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Abstract

The large conductance, voltage- and calcium-dependent potassium (BK) channel serves as a major negative feedback
regulator of calcium-mediated physiological processes and has been implicated in muscle dysfunction and neurological
disorders. In addition to membrane depolarization, activation of the BK channel requires a rise in cytosolic calcium.
Localization of the BK channel near calcium channels is therefore critical for its function. In a genetic screen designed to
isolate novel regulators of the Caenorhabditis elegans BK channel, SLO-1, we identified ctn-1, which encodes an a-catulin
homologue with homology to the cytoskeletal proteins a-catenin and vinculin. ctn-1 mutants resemble slo-1 loss-of-
function mutants, as well as mutants with a compromised dystrophin complex. We determined that CTN-1 uses two distinct
mechanisms to localize SLO-1 in muscles and neurons. In muscles, CTN-1 utilizes the dystrophin complex to localize SLO-1
channels near L-type calcium channels. In neurons, CTN-1 is involved in localizing SLO-1 to a specific domain independent
of the dystrophin complex. Our results demonstrate that CTN-1 ensures the localization of SLO-1 within calcium
nanodomains, thereby playing a crucial role in muscles and neurons.
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Introduction

Precise control of membrane excitability, largely determined

by ion channels, is of utmost importance for neuronal and

muscle function. The regulation of ion channel localization,

density and gating properties thus provides an effective way to

control the excitability within these cells [1]. Indeed, the

localization and gating properties of ion channels are often

regulated or modified by cytoskeletal and signaling proteins, or

auxiliary ion channel subunits expressed in a cell-type specific

manner [2]. Potassium channels are critical in determining the

excitability of cells, because potassium ions are dominant charge

carriers at the cell resting potential. Among potassium channels,

the large conductance, voltage- and calcium-dependent potassi-

um BK channels (also called SLO-1 or Maxi-K) are uniquely

gated by coincident calcium signaling and membrane depolar-

ization [3,4]. This feature of BK channels provides a crucial

negative feedback mechanism for calcium-induced functions,

and plays an important role in determining the duration of

action potentials [3]. BK channels are widely expressed in a

variety of cell types and are implicated in many physiological

processes, including the regulation of blood pressure [5],

neuroendocrine signaling [6], smooth muscle tone [7], and

neural network excitability [8,9].

Mounting evidence indicates that BK channels can interact with

a variety of proteins that modulate channel function, or control

membrane trafficking. For example, the Drosophila BK channel,

dSLO, interacts with SLO binding protein (slob), which in turn

modulates the channel gating properties [10]. Similarly, mamma-

lian BK channels associate with auxiliary beta subunits that

influence channel activation time course and voltage-dependence

[11]. In yeast two hybrid screens, the cytoplasmic C-terminal tail

of mammalian BK channels has been shown to interact with

several proteins, including cytoskeletal elements, such as actin-

binding proteins [12,13] and a microtubule-associated protein

[14]. These cytoskeletal proteins are partially co-localized with BK

channels, and appear to increase cell surface expression of BK

channels in cultured cells [12,13]. However, it remains to be

determined whether these proteins have any role in controlling the

localization of BK channels to specific areas of the plasma

membrane in vivo. Robust activation of BK channels requires

higher intracellular calcium concentrations (.10 mM), which only

occur in the immediate vicinity of calcium-permeable channels

[4]. Hence, the localization of BK channels to specific areas (i.e.

calcium nanodomains) where calcium-permeable ion channels are

located is physiologically important for BK channel activation.

In C. elegans, loss-of-function mutations in slo-1 partially compen-

sate for the synaptic release defects of C. elegans syntaxin (unc-64)
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mutants [15] and lead to altered alcohol sensitivity [16]. Recent

studies in C. elegans have also implicated SLO-1 in muscle function

[17]. slo-1 mutants display an exaggerated anterior body angle,

referred to as the head-bending phenotype that is shared by mutants

that are defective in the C. elegans dystrophin complex [18–20].

Recent evidence that the C. elegans dystrophin complex interacts with

SLO-1 channels via SLO-1 interacting protein, ISLO-1, explains this

phenotypic overlap [21]. However, C. elegans dystrophin complex

mutants do not appear to alter the biophysical properties of BK

channels per se [17]. Similarly, ISLO-1 does not modify SLO-1

channel properties [21]. Rather, ISLO-1 tethers SLO-1 near the

dense bodies of muscle membranes, where L-type calcium channels

(EGL-19) are localized [21]. Consequently, defects in the dystrophin

complex or ISLO-1 cause a large reduction in SLO-1 protein levels in

muscle membrane, which in turn causes muscle hyper-excitability

leading to enhanced intracellular calcium levels. This perturbation of

calcium homeostasis has been postulated to be one of the first steps in

the degenerative muscle pathogenesis associated with disruption of

the dystrophin complex [22].

In this study, we performed a forward genetic screen to identify

additional genes responsible for SLO-1 localization and function

in C. elegans. We identified ctn-1, an orthologue of a-catulin, as a

novel gene that controls SLO-1 localization and function in

muscles and neurons. Our analysis showed that ctn-1 uses different

strategies to localize SLO-1 in these two cell types. In muscles,

CTN-1 utilizes the dystrophin complex to localize SLO-1 near L-

type calcium channels via ISLO-1. In neurons, CTN-1 localizes

SLO-1 independent of the dystrophin complex.

