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Abstract
We study the Cox models with semiparametric relative risk, which can be partially linear with one
nonparametric component, or multiple additive or nonadditive nonparametric components. A
penalized partial likelihood procedure is proposed to simultaneously estimate the parameters and
select variables for both the parametric and the nonparametric parts. Two penalties are applied
sequentially. The first penalty, governing the smoothness of the multivariate nonlinear covariate
effect function, provides a smoothing spline ANOVA framework that is exploited to derive an
empirical model selection tool for the nonparametric part. The second penalty, either the smoothly-
clipped-absolute-deviation (SCAD) penalty or the adaptive LASSO penalty, achieves variable
selection in the parametric part. We show that the resulting estimator of the parametric part possesses
the oracle property, and that the estimator of the nonparametric part achieves the optimal rate of
convergence. The proposed procedures are shown to work well in simulation experiments, and then
applied to a real data example on sexually transmitted diseases.
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1. Introduction
In survival analysis, a problem of interest is to identify relevant risk factors and evaluate their
contributions to survival time. Cox proportional hazards (PH) model is a popular approach to
study the influence of covariates on survival outcome. Conventional PH models assume that
covariates have a log-linear effect on the hazard function. These PH models have been studied
by numerous authors; see, e.g., the references in [15]. The log-linear assumption can be too
rigid in practice, especially when continuous covariates are present. This limitation motivates
PH models with nonparametric relative risk. Some examples are [6,11,12,23,35]. However,
nonparametric models may suffer from the curse of dimensionality. They also lack the easy
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interpretation in parametric risk models. PH models with semiparametric relative risk strike a
good balance by allowing nonparametric risk for some covariates and parametric risk for others.
The benefits of such models are two-folds. First, they have the merits of models with parametric
risk, including easy interpretation, easy estimation and easy inference. Second, their
nonparametric part allows a flexible form for some continuous covariates whose patterns are
unexplored and whose contribution cannot be assessed by simple parametric models. For
example, [10] proposed efficient estimation for a partially linear Cox model with additive
nonlinear covariate effects. [3] studied partially linear hazard regression for multivariate
survival data with time-dependent covariates via a profile pseudo-partial likelihood approach,
where the only nonlinear covariate effect was estimated by local polynomials. But these models
are limited to one nonparametric component or additive nonparametric components, ignoring
the possible interactions between different nonparametric components. [30] proposed a
partially linear additive hazard model whose nonlinear varying coefficients represent the
interaction between the time-dependent nonlinear covariate and other covariates.

Variable selection in survival data has drawn much attention in the past decade. Traditional
procedures such as Akaike information criterion (AIC) and Bayesian information criterion
(BIC), as noted by [2], suffer from the lack of stability and lack of incorporating stochastic
errors inherited in the stage of variable selection. [26] and [32] extended respectively the
LASSO and the adaptive LASSO variable selection procedures to the Cox model. [8] extended
the nonconcave penalized likelihood approach ([7]) to the Cox PH models. [4] studied variable
selection for multivariate survival data. The Cox models considered in these three papers all
assumed a linear form of covariate effects in the relative risk. More recently, [13] and [14]
proposed procedures for selecting variables in semiparametric linear regression models for
censored data, where the dependence of response over covariates was also assumed to be of
linear form. Hence, the aforementioned variable selection procedures are limited in their rigid
assumption of parametric covariate effects which may not be realistic in practice. We will fill
in these gaps in three aspects: (i) our models are flexible with semiparametric relative risk,
which allows nonadditive nonparametric components, without limiting to single or additive
nonlinear covariate effects; and (ii) our approach can simultaneously estimate the parametric
coefficient vector and select contributing parametric components; and (iii) our approach also
provides a model selection tool for the nonparametric components.

Let the hazard function for a subject be

(1.1)

where h0 is the unknown baseline hazard, ZT = (UT, WT) is the covariate vector, β is the unknown
coefficient vector, and η(w) = η(w1, … , wq) is an unknown multivariate smooth function. We
propose a doubly penalized profile partial likelihood approach for estimation, following the
general profile likelihood framework set up by [20]. Given β, η is estimated by smoothing
splines through the minimization of a penalized log partial likelihood. Then the smoothing
spline ANOVA decomposition not only allows the natural inclusion of interaction effects but
also provides the basis for deriving an empirical model selection tool. After substituting the
estimate of η, we obtain a profile partial likelihood, which is then penalized to get an estimate
of β. To achieve variable selection in β, we use the smoothly clipped absolute deviation (SCAD)
penalty. We show that our estimate of η achieves the optimal convergence rate, and our estimate
of β possesses the oracle property such that the true zero coefficients are automatically
estimated as zeros and the remaining coefficients are estimated as well as if the correct
submodel were known in advance. Our numerical studies reveal that the proposed method is
promising in both estimation and variable selection. We then apply it to a study on sexually
transmitted diseases with 877 subjects.
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The rest of the article is organized as follows. Section 2 gives the details of the proposed
method, in the order of model description and estimation procedure (§2.1), model selection in
the nonparametric part (§2.2), asymptotic properties (§2.3), and miscellaneous issues (§2.4)
like standard error estimates and smoothing parameter selection. Section 3 presents the
empirical studies, and Section 4 gives an application study. Remarks in Section 5 conclude the
article.

