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Prokaryotic genomes can be annotated based on their structural, operational, and functional properties. These anno-
tations provide the pivotal scaffold for understanding cellular functions on a genome-scale, such as metabolism and
transcriptional regulation. Here, we describe a systems approach to simultaneously determine the structural and oper-
ational annotation of the Geobacter sulfurreducens genome. Integration of proteomics, transcriptomics, RNA polymerase,
and sigma factor-binding information with deep-sequencing-based analysis of primary 59-end transcripts allowed for
a most precise annotation. The structural annotation is comprised of numerous previously undetected genes, noncoding
RNAs, prevalent leaderless mRNA transcripts, and antisense transcripts. When compared with other prokaryotes, we
found that the number of antisense transcripts reversely correlated with genome size. The operational annotation
consists of 1453 operons, 22% of which have multiple transcription start sites that use different RNA polymerase
holoenzymes. Several operons with multiple transcription start sites encoded genes with essential functions, giving
insight into the regulatory complexity of the genome. The experimentally determined structural and operational an-
notations can be combined with functional annotation, yielding a new three-level annotation that greatly expands our
understanding of prokaryotic genomes.

[Supplemental material is available online at http://www.genome.org. The microarray data from this study have been
submitted to the NCBI Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo) under accession nos. GSE17838 and
GSE22512.]

Genomes can be characterized at three different organizational

levels, resulting in structural, operational, and functional anno-

tations (Fig. 1). Structural genome annotation provides the foun-

dation for further operational and functional annotation and

consists of coding (open reading frames [ORFs]) and noncoding

genes, as well as intergenic regions. Elucidating the precise struc-

tural genome annotation subsequently allows decoding the oper-

ational genome annotation, which consists of operons and tran-

scriptional units. As a higher level of genome organization, the

operon structure is a key to decipher the flow of information en-

coded in the genome. A functional genome annotation assigns the

function of a gene and can be considered as a last step in the flow

of information from genotype to phenotype, as it describes the bio-

chemical properties of the gene products.

Precise annotation at the structural, operational, and func-

tional level solely by bioinformatics tools is not possible at present

(Kyrpides 2009). We thus developed a systems approach using

a combination of genome-wide omics methods to determine the

structural and operational genome organization of prokaryotic

genomes and applied them to Geobacter sulfurreducens. Since its

isolation over 15 yr ago, G. sulfurreducens has been studied inten-

sively, in part because of its impact on the natural environment

and its capability of harvesting electricity from waste organic

matter (Caccavo et al. 1994; Lovley et al. 2004). Validation and

elucidation of its structural and operational annotation by exper-

imental methods, however, is still missing.

Results

Structural annotation

To elucidate the structural genome annotation of the G. sulfur-

reducens genome, we first determined coding regions by combining

a proteogenomics (Jaffe et al. 2004) with a transcriptomics-based

approach. We applied liquid chromatography coupled to Fourier

transform ion cyclotron resonance mass spectrometry (LC-FTICR-

MS) and accurate mass and time tag (AMT tag) (Zimmer et al. 2006)

to validate predicted genes and determine translated genes on a

genome scale. A total of 28,701 unique peptides were obtained

from 12 different growth conditions. Mapping these peptides to the

genome sequence using a G. sulfurreducens’ genome translation

stop-to-stop database (Cho et al. 2009), a total of 2963 potential

open reading frames (pORFs) were determined (Supplemental Table

S1). A total of 2371 of these pORFs were present in the current an-

notation, accounting for 69% of all annotated ORFs (3446 total). To

verify transcription of pORFs, we applied a transcriptomics-based

approach using strand-specific high-density tilling microarrays to

identify all transcribed regions of the genome and unambiguously

determine antisense transcripts. To reduce cultivation-dependent

effects, transcription data were obtained from five different growth

conditions; this resulted in a cumulative coverage of transcripts

of >96% of the entire genome (Supplemental Table S2). The tran-

scriptomic profiles were subsequently integrated with proteomics-

derived data to verify potential ORFs. A total of 537 out of 592

pORFs not previously annotated were removed due to low peptide

coverage and weak support from transcription data, resulting in a to-

tal of 55 new ORFs that were missed by the current annotation of

the G. sulfurreducens genome (Methé et al. 2003). These new ORFs
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were consequently added to the revised structural genome anno-

tation. A total of 36 out of the 55 ORFs were found in intergenic

regions, whereas 19 ORFs were annotated in a different frame or

on the opposite strand (Fig. 2A). Additionally, we confirmed 241

ORFs that had previously been predicted as hypothetical proteins.