Results

A genetic screen for suppressor mutants of gain-of-function
slo-1 identifies genes that interact with the dystrophin gene

Loss-of-function slo-1 mutants exhibit a jerky locomotion and

head bending phenotype [15]. By contrast, gain-of-function slo-1

mutants exhibit sluggish movement combined with low muscle

tone [16]. When slo-1(gf) mutant animals are mechanically

stimulated, they fail to make a normal forward movement, and

tend to curl ventrally (Video S1). To identify genes that regulate

slo-1 function, we performed a forward genetic screen to isolate

mutants that suppress the phenotypes of the slo-1(ky399) gain-of-

function mutant. Based on a previous genetic study [21],

suppressor genes were expected to encode slo-1, components of

the dystrophin complex, as well as novel proteins that control

neuronal or muscular function of SLO-1. As expected, several loss-

of-function alleles of slo-1 were isolated. In addition to these

intragenic suppressors, several mutants could be segregated away

from slo-1(gf) (Figure 1A and Video S1) and exhibited the head

bending phenotype. Genetic mapping and complementation

testing determined that these extragenic suppressors include dyb-

1 and stn-1 which encode two homologous components of the

dystrophin complex, dystrobrevin and syntrophin respectively.

Additionally we isolated cim6 and eg1167 suppressors that

represent novel genes. Compared to slo-1(ky399) and cim6;slo-

1(ky399) mutants, eg1167;slo-1(ky399) mutants exhibited a profound

improvement in the locomotion speed (Figure 1A).

It was previously observed that slo-1(gf) mutants retain

significantly more eggs than wild-type animals due to low activity

of the egg-laying muscles [16]. We found that suppressor mutants

abolish an egg laying defect of slo-1(gf) mutants and retain eggs in

uteri at levels similar to wild-type animals (Figure 1B).

ctn-1 encodes an a-catulin orthologue that has
homology to a-catenin and vinculin

To understand the role of novel genes in slo-1 function, we

pursued the identification of genes that mapped to chromosomal

locations neither previously implicated in BK channel function, nor

encoding known components of the dystrophin complex. Two

mutations, cim6 and eg1167, both mapped to the left side of

chromosome I and failed to complement each other for head

bending, suggesting that these two mutations represent alleles of the

same gene. Our quantitative analysis for locomotion and egg laying

phenotypes showed that the locomotion speed of eg1167;slo-1(gf) was

higher than that of cim6;slo-1(gf) whereas egg laying was comparable

in both strains (Figure 1A and 1B). We further mapped eg1167 to a

250 kb interval and rescued the phenotype of eg1167 by generating

transgenic animals with the fosmid WRM0621cC01 (Figure S1).

Next, we rescued the head bending phenotype of eg1167 with a

transgene consisting of the ctn-1 gene (Y23H5A.5) and approxi-

mately 4 kb upstream of the translation initiation codon (Figure 2A

and 2B). The same transgene caused eg1167;slo-1(gf) double mutants

to revert to the slo-1(gf) phenotype, displaying sluggish movement

and retention of late-staged eggs in uteri (Figure 2C and 2D). These

results indicate that a genetic defect in ctn-1 is responsible for

suppression of the slo-1(gf) phenotypes.

The ctn-1 gene is orthologous to mammalian a-catulin (39.4%

identity to human a-catulin), and is named on the basis of

sequence similarity to both a-catenin and vinculin (Figure 2A)

[23]. Vinculin and a-catenin are membrane-associated cytoskel-

etal proteins found in focal adhesion plaques and cadherens

junctions. In C. elegans, vinculin (DEB-1) is localized to the dense

bodies of body wall muscle and is essential for attachment of actin

thin filaments to the sarcolemma [24], whereas a-catenin (HMP-1)

is localized to hypodermal adherens junctions and is essential for

proper enclosure and elongation of the embryo [25]. Based on its

homology to vinculin/a-catenin and the localization of mamma-

lian a-catulin [26], CTN-1 is likely to interact with other

cytoskeletal proteins, which may in turn affect SLO-1 function.

Additionally, the ctn-1 gene encodes a predicted coiled-coil

Author Summary

Calcium ions are essential for many physiological process-
es, including neurosecretion and neuronal and muscle
excitation. Paradoxically, abnormal accumulation of calci-
um ions is associated with cell death and has been
documented as an early event in muscle and neural
degenerative diseases. One mechanism to avoid detrimen-
tal calcium accumulation is to link the calcium increase
with activation of calcium-dependent potassium ion
channels, thereby reducing cell excitability and preventing
further calcium influx. This negative feedback requires
these potassium channels to be localized in close
proximity to sites of calcium entry. In a Caenorhabditis
elegans genetic screen, we identified a-catulin, known as a
cytoskeletal regulatory protein in mammals, important for
the localization of calcium-dependent potassium channels
in both muscles and neurons. In muscle, a-catulin controls
the localization of the dystrophin complex, a multimeric
protein complex implicated in muscular dystrophy. The
dystrophin complex in turn tethers the calcium-dependent
potassium channels near calcium channels. In neurons, the
a-catulin-mediated localization of the potassium channels
is independent of the dystrophin complex. Lack of a-
catulin results in mislocalization of the potassium channels,
and in turn causes defects in neuromuscular function. Our
results support the idea that cytoskeletal proteins function
as anchor molecules that localize ion channels to specific
cellular domains.

An a-catulin Homologue Regulates BK Channels
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domain. Such a coiled-coil domain mediates the interaction

between dystrophin and dystrobrevin [27], two components of the

dystrophin complex, although we do not know if the coiled-coil

domain of CTN-1 is important for the interaction with these

proteins (Figure 2A).