2. Method
Let T be the failure time and C be the right-censoring time. Assume that T and C are
conditionally independent given the covariate. The observable random variable is (X, Δ, Z),
where X = min(T, C), Δ = I[T≤C], and Z = (U, W) is the covariate vector with U ∈ ℝd and W
∈ ℝq. With n i.i.d. (Xi, Δi, Zi), i = 1, … , n, we assume a Cox model for the hazard function as
in (1.1).

2.1. Estimation and Variable selection for parametric parts
Let Yi(t) = I[Xi≥t]. We propose to estimate (β, η) through a penalized profile partial likelihood
approach. Given β, η is estimated as the minimizer of the penalized partial likelihood

(2.1)

where the summation is the negative log partial likelihood representing the goodness-of-fit, J
(η) is a roughness penalty specifying the smoothness of η, and λ > 0 is a smoothing parameter
controlling the tradeoff. A popular choice for J is the L2-penalty which yields tensor product
cubic splines (see, e.g., [9]) for multivariate W. Note that η in (2.1) is identifiable up to a
constant, so we use the constraint ∫ η = 0.

Once an estimate η ̂ of η is obtained, the estimator of β is then the maximizer of the penalized
profile partial likelihood

(2.2)

where pθj (| · |) is the SCAD penalty on β ([7]).

The detailed algorithm for our estimation procedure is as follows.

Step 1. Find a proper initial estimate β ̂(0). We note that, as long as the initial estimate is
reasonable, convergence to the true optimizer can be achieved. Difference choices of the
initial estimate will affect the number of iterations needed but not the convergence itself.

Step 2. Let β ̂(k−1) be the estimate of β before the kth iteration. Plug β ̂(k−1) into (2.1) and
solve for η by minimizing the penalized partial likelihood lβ ̂(k−1) (η). Let η ̂(k) be the estimate
thus obtained.

Step 3. Plug η ̂(k) into (2.2) and solve for β by maximizing the penalized profile partial
likelihood lη ̂(k)(β). Let β ̂(k) be the estimate thus obtained.

Step 4. Replace β ̂(k−1) in Step 2 by β ̂(k) and repeat Steps 2 and 3 until convergence to obtain
the final estimates β ̂ and η ̂.
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Our experience shows that the algorithm usually converges quickly within a few iterations. As
in the classical Cox proportional hazards model, the estimation of baseline hazard function is
of less interest and not required in our estimation procedure.

In Step 3, we use a one-step approximation to the SCAD penalty ([34]). It transforms the SCAD
penalty problem to a LASSO-type optimization, where the celebrated LARS algorithm
proposed in [5] can be used. Let lη ̂(β) be the profile log partial likelihood in Step 3, and I(β) =
−∇2lη ̂ (β) be the Hessian matrix, where the derivative is with respect to β treating η ̂ as fixed.
Compute the Cholesky decomposition of I (β ̂(k−1)) such that I (β ̂(k−1)) = VTV. Let

 and . Decompose V and the new estimate β ̂(k)

accordingly such that V = [VA, VB] and .

(Step 3a) Let y = Vβ̂(k−1). Then for each j ∈ B, replace the j-th column of V by setting

.

(Step 3b) Let  be the projection matrix to the column space of VA.
Compute y* = y − HAy and VB* = VB − HAVB.

(Step 3c) Apply the LARS algorithm to solve

(Step 3d) Compute  to obtain .

(Step 3e) For j ∈ A, set . For j ∈ B, set .

2.2. Model Selection for Nonparametric Component
While the SCAD penalty takes care of variable selection for the parametric components, we
still need an approach to assess the structure of the nonparametric components. In this section,
we will first transform the profile partial likelihood problem in (2.1) to a density estimation
problem with biased sampling, and then derive a model selection tool based on the Kullback-
Leibler geometry. In this part, we treat β as fixed, taking the value from the previous step in
the algorithm.

Let (i1, … , iN) be the indices for the failed subjects. Then the profile partial likelihood in (2.1)
for estimating η is

Consider the empirical measure  on the discrete domain Wn = {W1, … , Wn} such that

. Then  defines a density function on Wn. Let a1(·), … , aN

(·) be weight functions defined on the discrete domain Wn such that , p =
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1, … , N. Alternatively, one can think of ap’s as vectors of weights with length n. Then each
term in the profile partial likelihood, with the constant n ignored, becomes

. Thus, this resembles a density estimation problem with bias
introduced by the known weight function ap(·).

For two density estimates η1 and η2 in the above pseudo biased sampling density estimation
problem, define their Kullback-Leibler distance as

(2.3)

Let η0 be the true function. Suppose the estimation of η0 has been done in a space ℋ1, but in
fact η0 ∈ ℋ2 ⊂ ℋ1. Let η ̂ be the estimate of η0 in ℋ1. Let η̃ be the Kullback-Leibler projection
of η ̂ in ℋ2, that is, the minimizer of KL(η ̂, η) for η ∈ ℋ2, and ηc be the estimate from the
constant model. Set η = η̃ + α(η̃ − ηc) for α real. Differentiation KL(η ̂, η) with respect to α and
evaluating at α = 0, one has

which, through straightforward calculation, yields

Hence the ratio KL(η ̂, η̃)/KL(η ̂, ηc) can be used to diagnose the feasibility of a reduced model
η ∈ ℋ2: the smaller the ratio is, the more feasible the reduced model is.

