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Abstract

Background: The evaluation of the complexity of an observed object is an old but outstanding problem. In this paper we
are tying on this problem introducing a measure called statistic complexity.

Methodology/Principal Findings: This complexity measure is different to all other measures in the following senses. First, it
is a bivariate measure that compares two objects, corresponding to pattern generating processes, on the basis of the
normalized compression distance with each other. Second, it provides the quantification of an error that could have been
encountered by comparing samples of finite size from the underlying processes. Hence, the statistic complexity provides a
statistical quantification of the statement ‘X is similarly complex as Y ’.

Conclusions: The presented approach, ultimately, transforms the classic problem of assessing the complexity of an object
into the realm of statistics. This may open a wider applicability of this complexity measure to diverse application areas.
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Introduction

Complex systems is the study of interactions of simple building

blocks that result in a collective behavior or properties absent in

the elementary components of the system itself. Due to the fact

that this problem does not fit into one of the traditional research

fields, it is connected to various of these, for instance physics,

biology, chemistry or econometrics [1–5]. Many measures,

properties or characteristics of a multitude of different complex

systems from these fields has been studied to date [6–8], however,

the complexity of an object may have received the most attention.

This property of complex systems has fascinated generations of

scientists [9–11] trying to quantify such a notation. Very coarsely

speaking, an object is said to be ‘complex’ when it does not match patterns

regarded as simple, as LÓPEZ-RUIZ et al. [12] describe it in their

article. Over the last decades, many approaches have been

suggested to define the complexity of an object quantitatively

[9,11,13–19]. An intrinsic problem with such a measure is that

there are various ways to perceive and, hence, characterize

complexity leading to complementing complexity measures [20].

For example, Kolmogorov complexity [9,11,21] is based on

algorithmic information theory considering objects as individual

symbol strings, whereas the measures effective measure complexity

(EMC) [17], excess entropy [22], predictive information [23] or

thermodynamic depth [18] relate objects to random variables and

are ensemble based. Interestingly, despite considerable differences

among all these complexity measuresM they all have in common

that they assign a complexity value to each individual object x’
under consideration, CM x’ð Þ. In this paper we will assume that x’

corresponds to a string sequence of a certain length and its

components assume values from a certain domain, e.g., A~ 0, 1f g
or A~ 0, 1½ �. It is of importance to note that there is a

conceptually different measure recently introduced by VITÁNYI

et al. that evaluates the complexity distance among two objects x’
and x’’ instead of their absolute values. This measure is called the

normalized compression distance (NCD) [24], NCD x’, x’’ð Þ, and is

based on Kolmogorov complexity [10].

The purpose of this paper is to introduce a new measure of

complexity we call statistic complexity that is not only different to all

other complexity measures introduced so far, but also connects

directly to statistics, specifically, to statistical inference [25,26]. More

precisely, we introduce a complexity measure with the following

properties. First, the measure is bivariate comparing two objects,

corresponding to pattern generating processes, on the basis of the

normalized compression distance with each other. Second, this measure

provides the quantification of an error that could have encountered

by comparing samples of finite size from the underlying processes.

Hence, the statistic complexity provides a statistical quantification of the

statement ‘X is similarly complex as Y ’.

This paper is organized as follows. In the next section we

describe the general problem in more detail and introduce our

complexity measure. Then we present numerical results and

provide a discussion. We finish with conclusions and an outlook.

Methods

Currently, a commonly acknowledged, rigorous mathematical

definition of the complexity of an object is not available. Instead,
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when complexity measures are suggested they are normally

assessed by their behavior with respect to three qualitative

patterns, namely simple, random (chaotic) and complex patterns.