We determined nucleotide sequence of the predicted exons and

exon-intron boundaries of the ctn-1 gene in eg1167 and cim6. The

mutation sites found in both alleles create translation-termination

codons (R144.STOP in eg1167, Q521.STOP in cim6)

(Figure 2A). eg1167 exhibits complete suppression of slo-1(gf )

phenotypes (see below) and is hence considered as a severe loss-of-

function or null allele. All subsequent experiments were carried

out with eg1167, unless mentioned otherwise. Although both

eg1167 and cim6 mutants alone exhibit the head-bending

Figure 1. A genetic screen for slo-1(gf) suppressor mutants yields genes encoding components of the dystrophin complex and a
novel gene. (A) The average speed of mutants identified in a genetic screen for suppressors of slo-1(gf). dyb-1, a dystrobrevin homolog; dys-1, a
dystrophin homolog; stn-1, a syntrophin homolog. Error bars represent s. e. m. (n.10). Asterisks represent significant difference (P,0.05). (B) The
number of eggs retained in uteri of slo-1(gf) suppressor mutants. Error bars represent s. e. m. Data points between slo-1(gf) and all of other strains are
significantly different (P,0.001). (C) Quantitative analysis for the first angle of head bending. Each data set for the first angle is significantly different
from that of wild-type animals (P,0.01). Yellow dots indicate the five most anterior of the 13 midline points for a wild-type animal (See also Materials
and Methods). Error bars represent s. e. m. (n = 10).
doi:10.1371/journal.pgen.1001077.g001
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phenotype, they differ with respect to suppression of slo-1(gf)

phenotypes. Whereas ctn-1(eg1167) suppresses all aspects of the slo-

1(gf) phenotype, ctn-1(cim6) completely suppresses the egg-laying

defect of slo-1(gf) (Figure 1B), but not the locomotory defect

(Figure 1A). These results suggest that the C-terminal third of

CTN-1 is required for normal egg laying and head bending, but is

not necessary to mediate the locomotion speed defect of slo-1(gf)

mutants.

To elucidate the function of CTN-1, we examined the

expression pattern of the ctn-1 gene using a ctn-1 promoter-tagged

GFP reporter (Figure 2E–2H). We observed GFP fluorescence in

body wall muscles, pharyngeal muscle, egg-laying muscle and

enteric muscle of transgenic animals as well as in most, if not all,

neurons of the nerve ring and ventral nerve cord.

CTN-1 has two distinct functions in neurons and muscles
Based on the ctn-1 expression pattern and the phenotypic

differences between eg1167 and cim6, we investigated whether the

head-bending phenotype and the suppression of sluggish move-

ment of slo-1(gf) mutants are separable by expressing ctn-1

minigenes under the control of either muscle- or neuron-specific

promoters in ctn-1 and ctn-1;slo-1(gf) mutant animals. Muscle, but

not neuronal, expression of ctn-1 rescued the head-bending

phenotype of the ctn-1 mutant (Figure 2B and Figure S1C). These

results are consistent with previous reports that the head-bending

phenotype is due to perturbations in muscle function [17–19].

Furthermore, muscle expression of ctn-1 in ctn-1;slo-1(gf) mutants

resulted in egg retention to the level observed in slo-1(gf) mutants,

whereas neuronal expression of ctn-1 did not alter the number of

eggs retained in the uteri of ctn-1;slo-(gf) mutants (Figure 2C).

Conversely, neuronal expression of ctn-1 in ctn-1;slo-1(gf) mutants

reverted the seemingly normal locomotion of ctn-1;slo-1(gf) to the

sluggish, uncoordinated locomotion of the slo-1(gf) mutant,

whereas muscle expression of ctn-1 did not (Figure 2D). These

results indicate that the sluggish, uncoordinated locomotory

phenotype of slo-1(gf) mutants comes from presynaptic depression,

but not from direct suppression of muscle excitability. Together

with the allele specific phenotypic differences indicating different

regions of CTN-1 are required for normal locomotory speed and

head bending, these results suggest that CTN-1 uses two distinct

mechanisms for mediating SLO-1 function in muscle and neurons

by interacting with different sets of genes.

CTN-1 controls the integrity of the dystrophin complex
and the localization of SLO-1 in muscle

Most, if not all, of the mutants that exhibit the head bending

phenotype have a defect in either a component of the dystrophin

complex or proteins that interact with the dystrophin complex

[17–19]. The dystrophin complex is localized near muscle dense

bodies [21]. Because ctn-1 mutants exhibit the head bending

phenotype, we determined the subcellular localization of CTN-1

using a GFP-tagged CTN-1 transgene, which rescues the head

bending phenotype (data not shown). GFP::CTN-1 exhibited a

punctate expression pattern that resembled that of the dense

bodies (Figure 3A). To further define the localization of CTN-1,

we stained GFP-tagged CTN-1 transgenic animals with GFP

antibodies and vinculin/DEB-1 antibodies that recognize the

attachment plaque and dense bodies. CTN-1::GFP is localized in

close proximity to, or partially colocalized with, vinculin/DEB-1

in dense bodies, but not in the attachment plaques, indicating that

CTN-1 is localized near dense bodies (Figure 3A). This expression

pattern of CTN-1, along with the head bending phenotype of ctn-1

mutants, prompted us to examine whether the ctn-1 mutation

disrupts the integrity of the dystrophin complex. We compared the

expression pattern of a component of the dystrophin complex,

SGCA-1 (an a-sarcoglycan homolog) in wild-type, dys-1, slo-1 and

ctn-1 animals using a GFP-tagged SGCA-1 that rescues the head

bending phenotype of sgca-1 mutants [21] (Figure 3B).

GFP::SGCA-1 exhibited a punctate expression pattern in the

muscle membrane of wild-type and slo-1 mutant animals. By

contrast, GFP puncta were greatly diminished in dys-1 and ctn-1

mutants. These results indicate that ctn-1 is critical for maintaining

the dystrophin complex near the dense bodies.

We previously demonstrated that ISLO-1 interacts with STN-1

through a PDZ domain-mediated interaction, thereby linking

SLO-1 to the dystrophin complex [21]. Because we failed to

observe a component of the dystrophin complex in the muscle

membrane of ctn-1 mutants, we examined mCherry-tagged ISLO-

1 in the muscle membrane of wild-type and ctn-1 mutant animals.

The punctate mCherry::ISLO-1 fluorescence was observed in

wild-type muscle membranes, but was greatly reduced in ctn-1

mutant (Figure 3C). These results further strengthen the notion

that CTN-1 is required for maintaining the integrity of the

dystrophin complex.