2.3. Asymptotic Results
Denote by ℋm (W) the Sobolev space of functions on W whose mth order partial derivatives
are square integrable. Let

and η ̂* be the estimate of η0 in ℋ that minimizes the penalized partial likelihood

(2.4)

Note that ℋ is an infinite dimensional function space. Hence, in practice, the minimization of
(2.4) is usually performed in a data-adaptive finite dimensional space
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where NJ = {η ∈ ℋ, J(η) = 0} is the null space of J, and RJ is the reproducing kernel (see, e.g.,
[28]) in its complement space ℋJ = ℋ⊖NJ, and {Wi1, … , Wiqn} is a random subset of {Wi :
i = 1, … , n}. When qn = n, one selects all the Wi, i = 1, … , n as the knots. This is the number
of knots used in conventional smoothing splines. However, under the regression setting, [16]
showed that a qn of the order n2/(r+1)+ε, ∀ε > 0 is sufficient to yield an estimate with the optimal
convergence rate. Here r is a constant associated with the Sobolev space ℋ, e.g., r = 2m for
splines of order m (one-dimension w) and r = 2m − δ, ∀δ > 0 for tensor product splines (multi-
dimension w). We shall show that such an order for qn also works for the η estimation in our
partially linear Cox model.

Let  and sn[β, η](t) = sn (1; β, η)(t).
Define

For any functions f and g, define

(2.5)

Write V (f) ≡ V (f, f). Let η ̂ be the estimate that minimizes (2.4) in ℋn. Then we have

Theorem 2.1—Under Conditions A1-A7 in the Appendix,

This is the optimal convergence rate for estimate of a nonparametric function. In the view of
Lemma 6.1, this theorem also indicates the same convergence rate in terms of the L2-norm.
Also note that although a higher order of qn such as O(n) would yield the same convergence
rate for η ̂, it will make the function space ℋn too big to apply an entropy bound result that is
critical in the proof of Theorem 2.2.

Let , where

Let  be the true coefficient vector. Without loss of generality,
assume that β20 = 0. Let s be the number of nonzero components in β0. Define

, and
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Define π1 : ℝd+q → ℝs such that π1 (u, w) = u1, where u1 is the vector of the first s components
of u. Let V0(π1) be defined like V (π1) in (2.5) but with β replaced by β0.

Theorem 2.2—Under Conditions A1-A7 in the Appendix, if an = O(n−1/2), bn = o(1) and qn
= o(n1/2), then

i. There exists a local maximizer β̂ of ℒP (β) such that ||β ̂ − β0|| = Op(n−1/2).

ii. Further assume that for all 1 ≤ j ≤ d, θj = o(1), , and

With probability approaching one, the root-n consistent estimator β ̂ in (i) must satisfy
β ̂2 = 0 and

2.4. Miscellaneous Issues
In this section, we will propose the standard error estimates for both the parametric and the
nonparametric components, and discuss the selection of the smoothing parameters θ and λ.

2.4.1. Standard error estimates—Let lp(β) be the profile log partial likelihood in the last
iteration of Step 3 and

Then the standard errors for the nonzero coefficients of β ̂ are given by the sandwich formula

Sometimes the standard errors for zero coefficients are also of interest. A discussion of this
problem is in Section 5

In (2.1), η can be decomposed as η = η[0] + η[1] where η[0] lies in the null space of the penalty
J representing the lower order part and η[1] lies in the complement space representing the higher
order part. A Bayes model interprets (2.1) as a posterior likelihood when η[0] is assigned an
improper constant prior and η[1] is assigned a Gaussian prior with zero mean and certain
covariance matrix. The minimizer η ̂ of (2.1) then becomes the posterior mode. When the
minimization is carried out in a data-adaptive function space ℋn with basis functions ψ =
(ψ1, … , ψqn)T, we can write η ̂ = ψT ĉ. Then a quadratic approximation to (2.1) yields an
approximate posterior covariance matrix for c, which can be used to construct point-wise
confidence intervals for η.

2.4.2. Smoothing parameter selection—As shown in [33], the effective degrees of
freedom for l1-penalty model is well approximated by the number of nonzero coefficients. Note
that our SCAD procedure is implemented by a LASSO approximation at each step. Hence, if
we let Â be the set of nonzero coefficients, the AIC score for selecting θ in Step 3 is
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where |Â| is the cardinality of Â.

As illustrated in Section 2.2, the estimation of η in Step 2 can be cast as a density estimation
problem with biased sampling. Let KL(η0, η ̂λ) be the Kullback-Leibler distance, as defined in

(2.3), between the true “density”  and the estimate . An optimal λ
should minimize KL(η0, η ̂λ) or the relative Kullback-Leibler distance

(2.6)

The second term of (2.6) is directly computable from the estimate η ̂λ. But the first term needs
to be estimated. Let ψ be the vector of spline basis functions as in the previous subsection and
η = ψT c. Through a delete-one cross-validation approximation, a proxy for (2.6) can be derived
as

where P1 = I − 11T / N, Q = (ψ(Wi1), … , ψ(WiN)), and H matrix for minimizing (2.1) with
respect to the coefficient vector c. λ is chosen to minimize this score.