Compared with the current annotation, the proteogenomics ap-

proach resulted in ;9% of newly discovered and validated ORFs

(Table 1).

Next, we used the transcriptomic approach to identify new

genes that were not covered by proteomics. Typically, contiguous

transcriptomic data do not allow for identifying individual ORFs

directly and rely on computational methods to infer transcription

boundaries (Venkatraman and Olshen 2007). However, mecha-

nisms such as RNA degradation and RNA polymerase (RNAP) paus-

ing can lead to differential expression levels even within a single

ORF (Selinger et al. 2003; Bernstein et al. 2004; Kireeva and

Kashlev 2009). At the same time, deep-sequencing of transcripts

with processed 59 ends and cross-mapping of transcripts can also

affect data analysis, resulting in overestimation of ORFs ( Jäger

et al. 2009; de Hoon et al. 2010). We therefore integrated contig-

uous transcription profiles with promoter profiles derived from

RNAP binding regions (using rifampicin treatment to generate

a static binding map) (Cho et al. 2009) as well as RpoD (sigma70,

sigma factor D) and RpoN (sigma54, sigma factor N) binding re-

gions obtained by chromatin immunoprecipitation with micro-

array hybridization (ChIP-chip). The reasoning is that RNAP ho-

loenzyme initiates transcription at the promoter region, and

determination of the RNAP holoenzyme components (RNAP and

the two sigma factors) therefore allows segregating contiguous

transcripts into transcription segments. In addition, we experi-

mentally determined the transcription start sites (TSSs) of primary

mRNAs genome-wide to support the promoter profiling approach.

This TSS determination with single-base-pair resolution was ac-

complished by applying a recently described 59-RACE method

(Cho et al. 2009) that had been modified so that only mRNAs with

triphosphate 59 end were considered.

Figure 1. Overview of systems approach to determine structural, op-
erational, and functional genome annotation. Data sets include genome
sequence, transcription profiles, peptide reads, RNA polymerase (RNAP),
sigma factor binding profiles, transcription start site (TSS) reads, as well as
literature data (L), experimental data (E), bioinformatic data (B), and
structural information (S).

Figure 2. Experimental elucidation of the structural genome annotation. (A) Determination of new open reading frames, ORFs, (orange arrows) by
proteogenomics compared with current annotation (gray arrows). Peptide reads (brown bars) were mapped onto the genome sequence. Strand-specific
transcription data (green), binding of RNA polymerase (RNAP) (red), and single-base pair resolution TSS data were used for confirmation. (B) New ORFs
(orange arrow) determined by transcriptomic data (green), RNAP binding (red), sigma D binding (blue), and TSS reads. (C ) Examples of sRNAs (orange
arrows) determined by transcription profiling (green), RNAP (red) and sigma D binding profiles (blue), and TSS reads. Secondary structures confirmed
sRNA models (TPP and T-Box) predicted by computational methods (brown).
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The integration of high-resolution strand-specific transcrip-

tomic data and genome-wide promoter profiles with TSS data

resulted in RNAP-guided transcription segments (Cho et al. 2009).

A total of 753 and 700 RNAP-guided transcription segments (RTSs)

were determined on the forward and reverse strand, respectively

(Fig. 2B; Supplemental Table S2). These RTSs had an average length

of 2518 base pairs and contained 2.2 genes on average. Beside ev-

idence for transcription, 96% of these transcription segments

contained additional information of either RNAP binding, sigma

factor binding, or TSS, and over 85% of RTS contained at least two

of these additional experimental evidences. Analysis of RNAP-

guided transcription segments (RTS) resulted in 111 new experi-

mentally verified transcripts (;8% of all RTS) that were not present

in the current annotation (Fig. 2B; Supplemental Table S2). The

average length of these new transcription segments was 580 bp.