Based on the genetic interaction between ctn-1 and slo-1, and the

observation that the integrity of the dystrophin complex and

ISLO-1 localization are disrupted in ctn-1 mutants, we hypothe-

sized that CTN-1 regulates the localization of SLO-1 in muscle.

To test this hypothesis, we examined the localization of GFP-

tagged SLO-1 in muscles of wild-type, dys-1, and ctn-1 animals

(Figure 4A and 4B). The punctate SLO-1::GFP expression pattern

in the muscle membrane of wild-type animals was greatly

diminished in the muscles of either dys-1 or ctn-1 mutant.

Interestingly, the protein levels of SLO-1::GFP were not

significantly different in wild-type, dys-1 and ctn-1 animals (Figure

S2B), indicating that mislocalized SLO-1 does not necessarily

undergo degradation. The mislocalization of SLO-1 in dys-1

Figure 2. ctn-1, an a-catulin homologue, has two distinct roles in mediating SLO-1 function. (A) The gene structure of ctn-1. Our genome
analysis indicates that unlike WormBase annotation (WS210) ctn-1 consists of 13 exons and is predicted to encode a 784 amino-acid protein (Figure
S1). The homology regions with a-catenin/vinculin I (homologous to the N-terminal talin/a-actinin-binding region of vinculin, 213 amino acids), a-
catenin/vinculin II (homologous to the C-terminal F-actin/inositol phospholipids-binding region of vinculin, 145 amino acids) and the coiled-coil
domain (35 amino acids) are depicted at the bottom of the gene structure. The mutation sites for two different alleles (eg1167 and cim6) are shown
on the top of the gene structure. The predicted amino acid sequence is available in Figure S1. (B) Rescue of the head bending phenotype with a
variety of ctn-1 constructs. Ex[ctn-1] represents the transgene carrying the genomic ctn-1 DNA extrachromosomal array. Ex[Pmyo-3ctn-1] represents the
muscle-specific myo-3 promoter-driven ctn-1 transgene, whereas Ex[PH20ctn-1] represents the neuron-specific H20 promoter-driven ctn-1 transgene.
Error bars represent s. e. m. (n = 10). Single asterisks indicate significant difference between two groups (P,0.001, unpaired two-tailed t-test) whereas
ns indicates no significant difference. (C) Rescue of the defect in egg-laying muscle with a variety of ctn-1 constructs. Error bars represent s. e. m.
(n = 15). Single asterisks indicate significant difference between two groups (P,0.001, unpaired two-tailed t-test) whereas ns indicates no significant
difference. (D) Rescue of the average locomotory speed with a variety of ctn-1 constructs. Error bars represent s. e. m. (n.10). Single asterisks indicate
significant difference between two groups (P,0.001, unpaired two-tailed t-test) whereas ns indicates no significant difference. (E–H) The expression
pattern of a ctn-1 promoter-tagged GFP reporter. Expression in (E) body wall muscles and the ventral cord neurons (arrowheads), (F) nerve ring
(arrowheads) and pharyngeal muscle (arrow), (G) egg-laying muscle, and (H) enteric (arrow) and sphincter (arrowhead) muscle. Scale bar, 10 mm.
doi:10.1371/journal.pgen.1001077.g002
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mutants is consistent with the requirement of the dystrophin

complex for ISLO-1 localization [21]. These results further

indicate that CTN-1 stabilizes or maintains the punctate muscle

expression of SLO-1::GFP in a dystrophin complex-dependent

manner.

CTN-1 regulates presynaptic release by controlling the
localization of SLO-1

In mammals, BK channels are found in neuronal somata,

dendrites and presynaptic terminals [28,29]. An immunoelectron

microscopy study indicates that BK channels are not homogeneous-

ly distributed in neurons, but are clustered, presumably near calcium

channels [30]. We addressed whether SLO-1 is evenly distributed or

clustered in C. elegans neurons by examining SLO-1::GFP. Wild-type

animals displayed patches of fluorescence along the ventral nerve

cord or near cell bodies under high magnification (Figure 4C and

4D, Figure S2). Tissue-specific rescue experiments demonstrated

that ctn-1 mediates SLO-1 function in neurons independent of the

dystrophin complex (Figure 2D). Therefore, we compared neuronal

SLO-1::GFP expression in dys-1 and ctn-1 mutant animals. The

clustered GFP expression observed along the ventral cord of both

wild-type and dys-1 mutant animals contrasted with the uniform

GFP localization in ctn-1 mutants (Figure 4C and 4D). These results

indicate that ctn-1 mutation disrupts the neuron-specific clustering of

SLO-1::GFP independent of the dystrophin complex.

SLO-1 contributes to the repolarization of the synaptic terminal

following neuronal stimulation, thereby terminating neurotrans-

mitter release. Consequently loss-of-function slo-1 mutants are

hypersensitive to the paralyzing effects of aldicarb, an acetylcho-

linesterase inhibitor, a phenotype indicative of enhanced acetyl-

choline release. Consistent with this interpretation, electrophysi-

ological recordings from neuromuscular junctions of slo-1 loss-of-

function mutants exhibit prolonged evoked synaptic responses

[15,16]. If CTN-1 regulates SLO-1 localization in motor neurons

and thus slo-1 function, we would expect ctn-1 mutants to exhibit

similar pharmacological and synaptic changes. Indeed, we found

that ctn-1 mutants were hypersensitive to aldicarb compared to

wild-type animals (Figure S3). To confirm this observation

directly, we measured synaptic responses from the neuromuscular

junctions of dissected wild-type and ctn-1 mutant animals

engineered to express channelrhodopsin-2 in motor neurons [31]

(Figure 5). Evoked synaptic responses were elicited by blue light

activation of channelrhodopsin-2 and recorded from voltage-

clamped post-synaptic body wall muscle cells. Consistent with our

pharmacological data and localization results, recordings from ctn-

1 showed prolonged evoked synaptic responses similar to those of

slo-1(lf) mutants (Figure 5B and 5C). Furthermore, muscular

expression of ctn-1 in ctn-1 mutant animals rescued the head-

bending phenotype (Figure 2B), but did not rescue prolonged

evoked synaptic responses (Figure S3B). These data strongly

suggest that altered synaptic responses of ctn-1 mutants result from

a neuronal defect.

