samples.19 Table
119–23 lists the 48 samples and the assignment of each
sample to GCB, ABC. Those 11 samples that are desig-
nated as U (ie, unclassifiable to either class with 90% or
greater confidence) are not included in this table. These
assignments are considered the true assignment of each
of the 48 samples from which further comparisons are
made.

It was important to demonstrate the original prognostic
value of these subclasses such that biologically relevant
meaning could be attributed to the results. Kaplan–Meier
survival curves for the R-CHOP treated patients show
GCB patients had better overall survival than the ABC
patients (Figure 1; Supplemental Table 2, available at
http://jmd.amjpathol.org), consistent with previous CHOP
prognostic data. It is interesting to note that overall sur-
vival has increased in both groups (GCB and ABC) with
the addition of Rituximab compared with the original
CHOP alone data. Both subclasses show improved prog-
nosis of about 10 to 15% with the addition of Rituxamab
compared with CHOP alone. These data are in complete
agreement and verify a study recently published by Lenz
et al20 from the LLMPP (Leukemia/Lymphoma Molecular
Profiling Project) consortium.

Next, matching samples were amplified by the Ribo-
SPIA FFPET method. Ten nanograms of the same fresh-
frozen RNA that was used for Eberwine-based amplifica-
tion (above) was amplified, and 50 ng of FFPET extracted
RNA was also amplified. These samples were hybridized
to Affymetrix U133plus2 GeneChips. A comparison of
gene expression data from all three replicate experi-
ments yielded the following results. A comparison of per-
cent present calls was made for each of the three patient
tumor replicates (see Supplemental Figure 1 at http://
jmd.amjpathol.org). The Ribo-SPIA amplified fresh-frozen
samples consistently had higher present calls (average
55% present calls) when compared with the traditional
Eberwine method (average 43% present calls). This is of
interest, because the Ribo-SPIA samples used only 10 ng
compared with 5 �g of traditional labeled material. The
50 ng RNA extracted from the FFPET matched samples

produced lower percent present calls (average 29%
present calls), which is expected because the sample
RNA is known to be of poorer quality and severely de-
graded (see Figure 2). Although, the percent present
calls from FFPET were lower than those from fresh-frozen,
these data still contain an average of 29% present calls
out of all of the 54,675 probesets and represents a po-
tential large dataset for analysis. Other metrics commonly
used for microarray quality analysis were examined. As
expected the scaling factors inversely reflected the per-
cent present calls and no other observations were note-
worthy (data not shown). It should be mentioned the
Ribo-SPIA FFPET method uses random primers, hence
the usual analysis of GAPDH and �-actin 3�/5� ratios is
not as meaningful as with traditional oligo-dT primed
Eberwine methods. The 3�/5� ratios observed from Ribo-
SPIA samples were all under 3, even with the highly
degraded FFPET RNA.

Next, the gene expression signals of the matched sam-
ples were compared between methods and sample
types (FF Eberwine versus FF Ribo-SPIA, FF Ribo-SPIA
versus FFPET Ribo-SPIA, and FF Eberwine versus FFPET
Ribo-SPIA) (Figure 3; Supplemental Table 3 available on
http://jmd.amjpathol.org). Figure 3 depicts a representa-
tive scatter plot, and Supplemental Table 3 (see http://
jmd.amjpathol.org) contains the correlation of all 48 sam-
ples. R2 signal correlation from scatter plots indicate that
FF Ribo-SPIA and FFPET Ribo-SPIA samples demon-
strate similar gene expression correlation as between FF
Ribo-SPIA and FF Eberwine average of all samples is
0.78 versus 0.77, respectively). The lowest correlation
occurs when both the sample type and method (Ribo-
SPIA FFPET and Eberwine FF) are compared (�0.64
average for all samples). Although these R2 correlations
are less than what is normally observed when replicates
using the same method and same sample technical rep-
licates are compared, these data do indicate that overall
gene expression across the matched samples demon-
strate reasonable correlation.

For subsequent data analysis, only the 48 samples that
were previously classified as ABC or GCB were used.

Figure 3. Scatter plots comparing each of the three data sets for a representative sample (FF Nugen versus FFPET Nugen, FF Eberwine versus FF Nugen, and
FF Eberwine versus FFPET Nugen) of all probeset signals generated by MAS 5.0 Affymetrix Software.
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The 11 samples called unclassified (U) were removed
from further analysis. Genes were selected that statisti-
cally (ie, t-test) best separate the 48 samples into their
known biological subgroup (ABC or GCB). It was ob-
served that these data from 10 ng of FF Ribo-SPIA sam-

ples generated a larger number of genes at each P value
level of false-discovery as compared with the 5 �g of FF
Eberwine data (Figure 4a). At a FDR of P � 0.05, 1428
genes met this significance for the FF Ribo-SPIA versus
656 genes from FF Eberwine data. The lower quality
FFPET RNA resulted in fewer genes detected overall and
therefore fewer at this FDR level; 289 genes.

When the top 100 significant genes from each of the
three datasets were compared for similarity, it was ob-
served that 25% of the genes shared identity between all
three datasets (Figure 4b; Supplemental Table 4 avail-
able at http://jmd.amjpathol.org).

Next the top 100 selected genes that discriminate ABC
from GCB, from each of the three datasets, were exam-
ined for biological function. The biological pathways rep-
resented by each list of genes were determined. It was
observed that 11 of 11 functional pathways identified
from the original Eberwine-based classifier were statisti-
cally significantly represented in each dataset’s gene
lists (Figure 5). Several of the pathways center around
NF-�B signaling, which is up-regulated in the ABC sub-
class, consistent with previous observations.24 This result

Figure 4. A: Results of t-tests and false discovery rates of the number of
genes that statistically separate GCB and ABC sample groups for each
dataset: FF Affy (ie, Eberwine), FF Nugen, and FFPET Nugen. B: Venn
diagram depicting the top 100 genes with smallest t-test values for each of the
three data sets.