The majority of them (;70%) represent antisense transcripts. A

subset of those was validated by Northern blot. Furthermore, we

corrected 70 ORFs in the current annotation that had predicted

translation starts upstream of experimentally validated TSSs (Table

1; Supplemental Fig. S1).

Noncoding genes

Bacterial genomes contain large numbers of noncoding genes such

as rRNA, tRNA, and small RNA genes (sRNAs). Computational

methods allow for annotation of highly conserved rRNAs and

tRNAs; sRNAs, however, have traditionally been difficult to an-

notate precisely because of their size (50–300 nt) and are therefore

often underestimated in annotations (Zhang et al. 2004). Numer-

ous new sRNAs have recently been predicted computationally us-

ing genome and metagenome sequences (Livny et al. 2008; Shi

et al. 2009), and experimental methods to determine their func-

tions have just been reported (Hobbs et al. 2010). Here, we applied

a computational prediction (Nawrocki et al. 2009) to predict

noncoding RNAs (E-value # 0.001), including putative sRNAs

(psRNAs) in the G. sulfurreducens genome (Supplemental Table S3).

These predictions were consequently mapped to our RNAP-guided

transcription segments. By doing so, we experimentally validated

all eight rRNAs, 49 tRNAs, as well as tmRNA and RNase P in G.

sulfurreducens. Moreover, we identified 34 sRNAs out of 271 com-

putationally predicted psRNAs that had previously not been an-

notated and were transcribed under our experimental conditions.

Most of these sRNAs (33) were identified in intergenic regions;

only one represented an antisense sRNA (Fig. 2C). A large fraction

(16 of 34) of sRNAs contained a GEMM motif (genes for the en-

vironment, for membranes, and for motility), widespread in

members of the delta-proteobacteria such as G. sulfurreducens

(Weinberg et al. 2007). None of these sRNAs were part of the 111

new RNAP-guided transcription segments identified. All six sRNAs

that were randomly chosen for further validation were confirmed

by Northern blot (Supplemental Fig. S2), suggesting that the large

majority presents bona fide sRNAs. Most sRNAs were expressed

under a variety of growth conditions, while others showed differ-

ential expression, e.g., expression of GSS0019 was down-regulated

3.5-fold under molecular nitrogen fixing conditions (Supplemen-

tal Table S4).

Overall, our experimental approach resulted in an improved

structural genome annotation that contained 270 new genes, 34 of

them sRNAs and 70 that have been corrected, representing around

8% of the genome (Table 1; Supplemental Table S5). Furthermore,

361 hypothetical proteins were confirmed by either peptide or

transcription evidence, overall an increase of more than 18% over

current knowledge. However, this percentage is likely to increase

further if technological challenges will be overcome in the future,

given the fact that the coverage of proteomics data was only 69%

and correction of the ORF start codon position could only be ac-

complished for the first gene within a transcript with an experi-

mentally determined TSS. No information was obtained for 254

out of 3446 genes in the current annotation by the combined

proteogenomics and transcriptomic approach.

Structural complexity

The large number of antisense transcripts in the G. sulfurreducens

genome with one antisense gene per every 18 genes (5.6%) was

unexpected. This number is substantially higher than for Escherichia

coli (2.4%) (Cho et al. 2009), Bacillus subtilis (3.7%) (Rasmussen et al.

2009), and Vibrio cholera (4.5%) (Liu et al. 2009), but significantly

smaller than what has recently been reported for the Archaea

Sulfolobus solfatarius (6.8%) (Wurtzel et al. 2010), Halobacterium

salinarum (8.1%) (Koide et al. 2009), and the genome-reduced

bacterium Mycoplasma pneumoniae (12.1%) (Fig. 3; Guell et al. 2009).

Figure 3. Percentage of antisense transcripts per genome. Experi-
mentally determined number of antisense transcripts in Archaea (Koide
et al. 2009; Wurtzel et al. 2010) and Bacteria (Cho et al. 2009; Guell et al.
2009; Liu et al. 2009; Rasmussen et al. 2009; this study) correlated with
genome size (open circles). Percentage of antisense transcripts in a ge-
nome-reduced E. coli strain (Posfai et al. 2006) is shown as a gray circle.
Number of antisense transcripts per genes detected (i.e., experimental
coverage) was extrapolated to whole genomes.