Qualitatively, a complexity measure is considered good if: (1) the

complexity of simple and random objects is less than the

complexity value of complex objects [17], (2) the complexity of

an object does not change if the system size changes. For example,

Kolmogorov complexity has the desireable property to remain

unchanged if the system size doubles, i.e., CK xð Þ~CK xxð Þ,
however, it cannot distinguish random from complex pattern

because in both cases the compressibility of an object is low

resulting in high values of CK . We want to add a third property to

the above criteria: (3) A complexity measure should quantify the

uncertainty of the complexity value. As motivation for this

property we just want to mention that there is a crucial difference

between an observed object x’ and its generating process X [23]. If

the complexity of X should be assessed, based on the observation

x’ only, this assessment may be erroneous. This error may stem

from the limited (finite) size of observations. Also, the possibility of

measurement errors would be another source derogating the

ability of an error-free assessment. For this reason, the major

objective of this article is to introduce a complexity measure

possessing all three properties listed above that assesses the

complexity classes of the underlying processes instead of individual

objects.

We start by pointing out that criteria (1) provides a relative

statement connecting different objects. That means the complexity

of an object is always related to the complexity of another object

[20] leading to relative statements like ‘X is similarly complex as

Y ’. Hence, a numerical value C Xð Þ without knowledge of any

other complexity value for other objects has no meaning at all. For

reasons of mathematical rigor, we propose to include this implicit

reference point into a proper definition of complexity. This implies

that a fundamental complexity measure needs to be bivariate,

C X , Yð Þ, instead of univariate comparing two processes X and Y .

As a side note, we remark that all complexity measures suggested

so far we are aware of are univariate measures [13,14,16–

18,22,23] with respect to the context set above, except for the

normalized compression distance (NCD) [24,27]. However, a

practical problem of the NCD is that Kolmogorov complexity, on

which it is based, is not computable but only upper semi-

computable [27]. LI et al. introduced in [27] a normalized and

universal metric called NORMALIZED INFORMATION DISTANCE (NID)

which can be approximated by,

NCD x,yð Þ~ C xyð Þ{min C xð Þ, C yð Þf g
max C xð Þ, C yð Þf g , ð1Þ

the NORMALIZED COMPRESSION DISTANCE [27]. Here, C xð Þ denotes

the compression size of string x and C xyð Þ the compression size of

the concatenated stings x and y. Practically, the quantities C() are

obtained by compressors like gzip or bzip2, see [28,29] for details.

Criteria (3) of a complexity measure stated above acknowledges

the fact that an assessment of an object’s complexity cannot be

without uncertainty or error in case only finite information about

this object is available. That means, for a complexity measure to

be applicable to real objects (rather than pure mathematical ones)

it has to be statistic in order to deal appropriately with incomplete

information. Based on these considerations, the statistic complexity

measure we suggest is defined by the following procedure

visualized in Fig. 1:

1. Estimate the empirical distribution function F̂FX ,X (We indicate

estimated entities by F̂F and refer to the ensemble by F .) of the

normalized compression distance from n1 samples,

Sn1

X ,X ~ xi~NCD x’, x’’ð ÞDx’, x’’*Xf gn1

i~1, from objects x’
and x’’ of size m generated by process X (Here x*X means

that x is generated (or drawn) from process (distribution) X .).

2. Estimate the empirical distribution function F̂FX ,Y of the

normalized compression distance from n2 samples,

Sn2

X ,Y ~ yi~NCD x’, y’ð ÞDx’*X , y’*Yf gn2

i~1, from objects x’
and y’ of size m from two different processes, X and Y .

Figure 1. Visualization of the problem and the construction of the test statistic from observations. The double headed arrows represent
comparisons of entities. Red indicates that this comparison cannot be performed because the two entities are hidden (unobservable) whereas blue
indicates a feasible comparison.
doi:10.1371/journal.pone.0012256.g001
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3. Determine T~ supxDF̂FX ,X xð Þ{F̂FX ,Y xð ÞD and p~Prob Tƒtð Þ.
4. Define, CS Sn1