3. Numerical Studies
In the simulations, we generated failure times from the exponential hazard model with h(t|U,
W) = exp[UT β0 + η0(W)]. We used the same settings for the parametric component, which
consists of eight covariates Uj, j = 1, … , 8. The Uj’s were generated from a multivariate normal
distribution with zero mean and Cov(Uj, Uk) = 0:5|j−k|. The true coefficient vector was β0 =
(0:8; 0; 0; 1; 0; 0; 0:6; 0)T.

The theory in Section 2.3 gives the sufficient order for qn, the number of knots in our smoothing
spline estimation of η. In practice, [16] suggested qn = kn2/(2m+1) with k = 10 if the tensor
product splines of order m are used. Since we use tensor product cubic splines in all the
simulations below, our choice is qn = 10n2/5.

3.1. Variable Selection for Parametric Components
The nonparametric part had one covariate W generated from Uniform(0, 1). Two different η0
were used:

Note that both functions satisfies . Given U and W, the censoring times were
generated from exponential distributions such that the censoring rates are respectively 23%
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and 40%. Sample sizes n = 150 and 500 were considered. One thousand data replicates were
generated for each of the four combinations of η0 and n.

For a prediction procedure M and the estimator (β ̂M, η ̂M) yielded from the procedure, an
appropriate measure for the goodness-of-fit under Cox model with h0(t) ≡ 1 is the model error:
ME(β ̂M, η ̂M) = E[(exp(−UT β ̂M − η ̂M(W)) − exp(−UT β0 − η0(W)))2]. The relative model error
(RME) of M1 versus M2 is defined as the ratio ME(β ̂M1, η ̂M1)/ME(β ̂M2, η ̂M2). The procedure
M0 with complete oracle is used as our benchmark. In M0, (U1, U4, U7, W) are known to be
the only contributing covariates, the exact form of η0 is known, and the only parameters to be
estimated are the coefficients of U1, U4, U7. Note that M0 can be implemented only in
simulations, but is unrealistic in practice since neither the contributing covariates nor the form
of η0 would be known. We then compare the performance of the following four procedures,
including the proposed procedures, through their RMEs versus M0:

MA: procedure with partial oracle and misspecified parametric η0, that is, (U1, U4, U7,
W) are known to be the only contributing covariates but η0 is misspecified to be of the
parametric form η0(W) = βW W and βW is estimated together with the coefficients for
(U1, U4, U7);

MB: procedure with partial oracle and estimated η0, that is, (U1, U4, U7, W) are known to
be the only contributing covariates but the form of η0 is unknown, and η0 is estimated
together with the coefficients for (U1, U4, U7) by penalized profile partial likelihood;

MC: the proposed partial linear procedure with the SCAD penalty on β;

MD: the proposed partial linear procedure with the adaptive LASSO penalty on β.

Procedure MA has a mis-specified covariate effect. We intend to show that the estimation results
can be unsatisfactory if the semiparametric form of covariate effect is mistakenly specified as
parametric. Procedure MB is “partial oracle” and expected to have equal or better performance
than procedures MC and MD. Note, however, MB is unrealistic in practice since the contributing
covariates would not be known. MC and MD are two versions of the proposed partial linear
procedure with different penalties on β.

For each combination of η0 and n, we computed the following quantities out of the 1000 data
replicates: the median RMEs of the complete oracle procedure M0 versus the procedures MA
to MD, the average number of correctly selected nonzero coefficients (CC), the average number
of incorrectly selected nonzero coefficients (IC), the proportion of under-fit replicates that
excluded any nonzero coefficients, the proportion of correct-fit replicates that selected the exact
subset model, and the proportion over-fit replicates that included all three significant variables
and some noise variables. The results are summarized in Table 1. In general, a partial oracle
with misspecified parametric η0 (Procedure MA) has much inferior performance when
comparing with the other three procedures; the proposed procedure with the SCAD penalty
(Procedure MC) or the adaptive LASSO penalty (Procedure MD) is competitive to the partial
oracle with estimated η0 (Procedure MB); the SCAD penalty performs slightly better than the
adaptive LASSO penalty. Also, the proposed procedure generally performs as well as the
complete oracle. For Procedure MC, we also did some extra computation to evaluate the
proposed standard error estimate of β. In Table 2, SD is the median absolute deviation divided
by 0.6745 of the 1000 nonzero β ̂’s that can be regarded as the true standard error, SDm is the
median of the 1000 estimated SDs, and SDmad is the median absolute deviation of the 1000
estimated SDs divided by 0.6745. The standard errors were set to 0 for the coefficients
estimated as 0s. The results in Table 2 suggests a good performance of the proposed standard
error formula for β.
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To examine the estimation of η0, we computed the point-wise estimates at the grid w = (0, 1,
by = 0:01) for each data replicate. Then at each grid point, the mean, the 0.025 and the 0.975
quantiles of the 1000 estimates, together with the mean of the 1000 95% confidence intervals
were computed. The results are in Figure 1. The plots show satisfactory nonparametric fits and
standard error estimates.