Table 1. Experimentally derived structural and operational
annotation of the Geobacter sulfurreducens genome

ORFs 3487 (3446)
New 55
Corrected 70

tRNAs 49 (49)
rRNAs 6 (6)
sRNAs 36 (2)
New transcripts 111
RNAP binding sites 1166
RpoD binding sites 1135
RpoN binding sites 274
TSS 1374
Operons 1453a

Monocistronic 720
Polycistronic 733

Leaderless mRNAs 52

Numbers in parentheses are based on current annotation (Methé et al.
2003). ORF, open reading frame; RNAP, RNA polymerase; RpoD and
RpoN, sigma factor D and sigma factor N; TSS, transcription start site.
aA total of 1063 operons had TSSs assigned.
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Why the number of antisense transcripts varies between different

prokaryotic genomes has so far not been addressed conclusively. We

found that the percent of experimentally verified antisense tran-

scripts in these bacteria and archaea reversely correlates with the

genome size and number of genes (Fig. 3). One can hypothesize that

the reduction in genome size leads to an increase in antisense tran-

scripts, thus countering to a certain degree the loss of genome com-

plexity. If this correlation is universal for prokaryotes it might have

implications for generating organisms with reduced genomes (Fig. 3;

Posfai et al. 2006) and for the design of synthetic microorganisms.

Operational annotation

A validated operational genome annotation of G. sulfurreducens is

currently unavailable. Here, we experimentally determined pro-

moter regions, TSSs, ORFs, regulatory noncoding regions, and

untranslated regions (UTRs) (Supplemental Table S2). A total of

1374 TSSs were determined (Fig. 4A; Supplemental Table S2) and

mapped to the overall 1453 RNAP-guided transcription segments

(i.e., operons). Over 73% (1063) of all operons had a TSS assigned

to them. Most operons had a single TSS associated, whereas 237

operons (22%) contained multiple TSSs (Fig. 4A; Supplemental

Table S2), thus resulting in an increase in transcriptome complexity

by usage of alternative transcripts (Cho et al. 2009). A large fraction

of operons with multiple TSSs encoded genes with essential func-

tions, e.g., genes involved in amino acid biosynthesis, central

metabolism, gluconeogenesis, and electron transport (Supplemental

Tables S2, S5). Several of these genes, such as NADH dehydrogenase,

helicase, and genes involved in amino acid biosynthesis and cen-

tral metabolism had both RpoD- and RpoN-dependent promoters

associated (Supplemental Table S2). The use of different holoen-

zymes (Es70 and Es54) for these essential genes might guarantee

constant expression levels under different conditions through

regulatory mechanisms. This hypothesis is fortified by expression

data that show steady expression levels for these genes under all

conditions.

Leaderless mRNA transcripts

In addition, we investigated the 59 UTR length of ORFs in G. sul-

furreducens. The median length of the 59-UTR region was 37 bp, with

no preferences to functional categories (Supplemental Fig. S3),

similar to what had recently been described for E. coli (Cho et al.

2009) but opposite to reports for yeast (David et al. 2006), hinting at

a nondistinctive regulatory function of 59 UTRs in bacteria. A total

of 52 operons were identified that had no 59 UTR (UTR length #

5 bp), suggesting the formation of leaderless mRNAs for these op-

erons (Fig. 4B; Supplemental Table S6; Moll et al. 2002). Two of the

52 potential leaderless mRNAs were confirmed by matching peptide

data upstream of the next possible translation start codon (Fig. 4B).

The potential leaderless mRNAs were encoding proteins of various

functions (Supplemental Table S6). Whereas translation initiation

using leaderless mRNA seems a more common feature in Archaea,

e.g., in Halobacterium salinarum and Sulfolobus solfatarius (Hering

et al. 2009; Wurtzel et al. 2010), it is still considered a rare exception

in bacteria (Laursen et al. 2005). The large number of potential

leaderless mRNAs in a Gram-negative bacterium is unprecedented

and precedes the number of leaderless mRNAs in bacteria known so

far (;40) (Laursen et al. 2005). Very recently, a total of 34 leaderless

mRNAs were reported in the human pathogen Helicobacter pylori

(Sharma et al. 2010), suggesting that leaderless mRNA are much

more widespread in bacteria than previously thought.