In contrast to the slo-1(lf ) mutants, evoked responses of slo-1(gf)

mutants were short-lived (Figure 5C), and the charge integral, a

measure of total ion flux during the evoked response, was

significantly reduced (Figure 5E). Our genetic analyses demon-

strated that the ctn-1 mutation suppresses the sluggish locomotory

phenotype of slo-1(gf) mutants and disrupts SLO-1 localization

(Figure 1A, Figure 4C and 4D). If this is due to loss of neuronal

SLO-1(gf ) channels, the ctn-1 mutation should suppress the evoked

response defects of slo-1(gf). Consistent with this prediction, the

decay time of the ctn-1;slo-1(gf) double mutants (t1/2 = 6.6160.53 ms)

was significantly longer than slo-1(gf) (t1/2 = 3.2360.21 ms)

(Figure 5D), and the charge integral was restored to wild-type levels

(Figure 5E). Interestingly, ctn-1 mutants did not convert the decay

time of slo-1(gf) evoke responses to that of slo-1(lf), indicating that

residual SLO-1 function may be mediated by dispersed SLO-1

channels.

Discussion

In a genetic screen to identify novel regulators of SLO-1, we

found two alleles of ctn-1, a gene which encodes an a-catulin

orthologue. CTN-1 mediates normal bending of the anterior

body through SLO-1 localization near the dense bodies of body

wall muscles. CTN-1 also maintains normal locomotory speed

through SLO-1 localization within neurons. Based on our data,

we propose a model for ctn-1 function in localizing SLO-1

(Figure 6). In muscles, CTN-1 interacts with the dystrophin

complex. It is also possible that CTN-1 may influence the

stability of another protein that directly interacts with the dys-

trophin complex. Loss of CTN-1 function disrupts the integrity

of the dystrophin complex, thus compromising ISLO-1 and

SLO-1 localization near muscle dense bodies, where L-type

calcium channels are present. Disruption of SLO-1 localization

is expected to uncouple local calcium increases from SLO-1-

dependent outward-rectifying currents, resulting in muscle

hyper-excitation. Previous studies have shown that the head

bending phenotype, shared among mutants that have a defect in

the dystrophin complex or its associated proteins, results from

muscle hyperexcitability [17–19,32]. Our data further show that

this head-bending phenotype does not result from a synaptic

transmission defect, but from a muscle excitation and contrac-

tion defect. In neurons, SLO-1 localization is not mediated

through the dystrophin complex, suggesting that CTN-1

interacts with other proteins to localize SLO-1 to specific

neuronal domains.

Why does CTN-1 use two distinct mechanisms to localize SLO-

1 to subcellular regions of muscles and neurons? BK channels are

functionally coupled with several different calcium channels

(including voltage-gated L-type and P/Q-type calcium channels

and IP3 receptors) that are localized in different subcellular

regions [30,33,34]. Although it has not been determined whether

all of these calcium channels are functionally coupled with SLO-1

in C. elegans, these calcium channels are distributed in different

regions of neurons. For example, the L-type calcium channel

(EGL-19) is mainly expressed in the cell body and the P/Q type

calcium channel (UNC-2) is concentrated at the presynaptic

Figure 3. ctn-1 mutation disrupts normal localization of the dystrophin complex and ISLO-1. (A) An integrated transgenic line expressing
the lowest level of GFP-tagged CTN-1 was used for staining with anti-GFP (CTN-1, green) and anti-vinculin/DEB-1 (DEB-1, red) antibodies. Dashed box
area is enlarged in the bottom left of the panel (Merged) to show detail. Arrowheads indicate the attachment plaques that adhere tightly adjacent
muscle cells. Scale bar, 10 mm. (B) Transgenic animals expressing integrated GFP-tagged SGCA-1 were used to analyze the localization of SGCA-1 in
wild-type (WT), dys-1 ctn-1 and slo-1 animals. Scale bar, 10 mm. The graph shows quantified puncta intensities. Error bars, s.e.m. Wild-type vs. dys-1
(P,0.01), Wild-type vs. ctn-1 (P,0.01), Wild-type vs. slo-1 (P.0.05). (C) Transgenic animals expressing integrated mCherry-tagged ISLO-1 were used
for analyzing the localization of ISLO-1 in wild-type (WT) and ctn-1 animals. Scale bar, 10 mm. The graph shows quantified puncta intensities. Error
bars, s.e.m. Wild-type vs. ctn-1 (P,0.0001).
doi:10.1371/journal.pgen.1001077.g003
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terminals [35,36]. A distinct set of proteins is perhaps required for

SLO-1 channel localization near different calcium channels.

How CTN-1 interacts with the dystrophin complex in muscle

remains to be determined. It has been suggested that mammalian

a-catulin interacts with the hydrophobic C-terminus of dystrophin

resulting from alternative splicing [37]. However, the C. elegans dys-

1 gene does not encode a hydrophobic C-terminus. Thus, CTN-1

may interact with a different domain of dystrophin, or with

another component of the dystrophin complex. In this regard, it is

noteworthy that both mammalian dystrophin and C. elegans DYS-1

have multiple spectrin repeat domains, and that the N-terminal

region of vinculin which exhibits homology to that of a-catulin

(Figure S1) is known to bind the spectrin repeat domain of a-

actinin [38]. By extension, we speculate that the N-terminal region

of CTN-1 may bind the spectrin repeat domain of DYS-1 directly.