X ,X , Sn2

X ,Y DX , Y , m, n1, n2

� �
:~p, as statist ic

complexity

This procedure corresponds to a two-sided, two-sample Kolmo-

gorov-Smirnov (KS) test [30,31] based on the normalized

compression distance [24,27] obtaining distances among observed

objects. The statistic complexity corresponds to the p-value of the

underlying null hypotheses, H0 : FX ,X ~FX ,Y , and, hence, assumes

values in ½0,1�. The null hypothesis is a statement about the null

distribution of the test statistic T~ supxDF̂FX ,X xð Þ{F̂FX ,Y xð ÞD, and

because the distribution functions are based on the normalized

compression distances among objects x’ and x’’, drawn from the

processes X and Y , this leads to a statement about the distribution

of normalized compression distances. Hence, verbally, H0 can be

phrased as ‘in average, the compression distance of objects from X
to objects from Y equals the compression distance of objects only

taken from X ’. It is important to emphasize that this equality holds

in average and, thus needs to be connected to two ensembles X and

Y . If the alternative hypothesis, H1 : FX ,X=FX ,Y , is true this

equality does no longer hold implying differences in the underlying

processes X and Y , leading to differences in the NCDs. From the

formulation of the hypotheses, tested by the statistic complexity, it is

apparent that we are following closely the guiding principle

expressed by LÓPEZ-RUIZ et al. [12] as cited at the beginning of

this paper, because CS is intrinsically a comparative measure. As a

side note regarding the choice of the null hypothesis we want to

remark that substituting FXY with FYY may encounter problems in

cases where the complexity value of objects in Y is systematically

shifted compared to the complexity value of objects in X . In this

case, the distributions FXX and FYY could be similar, although, the

complexity of elements in X and Y are different. Practically, this

may correspond to a pathological case rarely encountered in

practice, however, conceptually, such a null hypothesis is apparently

less stringent.

Regarding the notation and interpretation of the above

procedure it is important to note the following. First, the entities

x and y refer to values of the NCD. For example,

x~NCD x’, x’’ð Þ whereas x’ and x’’ are observable objects that

are identically and independently (iid) generated from a process X ,

x’, x’’*X . Because x’ and x’’ are generated from the same process

X , the resulting distribution function FX ,X is only indexed by this

process. The y entities are obtained similarly, however, in this case

x’ and y’ are objects generated from two different processes, namely

x’*X and y’*Y . For this reason the distribution function is

indexed by these two processes, FX ,Y . Second, we use the

notation, x’*X , to indicate that x’ is generated from a process X ,

but also that x’ is drawn from X . The first meaning is clear if

thinking of X as a model for a complex system, e.g., a cellular

automata or a stochastic process. The latter emphasizes the fact

that such a process, even if deterministic, becomes random with

respect to, e.g., random initial conditions and, hence, effectively is

a stochastic process. Third, for reasons of conceptual simplicity we

require all objects to have the same size m. This condition may be

relaxed to allow objects of varying sizes but it may require

additional technical consideration. On a technical note, the above

defined statistic complexity has the very desirable property that the

power reaches asymptotically 1 for n1?? and n2?? [32]. This

means, for infinite many observations the error of the test to falsely

accept the null hypotheses when in fact the alternative is true

becomes zero. This limiting property is important to hold, because

in this case all information about the system is available and,

hence, it would be implausible if for such circumstances no error-

free decision could be achieved. Formally, this property can be

stated as p?0 for n1?? and n2??. Finally, we would like to

note that despite the fact that statistic complexity is a statistical test, it

borrows part of its strength from the NCD respectively

Kolmogorov complexity on which this is based on. Hence, it

unites various properties from very different concepts.

Results

In the following we provide different numerical examples for

data frequently used when studying complexity measures. This

allows a direct comparison of ours with different measures.

The first characteristic of the statistic complexity we study is the

influence of the size m of objects on CS . Table 1 shows the results for

comparing patterns generated by different rules of one-dimensional

cellular automata. Column one represents the reference process, X ,

and column two corresponds to Y . The third and fifty column shows

the averaged p-values obtained for cellular automata of length T~100
respectively T~200 - column four and six provide the variances for

the corresponding p-values. For the simulation results shown in Table 1

we generated spatiotemporal patterns for one-dimensional CA for

N~50 (space) and T (time), an alphabet of size k~2 and a r~1
neighborhood with periodic boundary conditions. As burn-in time we

used ttrans~1000 time steps. Each of these spatiotemporal pattern Sij ,

with i[ 1, . . . ,Tf g and j[ 1, . . . ,Nf g, is transformed to its difference

Table 1. Results for one-dimensional CA (ttrans~1000, N~50, T~100 (third and fourth column) and T~200 (fifth and sixth
column)) averaged over 10 runs.