Operational complexity

G. sulfurreducens not only contains more genes per operon (2.2)

than E. coli (1.4), it also has less operons with multiple TSSs (22%

Figure 4. Experimental elucidation of the operational genome annotation. (A) Multiple data sets were mapped strand specifically onto experimentally
determined structural annotation (gray arrows). Data included peptide reads (data not shown), transcription profiles (green), RNA polymerase binding
(red), sigma D binding (blue), and transcription start site reads. Integration of these data sets resulted in genome-wide operon structure (red arrows) with
single base pair resolution start site information. (B) Identification of leaderless mRNAs. Position of the TSS matched the start codon (SC). Peptide reads
(brown bars) between the TSS and the next possible SC in frame confirmed leaderless mRNA.
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compared with 35% in E. coli) (Cho et al. 2009), suggesting a sim-

pler transcriptional regulatory network (TRN) and reduced opera-

tional genome complexity. Recently, genome-wide elucidation of

TSSs in the methanogenic archaeon Methanosarcina mazei revealed

that only a small fraction of operons (;6%) (Jäger et al. 2009; RA

Schmitz, D Jäger, pers. comm.) contained multiple TSSs. One can

hypothesize that the genome complexity at the operational level

reflects on the organism’s lifestyle. A more generalist species

(E. coli) has to adjust to a variety of environmental cues requiring

a complex TRN. Specialists such as G. sulfurreducens, and even more

so, M. mazei, can be successful with a less complex TRN by thriving

in a narrower range of environments. The operational genome

complexity may therefore be modulated to adjust to complex

lifestyles by increasing the number of operons with multiple TSSs.

Discussion
An accurate genome annotation on all three organizational levels,

structural, operational, and functional, is paramount for studies in

the post-genome era. It provides the framework for a wide variety

of genome-wide applications such as metabolic engineering, as

well as metabolic and transcription regulatory network reconstruc-

tions (Feist and Palsson 2008). The majority of prokaryotic genomes,

however, are annotated using error-prone computational methods

(Kyrpides 2009). Only recently, studies exploring transcriptome

complexity by next-generation sequencing technologies or high-

density tiling array techniques revealed a much more complex pic-

ture than what was previously expected based on in silico tools

(Sorek and Cossart 2010). However, a comprehensive elucidation of

multiple genome annotations at three organizational levels has not

been archived by experimental methods. It is expected that by

making experimentally validated annotations available for multiple

organisms, we will be able to gain insights into the governing con-

straints of complexity at these different levels.

To address this need, we first used a proteogenomic approach

to validate ORF predictions, discover previously unannotated genes,

and correct annotation errors. Using proteomics data from 12 dif-

ferent growth conditions we identified 55 new ORFs and verified the

translation of 241 hypothetical proteins (Table 1). Since the pro-

teogenomic analysis directly verifies and corrects annotations at the

translation level, it is critical to define protein-coding ORFs. Al-

though the predicted proteome is fairly accurate, it is known that N

terminus prediction can be quite erroneous due to the prediction

bias of the algorithms toward large ORFs (Armengaud 2009). Even

though we achieved relatively high proteome coverage (69% of the

theoretical proteome), relatively low sequence coverage for most

proteins makes it difficult to accurately determine the N terminus by

proteomics data alone. In the future, proteins of low abundance

might be specifically targeted to improve the proteome coverage.

Also, N-terminal-oriented proteomic approaches (Armengaud 2009)

could be applied to accurately determine translation start positions.

This would help to address several biological questions, such as

N-terminal modification, usage of uncommon start codons, and

59 UTR determination. Even without an N-terminal-oriented pro-

teomics approach, the combination of proteomics and tran-

scriptomics results presented here enabled the correction of a large

number of translation start sites. Furthermore, this combination

allowed identification of several key features of the structural anno-

tation, such as sRNAs and novel transcripts in the genome (Table 1).