Alternatively, the coiled-coil domain of dystrophin, which is

known to interact with the coiled-coil domain of dystrobrevin [27],

may potentially bind the coiled-coil domain of CTN-1. Interest-

ingly, CTN-1 exhibits high homology to vinculin in both the N-

terminal and C-terminal regions (Figure S1B). The C-terminal

region of vinculin interacts with cytoskeletal molecules or

regulators (F-actin, inositol phospholipids and paxillin) in focal

adhesion and adherens junctions [39]. Because the C-terminal

region of CTN-1 is also necessary for normal head bending, we

speculate that this C-terminal region may be important for

tethering the dystrophin complex to other cytoskeletal proteins.

In mammalian striated muscle, dystrophin is enriched in

costameres [40] which are analogous to C. elegans dense bodies. A

costamere is a subsarcolemmal protein assembly that connects Z-

disks to the sarcolemma, and is considered to be a muscle-specific

elaboration of the focal adhesion in which integrin and vinculin are

abundant. Compromised costameres have been postulated to be an

underlying cause of several different myopathies [40]. It was

recently shown that ankyrin-B and -G recruit the dystrophin

complex to costameres [41]. Based on overall high homology of ctn-

1 to vinculin and a-catenin, we speculate that CTN-1 similarly

interacts with cytoskeletal proteins in the dense bodies, and links the

dystrophin complex to the dense bodies.

Another intriguing conclusion from our data is that loss of

CTN-1 does not completely abolish SLO-1 function. Complete

abolishment of SLO-1 function in ctn-1 mutant should alter the

decay time for evoked synaptic responses of ctn-1;slo-1(gf) to the

same degree as slo-1(lf) mutants, rather than to that of wild-type

animals (Figure 5D). Mutants including slo-1(gf), that have defects

in neural activation or membrane depolarization, are reported to

cause str-2, a candidate odorant receptor gene, to be expressed in

both AWC olfactory neurons whereas wild-type animals express

str-2 in only one of the AWC pair [42]. We find that ctn-1 mutation

does not suppress the misexpression of str-2 in both AWC neurons

in slo-1(gf) mutants, suggesting that ctn-1 mutations do not

completely abolish SLO-1 function (unpublished observations,

HK). It is thus likely that the defect in SLO-1 localization in ctn-1

mutants makes it less responsive to local calcium nanodomains

found at presynaptic terminals and dense bodies, but still able to

respond to depolarization-induced global calcium increases, albeit

at a lower level.

In conclusion, we have identified ctn-1, a gene encoding the C.

elegans homolog of a-catulin, and demonstrated that CTN-1

mediates SLO-1 localization in muscles and neurons by

dystrophin complex-dependent and -independent mechanisms,

respectively. How SLO-1 is localized to certain neuronal domains

will require further screening of slo-1(gf) suppressor mutants. Given

that proteins affecting components of the dystrophin complex are

likely to contribute to the pathogenesis of muscular dystrophy, a-

catulin is a candidate causal gene for a form of muscular dystrophy

in humans.

Materials and Methods

Strains and genetics
The genotypes of animals used in this study are: N2 (wild-type),

CB4856, dys-1(eg33) I, stn-1(tm795) I, ctn-1(eg1167) I, ctn-1(cim6) I,

slo-1(eg142) V, slo-1(ky399gf) V and sgca-1(tm1232) X. The following

transgenes were used in this study: cimIs1[slo-1a::GFP, rol-6(d)] [21],

cimIs5[mCherry::islo-1, ofm-1::GFP] [21], zxIs6[unc-17::chop-2(H134R)-

yfp; lin-15(+)] [31], cimIs6[GFP::sgca-1, rol-6(d)], cimEx5[ctn-1, ofm-

1::GFP], cimIs7[GFP::ctn-1, rol-6(d)], cimEx6[Pmyo-3ctn-1, Pmyo-3GFP,

ofm-1::GFP] and cimEx7[PH20ctn-1, PH20GFP,ofm-1::GFP].

Genetic screen for suppressor mutants of slo-1(ky399)
Gain-of-function slo-1(ky399) mutants were mutagenized by

exposure to 50 mM EMS (ethane methyl sulfonate) for 4 h [43].

Suppressors that suppress or ameliorate the sluggish locomotory

phenotype of slo-1(ky399gf) mutants were selected from F2 progeny

of the mutagenized animals. We screened approximately 5,000

haploid genome size for suppressor mutants and identified a total of

17 suppressor mutants. Genetic analysis of these suppressor mutants

indicates that three of these have a second mutation in the slo-1

gene. In addition, we found that eight have mutations in genes

causing head-bending phenotype (2 alleles of dyb-1, 3 alleles of stn-1

and 2 alleles of ctn-1). The remaining six mutants do not exhibit

distinct locomotory phenotypes when segregated from slo-1(gf).

Genetic mapping and cloning
For genetic mapping, slo-1(ky399) mutants were outcrossed 12

times to the CB4856 strain. The resulting strain was used for SNP

(single nucleotide polymorphism) mapping [44]. Alternatively, we

used CB4856 as a mapping strain when mapping is based on the

head-bending phenotype. For transgenic rescue, fosmid clones

purchased from Gene services Inc. (Cambridge, UK) were injected

into the gonad of ctn-1 mutant at 2 ng/ml along with ofm-1::GFP

marker (30 ng/ml). Once we rescued the head bending phenotype

of ctn-1 with a single fosmid, we rescued ctn-1 mutant with a

genomic DNA fragment encompassing the entire coding sequence

of ctn-1 and approximately 4 kb upstream of the putative

translation site.