Figure 5. Results of pathway analysis from Ingenuity IPA Software. The horizontal gold bar indicates the threshold of significance. The Signature pathways listed
in darkest blue come from the list of genes (published by Wright et al19) that separate ABC from GCB subgroups.

Table 2. Classification Accuracy

FF (Eberwine)

FF (Ribo SPIA)

ABC GCB Unclassified

ABC 20 0 1
GCB 0 25 2
Call rate 45/48 � 93.8%
Accuracy 45/45 � 100%
Confidence 91.7%–100%

FF (Eberwine)

FPET (Ribo SPIA)

ABC GCB Unclassified

ABC 20 0 1
GCB 1 23 3
Call rate 44/48 � 91.7%
Accuracy 43/44 � 97.7%
Confidence 90.8%–100%
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indicates that the underlying biological differences that
discriminate ABC from GCB are consistent with these
data even though the exact genes selected are not
identical.

To further assess these data for biological meaning,
the FF Ribo-SPIA samples were classified into the sub-
classes of ABC or GCB based on the updated Bayesian
model of classification (updated with data from Dave et
al23; see Table 119–23). The majority of the samples were
classified as either ABC or GCB (45 of 48). Three sam-
ples did not achieve the greater than 90% confidence
needed for an ABC/GCB call and were designated U,
yielding a call rate of 93.8%. It should be mentioned that
the three unclassified samples did trend toward the cor-
rect class but failed to meet the required confidence level
for classification (Tables 119–23 and 2). All 45 samples
classified were correctly classified, resulting in 100%
accuracy. These results as well as the pathway results
support the assertion that the underlying biology de-
tected in the FF samples is consistent across the two
methods, Eberwine and Ribo-SPIA.

The classification of the FFPET samples is shown in
Tables 119–23 and 2. These results show 4 the 48 sam-
ples are unclassified yielding a call rate of 91.7% (44 of
48 are classified). It is worth noting that of the 44 samples
classified only one sample was miscalled. This results in
an overall accuracy rate of 97.7%. This accuracy should
be considered in the context of the quality of the starting
material, RNA extracted from FFPET samples is known to
be highly degraded. It is also known that these FFPET
samples produced less robust gene expression data as
observed by percent present calls and the number of
genes selected with statistical significance for discrimi-
nating ABC from GCB. The fact that a classification
model based both on a different method (ie, Eberwine)
and different sample type (ie, FF sample) can accurately
classify the FFPET samples processed with the new Ribo-
SPIA method strongly supports the relevance of the un-
derlying biology in FFPET samples.

Discussion

We have described a new method for amplification and
labeling of total RNA for microarray analysis. This new
method, Ribo-SPIA, provides certain advantages over
the traditional Eberwine, oligo-dT based methods. The
new method permits very small quantities of FF input RNA
(10 ng FF compared with 1–5 �g required for Eberwine).
This opens up the potential to use such sample types as
fine needle biopsies and purified cell populations (from
either flow cytometry or laser capture microdissection).
Further, this new method is demonstrated to be amend-
able to poor quality degraded FFPET RNA. The input
requirement for FFPET RNA is 50 ng, which is well within
the amount of material obtained from routine 10-micron
sections of FFPET blocks.

These data indicate that this new method not only
allows for using less input RNA, but also suggests that
more data are produced from the microarrays. On aver-
age the Ribo-SPIA produced present calls of 55% using

10 ng input RNA. The traditional Eberwine method only
produced an average of 43% present calls from 5 �g of
the exact same FF samples. The cDNA targets generated
by the Ribo-SPIA method have been consistently dem-
onstrated to result in higher percentage calls on Af-
fymetrix GeneChip arrays than cRNA targets. This is true
with degraded RNA samples as well as high-quality com-
mercial RNA samples with no evidence of degradation.
The reason for this higher present call rate is the im-
proved hybridization specificity of cDNA targets on DNA
probe arrays versus cRNA targets. The present calls on
GeneChip arrays are influenced by the discrimination of
the mismatch probe versus the perfect match probe.
cRNA targets have been shown to produce lower perfect
match/mismatch discrimination scored than cDNA tar-
gets and therefore many elements are not called present
with cRNA targets despite having signals significantly
above the background. Several publications address this
observation including the publications by Barker et al25

and Eklund et al.26 More information is being gained from
less input RNA using this new method. This is supported
by the higher percent present calls and also the selection
of statistically significant genes that discriminate the two
biological subtypes of DLBCL (ABC and GCB). The Ribo-
SPIA method, when used with fresh-frozen RNA, pro-
duced more than twice as many genes meeting statistical
significance than did the Eberwine method.

It is important that the genes found using this new
method are demonstrated to reflect true biology ex-
pressed in the sample. The use of pathway analysis
demonstrates that the biological functions separating
ABC from GCB subtypes are identical across both meth-
ods and sample types (FF or FFPET). Further verification
that the new method permits analysis of proper biology is
provided by the classification results shown in Tables
119–23 and 2. An established Bayesian classifier built on
previous data produced by the Eberwine method accu-
rately classifies the samples processed with the new
method regardless if the sample type is FF or FFPET.

These results clearly support the biological validity of
data generated from each method (ie, traditional Eber-
wine or Ribo-SPIA) and sample type (ie, FF or FFPET).
The Ribo-SPIA FFPET method can be used to obtain
biologically relevant data from valuable archival FFPET
samples using microarray gene expression analysis and
thus significantly increase available clinical samples for
expression profiling studies.
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