To elucidate the operational annotation, we integrated data

from three experimental approaches: ChIP-chip-based binding

profiles of RNAP or sigma factors, tiling-array-based expression

profiles, and deep-sequencing-based TSS determination. Although

these three approaches can be used independently to determine

levels of the transcriptional architecture (Mooney et al. 2009;

Sorek and Cossart 2010), certain limits exist. For instance, the bind-

ing profiles of RNAP and sigma factors can be used to determine

promoter regions (Mooney et al. 2009), but this method has rela-

tively low resolution (hundreds of base pairs) and might fail to

detect weak promoters. The tiling-array-based method is applied to

determine transcript boundaries (i.e., operons or transcription

units) by detecting ‘‘change points’’ in the transcription abundance

map (Bonneau et al. 2007). However, the detected transcription

level inside an operon may not be uniform; thus, results in false

positives and some ‘‘change points’’ might as well be the result of

RNA functional decay (Bernstein et al. 2004). Furthermore, com-

plex transcription architectures like internal promoters may not

be determined using datasets from a limited number of conditions.

Our integrated approach used data from all three platforms to-

gether, and therefore generated an accurate operational annota-

tion of G. sulfurreducens by cross-validating findings. Moreover,

instead of inferring complex operon structures from large num-

bers of experiments, this approach allowed us to elucidate operon

structures with data from only a few growth conditions. This in-

tegrated approach covered >90% of predicted genes using data

from only five different growth conditions. Growth conditions

were chosen (e.g., nitrogen fixation and growth on electrode) to

represent a most diverse set of life styles, allowing transcription of

a large percentage of the genome (96%). Iterative integration of

these five data sets showed that the coverage starts to flatten after

already three rounds of iteration (Supplemental Fig. S4). Data from

additional growth conditions might further increase coverage, but

this increase will be subtle. Dozens and even hundreds of condi-

tions may be surveyed before complete coverage can be achieved.

Applying next-generation sequencing technology could slightly

increase the resolution of the transcription data, but a similar

number of conditions will be needed for full coverage.

The structural genome organization of prokaryotes seems to

be tailored to compensate for genome reduction by increasing the

number of antisense transcripts. What kinds of genes are tran-

scribed in antisense and how these antisense transcripts influence

transcription and potential translation efficiency is currently un-

der investigation. However, these possible constraints resulting

from structural genome complexity can be offset by an increased

operational genome complexity, i.e., multiple TSSs per operon.

These different TSSs can be utilized by different holoenzymes. On

one hand, this can increase the regulatory flexibility; on the other

hand, it can lead to a more robust TRN, allowing for constant gene

expression of essential genes under a variety of conditions, as

demonstrated here. We also found several antisense TSSs similar to

what recently has been described for Helciobacter pylori (Sharma

et al. 2010). However, the vast majority of our antisense TSSs were

not supported by any other additional evidence, such as RNAP

or sigma factor binding as well as expression data, and were

therefore removed from our data set. In this manner, structural and

operational genome annotations can help to decipher genome

complexity on levels beyond sequence information in prokaryotic

genomes. When experimentally derived functional genome an-

notation is added, a new three-level annotation for prokaryotic

genomes emerges. Such multiscale annotation will greatly increase

our understanding of genome function of the target organisms and

is likely to lay the foundation for a new era in comparative geno-

mics that in turn will help elucidate fundamental constraints and

features of genome design.
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Methods

Bacterial strains, medium, and growth conditions
G. sulfurreducens (ATCC 51573) was grown under strictly anoxic
conditions at 30°C in mineral salt medium as previously described
(Lovley et al. 1993; Shelobolina et al. 2008), with acetate as elec-
tron donor and fumarate or ferric citrate as electron acceptor. For
growth in the absence of fixed inorganic nitrogen, ammonium
chloride was omitted from the medium and N2 was the only N
source. Cells in microbial fuel cells were grown as described pre-
viously (Nevin et al. 2008).

Transcriptome analysis

Cells were harvested in mid-log phase, and total RNA was extracted
with TRIzol reagent (Invitrogen). Removal of residual DNA was
performed with the RNeasy Mini kit (Qiagen). Although the
RNeasy Mini column has less binding affinity for RNAs smaller than
200 bp, it does not completely remove sRNAs (Y Qiu, unpubl.). A
total of 10 mg of purified total RNA sample was reverse transcribed to
cDNA with amino-allyl dUTP. The amino-allyl-labeled cDNA sam-
ples were then coupled with Cy3 monoreactive dyes (Amersham).
Cy3-labeled cDNAs were fragmented to a 50;300-bp range with
DNase I (Epicentre). High-density oligonucleotide tiling arrays
consisting of 381,174 50-mer probes spaced 20-bp apart across the
whole G. sulfurreducens genome were used (Roche NimbleGen).
Hybridization, wash, and scan were performed according to the
manufacturer’s instructions. Three biological replicates were utilized
for each growth condition. Probe level data were normalized with
RMA (robust multi-array analysis) algorithm (Irizarry et al. 2003)
without background correction, as implemented in NimbleScan 2.4
software.