To verify the predicted coding sequence of ctn-1, we first

performed BLAST search analysis using the genomic sequences of

C. briggsae and C. remanei. This analysis suggested that the first and

12th exons are longer than predicted in WormBase (WS208), and

that an additional exon (10th exon) is present. Second, we

sequenced C. elegans ORF ctn-1 clone (9349620) and confirmed the

Figure 4. ctn-1 mutation impairs normal localization of SLO-1 in muscles and neurons. The same integrated array, SLO-1::GFP, was used
for this analysis in different genetic backgrounds. (A–B) Muscular localization of SLO-1::GFP in wild-type, dys-1 and ctn-1 animals. Arrowheads
represent the ventral (or dorsal) nerve cords. (B) The graph showing quantification of puncta intensities. Error bars, s.e.m. Wild-type vs. dys-1 or ctn-1
(P,0.0001). Scale bar, 10 mm. (C–D) Neuronal localization of SLO-1::GFP in wild-type, dys-1 and ctn-1 animals (See also Figure S2). Regions of the
ventral nerve cord (dashed boxes) are enlarged in the bottom left of each panel to show detail. (D) The graph showing quantification of puncta
intensities. Error bars, s.e.m. Wild-type vs. dys-1 (P.0.05), Wild-type vs. ctn-1 (P,0.0001). Scale bar, 10 mm.
doi:10.1371/journal.pgen.1001077.g004

An a-catulin Homologue Regulates BK Channels

PLoS Genetics | www.plosgenetics.org 9 August 2010 | Volume 6 | Issue 8 | e1001077



Figure 5. ctn-1 mutation suppresses defects of slo-1(gf) evoked synaptic responses at the neuromuscular junctions. (A) Representative
evoked current responses from wild-type, slo-1(gf), ctn-1;slo-1(gf), ctn-1 and slo-1(lf) animals. (B) Normalized evoked current responses from (A). (C)
Evoked amplitude response. Wild-type (n = 31), slo-1(gf) (n = 15), ctn-1;slo-1(gf) (n = 12), ctn-1 (n = 16), slo-1(lf) (n = 21). There is no significant difference
between wild-type and each genotype used (P.0.05). (D) Half-time decay. Wild-type vs. slo-1(gf), P,0.05; wild-type vs. ctn-1;slo-1(gf), P.0.05; wild-
type vs. ctn-1, P,0.05; wild-type vs. slo-1, P,0.01. (E) Evoked charge integral. Wild-type vs. slo-1(gf), P,0.01.
doi:10.1371/journal.pgen.1001077.g005
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10th and the 12th exon sequences. Third, we performed sequence

analysis of the DNA fragment obtained from RT-PCR with a

primer set (SL1 and an internal primer) and identified the trans-

splicing site which is 29 bp upstream of the newly-defined

translation initiation site. Our analysis indicates that ctn-1 encodes

a predicted protein with 784 amino acids (Figure S1B).

Constructs and transformation
The ctn-1 genomic DNA (approximately 4 kb upstream of the

promoter and the entire coding sequence) was amplified by the

expand long template PCR system (Roche Applied Science) and

used directly for rescue. For PH20ctn-1 and Pmyo-3ctn-1 constructs,

the neuron-specific H20 [45] or muscle-specific myo-3 promoter

sequences were fused to the translation initiation site of the ctn-1

genomic DNA in frame by the overlapping extension PCR

(Roche). For localization of CTN-1, we inserted the GFP sequence

to the translation initiation site of ctn-1 cDNA, and then the ctn-1

promoter sequence was inserted before the GFP sequence. The

resulting construct rescued the head-bending phenotype of ctn-1

mutants and was used for generating integrated transgenic

animals. For GFP::sgca-1 construct, the GFP sequence was inserted

in-frame right after the signal sequence of sgca-1 open-reading

frame as described previously [21]. Transgenic strains were made

as described [46] by injecting DNA constructs (2–10 ng/ml) along

with a co-injection marker DNA (pRF4(rol-6(d)) or ofm-1::GFP) into

the gonad of hermaphrodite animals at 100 ng/ml. We obtained at

least 3 independent transgenic lines for rescue, and found that all

lines show similar results.

Measurement of locomotory speed
To remove bacteria attached to animals, approximately fifteen age-

matched (30 hr after L4 stage) hermaphrodite animals for each

genotype were placed on a NGM (nematode growth medium) agar

plate without bacteria for 15 min. The animals were then placed inside

one of two copper rings embedded in a NGM plate. We found that age

of agar plate influences the speed of animals, probably because the

surface tension resulting from the liquid surrounding animals slows

down movement. We used approximately one week-old plates for our

assay, and compared with the speed of wild-type control animals.

Video frames from two different genotypes were simultaneously

acquired with a dissecting microscope equipped with Go-3 digital

camera (QImaging) for 2 min with a 500 ms interval and 20 ms

exposure. We measured the average speed of animals by using Track

Objects from ImagePro Plus (Media Cybernetics).

Measurement of the number of eggs
The activity of egg laying muscle was measured indirectly by

counting eggs retained in uteri. Single age-matched (30 hrs post-

L4) animals (total 15 for each genotype) were placed in each well

of a 96 well plate that contains 1% alkaline hypochlorite solution.

The eggshells protect embryos from dissolution by alkaline

hypochlorite. After 15 min incubation, the remaining eggs were

counted in each well.

Body curvature analysis
Body curvature analysis was previously described [47]. A single

animal was transferred to an agar plate and its movement was

Figure 6. A model for CTN-1 function. In muscles, CTN-1 interacts with the dystrophin complex. ISLO-1 links the dystrophin complex to SLO-1.
The N-terminal region or the coiled-coiled domain of CTN-1 is likely to interact with the dystrophin complex. The C-terminal region may interact with
other cytoskeletal proteins. In neurons, CTN-1 interacts with SLO-1 through possible unknown intermediates other than the dystrophin complex.
doi:10.1371/journal.pgen.1001077.g006
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recorded at 20 frames per second. We limited image acquisition

within 15 to 60 seconds after transfer, because the head bending

phenotype is prominent when animals are stimulated to move

forward rapidly. A custom-written software automatically recog-

nizes the animal and assigns thirteen points spaced equally from

the tip of nose to the tail along the midline of the body, and

produces the pixel coordinates of thirteen points. First supple-

mentary angles were calculated from the coordinates of the first

three points with MATLAB software. First angle data were

obtained when the head swing of an animal reached the maximal

extension to the dorsoventral side.