X Y T = 100 T = 200

CA rule CA rule p s2 p s2

30 30 0.593 0.075 0.684 0.102

30 90 0.617 0.102 0.575 0.139

30 225 0.388 0.131 0.632 0.086

30 73 0.002 0.001 0.002 0.001

30 54 0.002 0.000 0.001 0.001

30 22 0.002 0.000 0.001 0.001

30 33 0.001 0.001 0.002 0.000

30 110 0.002 0.001 0.002 0.001

First column: process X . Second column: process Y . Sample size is n1~n2~7.
doi:10.1371/journal.pone.0012256.t001
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pattern S? S2{S1ð Þz S3{S2ð Þz . . . z ST{ST{1ð Þð Þ (Here Si

with i[ 1, . . . ,Tf g corresponds to a row vector of length N.) resulting

in a string (object) of length m~NT to be applicable for the NCD.

Here, the operator z means concatenation of strings. See [29] for

numerical details for the application of NCD. The results in Table 1

show that the p-values remain in the same order of magnitude if the

size of an object m is doubled meaning that the overall quantitative

assessment of two processes X and Y - based on sampled objects

thereof - by the measure CS is invariant to extensions of the size m.

Next we demonstrate that the statistic complexity is capable to differentiate

between random and complex objects. For this reason we compare

rule 30, producing random patterns, with rule 90, 225, both random,

and rule 110, which is complex because it is capable of universal

computation. From Table 1 one can see that the p-values correspond

with our expectations giving high values for 30,90ð Þ and 30,225ð Þ and

low values for 30,110ð Þ. In addition we compare rule 30 with rules

73,54 and 22, classified according to Wolfram as random, and obtain

very low p-values, suggesting significant differences among those

patterns. The crucial point here is that not all CA rules that produce

chaotic patterns are indistinguishable from each other. In [33] the

growth exponent of the roughness along other measures have been

used to obtain several subclasses for CA rules leading to chaotic

behavior. Comparing our results with their classification reveals that

actually rule 73,54 and 22 are in different subclasses whereas rule 30 is

classified together with rule 90 and 225. Last, we compare rule 30 with

a periodic pattern, rule 33, and obtain also in this case a clear

distinction. In summary, CS can not only distinguish between simple

and complex patterns but finds also meaningful substructures among

chaotic patterns if rule 30 is used as reference process.

Next, we apply our measure to the logistic map and compare

the results with the Lyapunov exponent (l). The results are

summarized in Fig. 2. We calculate the time series for various

values of r (x-axis) in the intervall ½3:8, 3:9� (r was varied in step

sizes of 0:001 and sample size was n1~n2~6.). l assumes negative

values in ½3:829, 3:849� and ½3:856, 3:856� indicating a nonchaotic

behavior of the logistic map for these values of r. The vertical

dashed line separates positive from negative values. The p-values

of the statistic complexity (blue line, cross symbols) are obtained for

each value of r by averaging over 50 time series each of length

1000 (After waiting a transient period of 1000 steps.). As reference

process, X , we use a logistic map with rref ~3:451, which

corresponds to a periodic behavior. From Fig. 2 one can see that

there are essentially two types of p-values, ones that are not zero

and ones that are close to zero. For example, using a significance

level of 0:01 (dotted horizontal line) one obtains that significant

values correspond to positive Lyapunov exponents and non-

significant values to negative Lyapunov exponents. Again, we want

to emphasize that the p-values do not provide a yes or no answer if

the logistic map, for a given r value, is chaotic or nonchaotic but

the correct interpretation is that low p-values provide strong

evidence against the null hypotheses whereas high p-values do not

allow to reject the null hypotheses. Because we use rref ~3:451 as

reference - for which the logistic map shows periodic (nonchaotic)