3.2. Model Selection for Nonparametric Components
In this section, we present some simulations to evaluate the model selection tool for
nonparametric part introduced in Section 2.2. We used the SCAD penalty on the parametric
components in this section. Two covariates W1 and W2, independently generated from Uniform
(0, 1), were used. We considered two scenarios for the true model of the nonparametric part:
(i) nonparametric univariate model η0(W) = η01(W1) and (ii) nonparametric bivariate additive
model η0(W) = η01(W1) + η02(W2). For scenario (i), the data sets generated in the last section
were used, with W1 being the existing W covariate and W2 being an additional noise covariate.
The fitted model was nonparametric additive in W1 and W2. The ratios KL(η ̂, η̃)/KL(η ̂, ηc) for
the projections to the univariate models η0(W) = η01(W1) and η0(W) = η02(W2) were computed.
For scenario (ii), we considered two sample sizes n = 150 and 300. The true η0 was

where η0a and η0b are as defined in Section 3.1. The censoring times were generated from
exponential distributions such that the resulting censoring rates were respectively 25% and
39%. Note that both choices of η0 are additive in w1 and w2. The fitted model was the
nonparametric bivariate full model with both the main effects and the interaction. Then the
ratios KL(η ̂, η̃)/KL(η ̂, ηc) for the projections to the bivariate additive model and the two
univariate models were computed. In both scenarios, we claim a reduced model is feasible
when the corresponding ratio KL(η ̂, η̃)/KL(η ̂, ηc) < 0:05.

For each of the eight combinations of η0 and n, we simulated 1000 data replicates and computed
the proportions of replicates that produced the following results in the reduced model: selected
the main effect of W1, selected the main effect of W2, selected the interaction W1 : W2, under-
fitted the model by excluding at least one truly significant effect, correctly fitted the model by
reducing to the exact subset model, and over-fitted the model by including all the truly
significant effects and some irrelevant effects. These proportion results are summarized in
Table 3. It shows that the variable selection tool for the nonparametric component works very
well. The better performance appears to be associated with bigger sample sizes and lower
censoring rates.

4. Example
An example in [17] is a study on two sexually transmitted diseases: gonorrhea and chlamydia.
The purpose of the study was to identify factors that are related to time until reinfection by
gonorrhea or chlamydia given an initial infection of either disease. A sample of 877 individuals
with an initial diagnosis of gonorrhea or chlamydia were followed for reinfection. Recorded
for each individual were follow-up time, indicator of reinfection, demographic variables
including race (white or black, U1), marital status (divorced/separated, married, or single, U2
and U3), age at initial infection (W1), years of schooling (W2), and type of initial infection
(gonorrhea, chlamydia, or both, U4 and U5), behavior factors at the initial diagnosis including
number of partners in the last 30 days (U6), indicators of oral sex within past 12 months and
within past 30 days (U7 and U8), indicators of rectal sex within past 12 months and within past
30 days (U9 and U10), and condom use (always, sometimes, or never, U11 and U12), symptom
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variables at time of initial infection including presence of abdominal pain (U13), sign of
discharge (U14), sign of dysuria (U15), sign of itch (U16), sign of lesion (U17), sign of rash
(U18), and sign of lymph involvement (U19), and symptom variables at time of examination
including involvement vagina at exam (U20), discharge at exam (U21), and abnormal node at
exam (U22).

We used qn = 10 · 8772/5 = 151 knots in all the analysis below. We first considered the partial
linear Cox model

where η3(W3i) = η3(W1i, W2i) is the interaction term between W1 and W2. However, the
interaction term was found to be negligible with the ratio KL(η ̂, η̃)/KL(η ̂, ηc) = 0.003. Hence,
we took out this interaction term and refitted the model. In this model, neither W1 (age) nor
W2 (years of schooling) in the nonparametric component were found to be negligible, with the
ratios KL(η ̂, η̃)/KL(η ̂, ηc) equal to 0.633 for removing W1 and 0.259 for removing W2. Their
effects are plotted in Figure 2 together with the 95% point-wise confidence interval. We can
see that the hazard increased with age at both ends of the age domain (between age 13 and 20,
and between age 38 and 48) and stayed flat in the middle, and that the hazard decreased with
years of school from 6 years to 10 years but stayed flat afterwards. The fitted coefficients from
the proposed method with the SCAD penalty are in Table 4 together with their standard error
estimates. For comparisons, Table 4 also lists the fitted coefficients and standard errors for
three other models, namely the proposed semiparametric relative risk model with the adaptive
LASSO penalty, and the parametric relative risk models with the SCAD and the adaptive
LASSO penalties. We can see that the SCAD penalty yielded sparser models than the adaptive
LASSO penalty, and that both parametric models missed the age effect. Common factors
identified by all the four procedures to be associated with reinfection risk are marital status,
type of infection, oral sex behavior, condom use, sign of abdominal pain, sign of lymph
involvement and sign of discharge at exam.

5. Discussion
We have proposed a Cox PH model with semiparametric relative risk. The nonparametric part
of the risk is estimated by smoothing spline ANOVA model and model selection procedure
derived based on a Kullback-Leibler geometry. The parametric part of the risk is estimated by
penalized profile partial likelihood and variable selection achieved by choosing a nonconcave
penalty. Both theoretical and numerical studies show promising results for the proposed
method. An important question in using the method in practice is which covariate effects should
be treated as parametric. We suggest the following guideline for making choices. As a starting
point, the effects of all the continuous covariates are put in the nonparametric part and those
of the discrete covariates in the parametric part. If the estimation results show that some of the
continuous covariate effects can be described by certain parametric forms such as linear form,
then a new model can be fitted with those continuous covariate effects moved to the parametric
part. In this way, one can take full advantage of the flexible exploratory analysis provided by
the proposed method.