ChIP-chip

A ChIP-chip protocol previously described (Cho et al. 2008a,b) was
adapted for G. sulfurreducens. Genome-wide binding sites for RNA
polymerase (RNAP), RpoD, and RpoN were determined for cells
grown to mid-log phase in triplicates under various conditions.
Prior to microarray hybridization, real-time quantitative PCR tar-
geting previously known binding regions were carried out to verify
enrichment of IP DNA fragments. qPCR and amplification of DNA
was performed as previously described (Cho et al. 2008b). Micro-
array hybridization, wash, and scan were performed in accordance
with manufacturer’s instruction (Roche NimbleGen).

Transcription start site determination

Total RNA samples were isolated as described above. RNA with a
59-monophosphate end was removed with Terminator 59-phosphate-
dependent exonuclease (Epicentre). The 59-triphosphate end of pri-
mary RNA was then converted to a 59-monophosphate end with RNA
59 polyphosphatase (Epicentre). 59-RNA adapter (59-GUUCAGAGAG
UUCUACAGUCCGACGAUC) was ligated to the 59 end of mRNA.
cDNAs were then synthesized from the adapter-ligated mRNA using
39-adapter (59-CAAGCAGAAGACGGCATACGANNNNNNNNN). A
fraction of the cDNA between 100 and 300 bp was then gel purified.
The cDNA samples were amplified with primer mix (59-CAAGCAGA
AGACGGCATACGA and 59-AATGATACGGCGACCACCGACAGGT
TCAGAGTTCTACAGTCCGA). The final amplified DNA libraries
were sequenced on an Illumina Genome Analyzer. The data were
then aligned onto the G. sulfurreducens PCA genome (NC_002939)
using Mosaik Aligner (http://bioinformatics.bc.edu/marthlab/Mosaik).
Only reads that aligned to only one genomic location and had at least

three counts were retained. The genomic coordinate of the 59 end
of these uniquely aligned reads were defined as potential TSSs.

Predicting potential ORFs (pORFs) with proteomics data

Proteomics data using cells grown under various conditions by
using LC-FTICR mass spectrometry were obtained, and pORF pre-
dictions were performed as described previously (Lipton et al.
2002; Cho et al. 2009).

Identification of RNAP and sigma factor binding regions

Binding regions of RNAP, RpoD, and RpoN were determined as
described before (Cho et al. 2009). All RNAP, RpoD, and RpoN
binding regions were then combined together to define potential
binding regions of RNAP.

Determination of RNAP-guided transcript segments

We used ‘‘Transcription Detector’’ algorithm (TD) (Halasz et al.
2006) to determine probes expressed above background as described
before (Cho et al. 2009). Genome-wide summary of piecewise con-
stant expression segments (i.e., RNAP-guided transcript segments
[RTSs]) were obtained by assembling the expressed probes between
two RNAP binding regions and then assigning genomic coordinates
of first/last expressed probes to start/end genomic coordinates of
each assembled region, respectively. Potential TSSs determined
previously were then mapped onto the 59 end of RTSs. Multiple TSSs
were determined if a TSS had no less than 60% counts compared
with the TSS with the highest count of the same RTS. At least two
experimental evidences (RNAP binding, sigma factor binding, TSS,
or transcription change point, which was determined by the cbs
package in R) (Venkatraman and Olshen 2007) were required to
break a continuously transcribed region to smaller RTSs.

59 UTR calculation and start codon adjustment

The 59 UTR was calculated from each TSS to the start codon of the
first gene in the RTS. If a TSS is downstream from the annotated
start codon of the first gene results in negative 59 UTR, the gene
was shortened to a new start codon (in frame) that is the most
upstream one after the TSS (Supplemental Fig. S1).