Western blot analysis
Mixed stage worms were washed and collected in M9 buffer.

Equal volume of 26 Laemmli sample buffer was added to the

worm pellets. The resulting worm suspension was heated at 90 uC
for 10 min, centrifuged at 20,000 g for 10 min, and then

immediately loaded on 7.5% SDS-PAGE gel. The Western blot

analysis was performed using anti-GFP antibody (Clontech, JL-8)

and anti-a-tubulin antibody (Developmental hybridoma bank,

AA4.3).

Microscopy imaging
Fixation and immunostaining procedures are previously de-

scribed [21]. Fluorescence images were observed under a Zeiss

Axio Observer microscope with 406 objective (water-immersion,

NA: 1.2) or an Olympus Fluoview 300 confocal microscope with a

606 objective (oil-immersion, NA: 1.4) or 1006 objective (oil-

immersion, NA: 1.4). We typically observed more than 50 animals

for each genotype. Images for quantification were acquired under

an identical exposure time, gains and pinhole diameter. The

intensity of puncta from acquired images was analyzed using

linescan (Metamorph, Molecular Devices) and presented as values

obtained by subtracting background levels from the peak grey

levels of puncta.

Electrophysiological recordings
Electrophysiological methods were as previously described [48].

Briefly, animals raised on 80 mM retinal plates, were immobilized

with cyanoacrylic glue and a lateral cuticle incision was made to

expose the ventral medial body wall muscles. Muscle recordings

were made in the whole-cell voltage-clamp configuration (holding

potential 260 mV) using an EPC-10 patch-clamp amplifier and

digitized at 2.9 kHz. The extracellular solution consisted of (in

mM): NaCl 150; KCl 5; CaCl2 5; MgCl2 4, glucose 10; sucrose 5;

HEPES 15 (pH 7.3, ,340mOsm). The patch pipette was filled

with (in mM): KCl 120; KOH 20; MgCl2 4; (N-tris[Hydrox-

ymethyl] methyl-2-aminoethane-sulfonic acid) 5; CaCl2 0.25;

Na2ATP 4; sucrose 36; EGTA 5 (pH 7.2, ,315mOsm). All of

the animals carry a transgene (zxIs6) that expresses channelrho-

dopsin-2 under the control of the cholinergic motor neuron (unc-

17)-specific promoter. Evoked currents were recorded in a body-

wall muscle after eliciting neurotransmitter release by a 10 ms

illumination using a 470 nm LED (Thor labs) triggered with a

TTL pulse from the EPC10 pulse generator [31]. Evoked post-

synaptic responses were acquired using Pulse software (HEKA)

run on a Dell computer. Subsequent analysis and graphing was

performed using Pulsefit (HEKA), Mini analysis (Synaptosoft Inc)

and Igor Pro (Wavemetrics). The data were analyzed with one-

way ANOVA followed by Dunnett’s multiple comparison.

Supporting Information

Figure S1 Genetic mapping and cloning of ctn-1. (A) SNP used

for mapping is indicated on top. The fosmid clones used for rescue

experiments are listed. (B) The predicted amino acid sequence of

ctn-1. The mutation sites within predicted amino acid sequence of

ctn-1 are indicated as bold. Overall identity of CTN-1 to human a-

catulin is 39.4%. The parts of CTN-1 amino acid sequence

exhibiting identity to human vinculin are underlined. (C) Muscle

specific expression of ctn-1 rescues the head bending phenotype of

cim6 mutants. First angles of body curvature are shown from

different genotypes of animals. ns represents no significant

difference (P.0.05).

Found at: doi:10.1371/journal.pgen.1001077.s001 (0.78 MB TIF)

Figure S2 GFP::SLO-1 expression is detected in neuronal cell

bodies, and its expression levels are not altered in wild-type and

ctn-1 mutant animals. (A) GFP::SLO-1 expression near cell body of

neurons. Arrows indicate right and left side of the ventral nerve

cord. Arrowheads indicate patched expressions of GFP::SLO-1

near cell body. Scale bar, 10 mm. (B) The expression of SLO-

1::GFP was not altered in wild-type and mutant animals. Wild-

type animals without the SLO-1::GFP transgene (control), and wild-

type (wild-type), dys-1 (dys-1) or ctn-1 (ctn-1) animals with the slo-

1::GFP transgene were used for Western blot analysis (WB).

Found at: doi:10.1371/journal.pgen.1001077.s002 (1.44 MB TIF)

Figure S3 ctn-1 is aldicarb sensitive, and has a neuronal

function. (A) The aldicarb sensitivity of slo-1(if) and ctn-1. Twenty

age-matched animals in triplicate were placed on a plate

containing 0.5 mM aldicarb, and their paralysis was scored over

a three-hour period. Error bars represent s. e. m. Asterisk indicates

significant difference between two groups (P,0.05). (B) Muscle

expression of ctn-1 does not rescue prolonged synaptic responses of

the ctn-1 mutant. Wild-type (n = 31), ctn-1 (n = 16), ctn-1;zxI-

s6;Ex[Pmyo-3ctn-1, Pmyo-3GFP, ofm-1::GFP] (n = 7). Asterisks indicate

significant difference whereas ns represents no significant differ-

ence (P,0.05).

Found at: doi:10.1371/journal.pgen.1001077.s003 (0.72 MB TIF)

Video S1 Locomotory behavior of slo-1(ky399gf) and slo-

1(ky399);eg1167. A movie from slo-1(ky399gf) (Left side) and slo-

1(ky399);eg1167 (Right side). Mutation in ctn-1 suppresses the

sluggish movement of slo-1(ky399gf) animals.

Found at: doi:10.1371/journal.pgen.1001077.s004 (1.75 MB

MOV)
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