We thank a referee for raising the interesting question on the standard error estimates for the
coefficients estimated to be 0 in β ̂. [25] and [7] suggested to set these standard errors to 0s
based on the belief that those covariates with zero coefficient estimates are not important. This
is the approach adopted here. When such a belief is in doubt, nonzero standard errors are
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preferred even for coefficients estimated to be 0s. This problem has been addressed only in a
few papers. [22] looked at the problem for LASSO but it is based on a smooth approximation.
[24] presented a Bayesian approach and pointed out that no fully satisfactory frequentist
solution had been proposed so far, no matter LASSO or SCAD variable selection procedure is
considered. This problem presents an interesting challenge that we hope to address in some
future work.

Another choice of pθ (| · |) is the adaptive LASSO penalty ([31]). Our simulations in §3.1
indicates a similar performance when compared to the SCAD penalty. So we decided not to
present the details here.

Although our method is presented for time-independent covariates, a lengthier argument
modifying [23] can yield similar theoretical results for external time-dependent covariates
([15]). However, the implementation of such extension is more complicated and not pursued
here.

A recently proposed nonparametric component selection procedure in a penalized likelihood
framework is the COSSO method in [19] where the penalty switches from J(η) to J1/2(η).
Taking advantage of the smoothing spline ANOVA decomposition, the COSSO method does
model selection by applying a soft thresholding type operation to the function components. An
extension of COSSO to the Cox proportional hazards model with nonparametric relative risk
is available in [18]. Although a similar extension to our proportional hazards model with
semiparametric relative risk is of interest, it is not clear whether the theoretical properties of
the COSSO method such as the existence and the convergence rate of the COSSO estimator
can be transferred to the estimation of η under our semiparametric setting. Furthermore, the
dimension of the function space in COSSO is O(n), too big to allow an entropy bound that is
critical in deriving the asymptotic properties of β ̂.

6. Proofs

For z = (u, w), let pz(t) = exp(uT β+η0(w))q(t, u, w)/s[β, η0](t) and f̄t ≡ ∫ ∫ f(u, w)pz (t)dudw. Let
S̃(t, u, w) = E [Y(t) = 1∣U = u, W = w] = P(Y(t) = 1∣U = u, W = w) and q(t, u, w) = S̃(t, u, w)p
(u, w), where p(u, w) is the density function of (U, W). Let Ƶ = U × W be the domain of the
covariate Z = (UT, WT)T. We need the following conditions.

A1. The true coefficient β0 is an interior point of a bounded subset of ℝd.

A2. The domain Ƶ of covariate is a compact set in ℝd+q.

A3. Failure time T and censoring time C are conditionally independent given the covariate
Z.

A4. Assume the observations are in a finite time interval [0, τ ]. Assume that the baseline
hazard function h0(t) is bounded away from zero and infinity.

A5. Assume that there exist constants k2 > k1 > 0 such that k1 < q(t, u, w) < k2 and

.

A6. Assume the true function η0 ∈ ℋ. For any η in a sufficiently big convex neighborhood
B0 of η0, there exist constants c1, c2 > 0 such that c1eη0(w) ≤ eη(w) ≤ c2eη0(w) for all w.

A7. The smoothing parameter λ ≍ n−r/(r+1).

Condition A1 requires that β0 is not on the boundary of the parameter space. Condition A2 is
also a common boundedness assumption on covariate. Condition A3 assumes noninformative
censoring. Condition A4 is the common boundedness assumption on the baseline hazard.
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Condition A5 bounds the joint density of (T, Z) and thus also the derivatives of the partial
likelihood. Condition A6 assumes that η0 has proper level of smoothness and integrates to zero.
The neighborhood B0 in Condition A6 should be big enough to contain all the estimates of
η0 considered below. When the members of B0 are all uniformly bounded, Condition A6 is
automatically satisfied. The order for λ in Condition A7 matches that in standard smooth spline
problems.

We first show the equivalence between V (·) and the L2-norm .

Lemma 6.1—Let f ∈ ℋ. Then there exist constants 0 < c3 ≤ c4 < ∞ such that

Proof—For z = (u, w), let pz (t) = exp(uT β + η0(w))q(t, u, w)/s[β, η0](t) and f̄t ≡ ∫ ∫ f(u, w)pz
(t)dudw. Simple algebraic manipulation yields

By Conditions A4 and A5, there exist positive constants c1 and c2 such that

Let m(Ƶ) < ∞ be the Lebesgue measure of Ƶ. Then

The lemma follows from the Cauchy-Schwartz inequality and Condition A4.

Proof of Theorem 2.1—We will prove the results using an eigenvalue analysis of three
steps. In the first step (linear approximation), we show the convergence rate Op(n−r/(r+1)) for
the minimizer η̃ of a quadratic approximation to (2.4). In the second step (approximation error),
we show that the difference between η̃ and the estimate η ̂* in ℋ is also Op(n−r/(r+1)), and so is
the convergence rate of η ̂*. In the third step (semiparametric approximation), we show that the
projection η* of η ̂* in ℋn is not so different from either η ̂* or the estimate η ̂ in ℋn, and then
the convergence rate of η ̂ follows.