behavior - this is a similar though not identical question. The

results for the logistic map allow a comparison with a well studied

system. As demonstrated by our results shown in Fig. 2, for an

appropriately chosen reference process, X rref

� �
, there is a clear

correspondence between the statistic complexity and the Lyapunov

exponent. This property is certainly desirable to hold because it

may allows to connect to traditional contributions in the field

beyond the logistic map. The possibility of such a connection,

despite the seemingly different methods underlying the statistic

complexity respectively the Lyapunov exponent, can be attributed to

the parametric form of our complexity measure allowing a

Figure 2. Lyapunov exponent (l - red line, plus symbol) and p-values (blue line, cross symbol) of the logistic map in dependence on
r. The dotted horizontal line corresponds to a significance level of 0:01 and the dashed line to l~0.
doi:10.1371/journal.pone.0012256.g002
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flexibility that is entirely missing in other measures. More

importantly, this flexibility is not imposed into the measure but

follows naturally from a consequent interpretation of complexity as

a referential measure [12] implying imperatively the existence of a

reference process X against which another process Y is

quantitatively compared.

Discussion

The complexity measure introduced in this paper has several

properties that are different to all other measures proposed so far.

First, CS is a bivariate measure allowing to make comparative

statements, instead of absolute ones. This may appear as a

disadvantage first, however, as LÓPEZ-RUIZ et al. [12] point out, we

inevitably compare patterns with each other to make a decision

about their complexity (See also the comparative discussion on page

909 in [17] about the three patterns shown in Fig. 1.) [20]. Second,

we do not make assumptions with respect to the size of patterns to

which our measure can be applied, instead, principally, we allow

patterns of any finite or infinite size m. For example, measures like

EMC or excess entropy are based on block entropies of varying order

n and the final measure is obtained in the limit for n against

infinity. Strictly, such measures require an infinite amount of data.

Third, due to the fact that statistic complexity allows the comparison

of patterns of any size m with finite sample sizes n1 and n2 the

result of the comparison may be erroneous. The KS test,

underlying CS , allows a quantification of such an error statistically.

Because this error can be quantified in dependence on m, n1 and

n2, there is no need to assume limiting properties. At this point we

would like to re-emphasize that the term statistic complexity has been

chosen to underline the involvement of a test statistic in our measure

on which the complexity value is based. For this reason other

complexity measures that have been named statistical complexity

[12,34,35] are not similar to our measure at all due to the fact that

none of these measures uses a test statistic or a statistical test.

Hence, they are actually not related to statistics (the field). An

alternative name for these measures would be probabilistic complexity,

which would make this difference more obvious. The fourth point

relates to the empirical distribution functions. The reason for their

introduction is, besides the fact that they allow a connection to the

KS test, they allow the introduction of two ensembles, one for the

process X and one for processes Y . These ensembles compensate

that the classic KOLMOGOROV complexity is not related to any

ensemble but only to one string. Further, the ensembles induce a

probabilistic interpretation of the deterministic NCD with respect

to the underlying processes that generate the patterns. This is in

accordance with [17] emphasizing the importance of complexity

measures being probabilistic. Taken together, this allows a

quantifiable approximation, in dependence on m, n1 and n2, of

the underlying processes X and Y with respect to the information

they provide about their complexity, in form of the real observable

patterns.

From an applied point of view, the direct connection of statistic

complexity with statistical inference allows a confirmatory analysis of

the complexity of objects. Due to the fact that the uncertainty of a

complexity comparison is inherently provided by our measure, it is

applicable to (real) objects from a multitude of different application

domains. In the future we are planing to investigate the complexity

of biological pathways in the context of cancer and other complex

diseases [37]. A further potential direction would be an analysis of

different goodness-of-fit tests. For example, it would be interesting to

study a Cramér-von Mises or an Anderson-Darling test, instead of

a Kolmogorov-Smirnov test [36]. Other tests may have advan-

tages in different application areas or specific experimental

conditions, although, a Kolmogorov-Smirnov test was sufficient

with respect to the applications studied in this paper.
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