Identification of potential sRNA

Potential small RNAs (psRNAs) in G. sulfurreducens were predicted
with Infernal (http://infernal.janelia.org) (Nawrocki et al. 2009).
Rfam 9.1 was used as model for the prediction. Hits with E-value <

0.001 were mapped to RTSs previously identified, and hits located
inside RTSs were considered psRNAs.

Northern blot

RNA samples (10 mg) were denatured for 5 min at 70°C in Novex
TBE-urea sample buffer (Invitrogen), resolved by 6% TBE-urea gel
(Invitrogen), and transferred to positively charged nylon mem-
branes by electroblotting. The membranes were hybridized with 59

biotin-modified oligonucleotides in ULTRAhyb buffer (Ambion).
The target RNAs were visualized using the BrightStar BioDetect Kit
for biotinylated nucleic acid detection system (Ambion) according
to the procedure specified by the manufacturer. As an RNA size
marker in denaturing gel electrophoresis, RNA Century-Plus
marker (Ambion) was introduced and labeled with biotin by using
the BrightStar Psoralen-Biotin Kit (Ambion). Primer sequences
used in this study are available on request.
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Data visualization and availability

Experimental data as well as annotated features were formatted into
gff or wig file format (http://www.genome.ucsc.edu/FAQ/FAQformat.
html) and visualized in either SignalMap (Roche NimbleGen) or
The Integrated Genome Browser (IGB, http://www.bioviz.org).
Raw microarray data sets have been submitted to the NCBI Gene
Expression Omnibus (GEO) database (http://www.ncbi.nlm.nih.
gov/geo/) under accession numbers GSE17838 and GSE22512.
Processed experimental data and annotation features identified in
this study are available at http://www.gcrg.ucsd.edu. We also pro-
vided these data as Supplemental Data set 1, which can be used for
visualization in IGB (see Supplemental Method).
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in response to nitrogen availability. Proc Natl Acad Sci 106: 21878–
21882.

Kireeva ML, Kashlev M. 2009. Mechanism of sequence-specific pausing
of bacterial RNA polymerase. Proc Natl Acad Sci 106: 8900–8905.

Koide T, Reiss DJ, Bare JC, Pang WL, Facciotti MT, Schmid AK, Pan M,
Marzolf B, Van PT, Lo FY, et al. 2009. Prevalence of transcription
promoters within archaeal operons and coding sequences. Mol Syst Biol
5: 285. doi: 10.1038/msb.2009.42.

Kyrpides NC. 2009. Fifteen years of microbial genomics: Meeting the
challenges and fulfilling the dream. Nat Biotechnol 27: 627–632.

Laursen BS, Sørensen HP, Mortensen KK, Sperling-Petersen HU. 2005.
Initiation of protein synthesis in bacteria. Microbiol Mol Biol Rev 69:
101–123.

Lipton MS, Pasa-Tolic L, Anderson GA, Anderson DJ, Auberry DL, Battista JR,
Daly MJ, Fredrickson J, Hixson KK, Kostandarithes H, et al. 2002. Global
analysis of the Deinococcus radiodurans proteome by using accurate mass
tags. Proc Natl Acad Sci 99: 11049–11054.

Liu JM, Livny J, Lawrence MS, Kimball MD, Waldor MK, Camilli A. 2009.
Experimental discovery of sRNAs in Vibrio cholerae by direct cloning,
5S/tRNA depletion and parallel sequencing. Nucleic Acids Res 37: e46.
doi: 10.1093/nar/gkp080.

Livny J, Teonadi H, Livny M, Waldor MK. 2008. High-throughput, kingdom-
wide prediction and annotation of bacterial non-coding RNAs. PLoS
ONE 3: e3197. doi: 10.1371/journal.pone.0003197.

Lovley DR, Giovannoni SJ, White DC, Champine JE, Phillips EJ, Gorby YA,
Goodwin S. 1993. Geobacter metallireducens gen. nov. sp. nov.,
a microorganism capable of coupling the complete oxidation of organic
compounds to the reduction of iron and other metals. Arch Microbiol
159: 336–344.

Lovley DR, Holmes DE, Nevin KP. 2004. Dissimilatory Fe(III) and Mn(IV)
reduction. Adv Microb Physiol 49: 219–286.
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