A quadratic function B is said to be completely continuous with respect to another quadratic
functional A, if for any ε > 0, there exists a finite number of linear functionals L1, … , Lk such
that Lj f = 0, j = 1, … , k, implies that B(f) ≤ εA(f); When a quadratic functional B is completely
continuous with respect to another quadratic functional A, there exists eigenfunctions {ϕν, ν =
1, 2, ⋯} such that B(ϕν, ϕμ) = δνμ and A(ϕν, ϕμ) = ρν δνμ, where δνμ is the Kronecker delta and
0 ≤ ρν ↑ ∞. And functions satisfying A(f) < ∞ can be expressed as a Fourier series expansion
f = Σνfνϕν, where fν = B(f, ϕν) are the Fourier coefficients. See, e.g., [29] and [9].
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We first present two lemmas without proof. The first one follows directly from the results in
Section 8.1 of [9] and Lemma 6.1. The second one is exactly Lemma 8.1 in [9].

Lemma 6.2—V is completely continuous to J and the eigenvalues ρν of J with respect to V
satisfy that as ν → ∞, .

Lemma 6.3—As λ → 0, the sums , and  are all order
O(λ−1/r).

Step 1: Linear Approximation
A linear approximation η̃ to η ̂* is the minimizer of a quadratic approximation to (2.4),

(6.1)

Let η = Σν ηνϕν and η0 = Σν ην,0ϕν be the Fourier expansions of η and η0. Plugging them into
(6.1) and dropping the terms not involving η yield

(6.2)

where . The Fourier coefficients that
minimize (6.2) are η̃ν = (γν + ην,0)/(1 + λρν). Note that ∫ ϕν (w)dw = 0 and V (ϕν) = 1.

Straightforward calculation gives E[γν] = 0 and . Then,

(6.3)

Combining Lemma 6.3 and (6.3), we obtain that (V + λJ)(η̃ − η0) = Op(λ + n−1 λ−1/r), as n →
∞ and λ → 0.

Step 2: Approximation Error
We now investigate the approximation error η ̂* − η̃ and prove the convergence rate of η ̂*.
Define Af,g(α) and Bf,g(α) respectively as the resulting functionals from setting η = f + αg in
(2.4) and (6.1). Differentiating them with respect to α and then setting α = 0 yields

(6.4)
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(6.5)

Set f = η ̂* and g = η ̂* − η̃ in (6.4), and set f = η̃ and g = η ̂* − η̃ in (6.5). Then subtracting the
resulted equations gives

(6.6)

where . Define

and S [f, g](t) be its limit. The following lemma is needed to proceed.

Lemma 6.4—

Proof—Let f = Σνfνϕν and g = Σμgμϕμ be the Fourier series expansion of f and g. [1] shows
that supt |sn[β, η0] − s[β, η0]| converges to zero in probability. Note that

defines a local martingale with mean zero. Combining the above uniform convergence result
and the martingale property with the boundedness condition, we obtain that for any ν and μ,

Then from the Cauchy-Schwartz inequality and Lemma 6.3,
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A Taylor expansion at η0 gives

Then by the mean value theorem, Condition A6, Lemma 6.4, and (6.6),

for some c ∈ [c1, c2]. Then the convergence rate of η ̂* follows from that of η̃ proved in the
previous step.

Step 3: Semiparametric Approximation
Our last goal is the convergence rate for the minimizer η ̂ in the space ℋn. For any h ∈ ℋ ⊖
ℋn, one has h(Wil) = J(RJ(Wil,·),h) = 0, so

 for j = 1, 2 and

. Hence, by the same arguments used in the proof of Lemma 6.4,

(6.7)

where the last equality follows from qn ≍ n2/(r+1)+ε and Condition A7.

Let η* be the projection of η ̂* in ℋn. Setting f = η ̂* and g = η ̂* − η* in (6.4) and noting that J
(η*, η ̂* − η*) = 0, some algebra yields
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(6.8)

Recall that  with E[γν] = 0 and . An application
of the Cauchy-Schwartz inequality and Lemma 6.3 shows that the first term in (6.8) is of order
{(V + λJ)(η ̂* − η*)}1/2Op (n−1/2 λ−1/2r). By the mean value theorem, Condition A6, Lemma
6.4, and (6.7), the remaining term in (6.8) is of order op({λJ(η ̂*−η*)(V + λJ)(η ̂*−η0)}1/2). These,
combined with (6.8) and the convergence rates of η ̂*, yield λJ (η ̂* − η*) = Op(n−1 λ−1/r + λ)
and V (η ̂* − η*) = Op(n−1 λ−1/r + λ).

Note that J(η ̂* − η*, η*) = J(η ̂* − η*, η ̂) = 0, so J(η ̂*, η ̂* − η ̂), = J (η ̂* − η*) + J (η*, η* − η ̂).
Set f = η ̂ and g = η ̂ − η* in (6.4), and set f = η ̂* and g = η ̂* − η ̂ in (6.4). Adding the resulted
equations yields

(6.9)

By the mean value theorem, Condition A6, and Lemma 6.4, the left-hand side of (6.9) is
bounded from below by

For the right-hand side, the terms in the first and second brackets are respectively of the orders
{(V + λJ)(η ̂* − η*)}1/2Op(n−1/2 λ−1/2r) and op({λJ(η ̂* − η*)(V + λJ)(η ̂* − η0)}1/2) by similar
arguments for (6.8), and the terms in the third bracket is of the order

by Condition 3, Lemma 6.4, and (6.7). Putting all these together, one obtains (V + λJ)(η ̂ − η*)
= Op(n−1 λ−1/r + λ) and hence (V + λJ)(η ̂ − η0) = Op (n−1 λ−1/r + λ). And an application of
Condition A7 yields the final convergence rates.

Proof for the Asymptotic Properties of β̂—Let Pn be the empirical measure of (Xi, Δi
= 1, Zi), i = 1, … , n such that it is related to the empirical measure Qn of (Xi, Δi, Zi), i = 1, … ,

n by Let . Let P be its corresponding (sub)
probability measure. Let L2(P) = {f : ∫ f2dP < ∞} and || · ||2 be the usual L2-norm. For any
subclass F of L2(P) and any ε > 0, let N[](ε, F, L2(P)) be the bracketing number and

Lemma 6.5—Let m0(t, u, w; β, η) = uT β+η(w)−log s [β, η ](t), m1(t, u, w; s, β, η) = 1[s≤t] exp
(uT β + η(w)), and m2(t, u, w; s, β, η, f) = 1[s≤t]f (u, w) exp(uT β + η(w)). Define the classes of
functions
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Then  and J[](δ, Mj, L2(P)) = cjδ{qn + log(1/δ)}1/2 j = 1, 2.

Proof—The proof is similar to that of Corollary A.1 in [10] and thus omitted here.

Lemma 6.6—

Proof—Write

where A1n = sn [U; β0, η ̂] (t)−s [U; β0, η ̂] (t) and A2n = sn [β0, η ̂](t)−s[β0, η ̂](t). Note that qn =
o(n1/2), hence the result follows from Lemma 3.4.2 of [27] and Lemma 6.5.

Proof of Theorem 2.2—Let γn = n−1/2. To prove 2.2(i), we need to show that ∀δ > 0, there
exists a large constant C such that

Consider ℒP(β0 + γnυ) − ℒP(β0). We can decompose it to the sum of Dn1 = lp(β0 + γnυ) −
lp(β0) and the penalty difference Dn2. As shown in [7], under the assumption of an = O(n−1/2)
and bn = o(1), n−1 Dn2 is bounded by

(6.10)

where s is the number of nonzero elements in β0.

Applying the second order Taylor expansion to n−1 Dn1 gives

(6.11)

with , and

, where U
(u, w) ≡ u.

Let . Note that . We have
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(6.12)

where

Lemma 3.4.2 of [27] and Lemma 6.5 indicate that (Pn − P) {s−1[β0, η ̂] (t) s[U − Ūn; β0, η ̂](t)}
= op(n−1/2), where the fact that qn = op(n−1/2) is used again. Also (Pn − P) {U − Ūn} =
Op(n−1/2) by the LLN. Hence we have I1n = Op(n−1/2). Lemma 6.6 gives I2n = Op(n−1/2). Lastly,
by the boundedness assumption I3n = P {s−1 [β0, η ̂](t) s[Ūn − U; β0, η ̂] (t)} = Op (E|Ūn − U|)
= Op (n−1/2). Hence J1n = Op (n−1/2). Also, J2n converges to V(U) > 0. Thus, when C is
sufficiently large, the second term in (6.11) dominates both terms in (6.10). And Theorem 2.2
(i) follows.

Next, we shall show the sparsity of β ̂. It suffices to show that for any given β1 satisfying ||β1
− β10|| = Op (n−1/2) and any j = s + 1, … , d, ∂ℒP (β)/∂βj > 0 for 0 < βj < Cn−1/2 and ∂ℒP (β)/
∂βj < 0 for −Cn−1/2 < βj < 0. For βj ≠ 0 and j = s + 1, … , d,

Similar to bounding J1n, the first term can be shown to be Op(n−1/2). Recall that 

and . Hence the sign of ∂ℒp (β)/∂βj is completely
determined by that of βj. Then β ̂2 = 0.

Lastly, we show the asymptotic normality of β ̂1 using the result in [21]. Let zi = (Xi, Δi, Zi).
Note that β ̂1 is the solution of the estimating equation:

(6.13)

where  and

. Let

be the Fréchet derivative of M(z, β10, η) at η0. Since the convergence rate of η ̂ is n−r/[2(r+1)] =
o(n−1/4), the linearization assumption (Assumption 5.1) in [21] is satisfied. A derivation similar
to bounding (6.12) can verify the stochastic assumption (Assumption 5.2) in [21]. Direct
calculation yields E[D(z, η − η0)] = 0 for η close to η0. Then the mean-square continuity
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assumption (Assumption 5.3) in [21] also holds with α(z) ≡ 0. By Lemma 5.1 in [21], β ̂1 thus
has the same distribution as the solution to the equation

A straightforward simplification yields the result.
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Fig 1.
Estimates for Nonparametric Components (Section 3.1). Dotted lines are true function, solid
lines are connected point-wise mean estimates, faded lines are connected 0.025 and 0.975
quantiles of the point-wise estimates, and dashed lines are the connected point-wise 95%
confidence intervals.
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Fig 2.
Nonparametric Component Estimates for Sexually Transmitted Diseases Data. Left: Effect of
age at initial infection. Right: Effect of years of schooling. Solid lines are the estimates, dashed
lines are 95% confidence intervals, and dotted lines are the reference zero lines.
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