
Mutation in the Gene Encoding Ubiquitin Ligase LRSAM1
in Patients with Charcot-Marie-Tooth Disease
Duane L. Guernsey1, Haiyan Jiang1, Karen Bedard1, Susan C. Evans1, Meghan Ferguson2, Makoto

Matsuoka1, Christine Macgillivray1,3, Mathew Nightingale1, Scott Perry1, Andrea L. Rideout2, Andrew

Orr3, Mark Ludman2,4, David L. Skidmore2,4, Timothy Benstead5, Mark E. Samuels1,6*

1 Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada, 2 Maritime Medical Genetics Service, Izaak Walton Killam Health Centre, Halifax, Nova

Scotia, Canada, 3 Department of Ophthalmology and Visual Sciences, Dalhousie University, Halifax, Nova Scotia, Canada, 4 Department of Pediatrics, Division of Medical

Genetics, Izaak Walton Killam Health Centre and Dalhousie University, Halifax, Nova Scotia, Canada, 5 Department of Medicine, Division of Neurology, Dalhousie

University, Halifax, Nova Scotia, Canada, 6 Centre de Recherche de l’Hôpital Ste-Justine, Université de Montréal, Montréal, Quebec, Canada

Abstract

Charcot-Marie-Tooth disease (CMT) represents a family of related sensorimotor neuropathies. We studied a large family from
a rural eastern Canadian community, with multiple individuals suffering from a condition clinically most similar to autosomal
recessive axonal CMT, or AR-CMT2. Homozygosity mapping with high-density SNP genotyping of six affected individuals
from the family excluded 23 known genes for various subtypes of CMT and instead identified a single homozygous region
on chromosome 9, at 122,423,730–129,841,977 Mbp, shared identical by state in all six affected individuals. A homozygous
pathogenic variant was identified in the gene encoding leucine rich repeat and sterile alpha motif 1 (LRSAM1) by direct DNA
sequencing of genes within the region in affected DNA samples. The single nucleotide change mutates an intronic
consensus acceptor splicing site from AG to AA. Direct analysis of RNA from patient blood demonstrated aberrant splicing
of the affected exon, causing an obligatory frameshift and premature truncation of the protein. Western blotting of
immortalized cells from a homozygous patient showed complete absence of detectable protein, consistent with the splice
site defect. LRSAM1 plays a role in membrane vesicle fusion during viral maturation and for proper adhesion of neuronal
cells in culture. Other ubiquitin ligases play documented roles in neurodegenerative diseases. LRSAM1 is a strong candidate
for the causal gene for the genetic disorder in our kindred.
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Introduction

Charcot-Marie-Tooth disease (CMT) comprises a set of

genetically heterogeneous disorders of the peripheral nervous

system, affecting motor and sensory function. CMT is the most

common inherited neuromuscular disorder, with a wide range

of clinical presentations, but as described by OMIM (118200),

the salient features of CMT include a slowly progressive

weakness and atrophy of the musculature, predominantly of

the distal lower limb. This weakness often affects the patients

ability to walk or run, and eventually can progress to reach the

upper extremity. Within the broad group of patients defined

clinically, there are various categories of CMT defined by

neurophysiological subphenotypes, pathological findings on

biopsy, modes of familial transmission, and specific mutated

genes identified in individual patients. These criteria have been

extensively reviewed in recent literature [1–17]. A query of

OMIM for genes causing Charcot-Marie-Tooth yields 26

separate entries with allelic variants; the database of inherited

peripheral neuropathies notes 31 gene entries for CMT plus an

additional 7 described as causing distal hereditary motor

neuropathy. Nonetheless, mutations in new genes associated

with CMT continue to be reported[18].

The functions of genes whose mutation yields a CMT or closely

related motor neuropathy phenotype span a wide range of

disparate biochemical activities including structural components

of myelin (PMP22, P0), a mitochondrial transport and fusion

protein (MFN2), transcription factors (SOX, EGR2), components

of protein degradation pathways (DNM2, RAB7, LITAF), tRNA

synthetases (GARS, YARS), a nuclear structural component

(LMNA) and others [19]. Thus, novel CMT genes are difficult

to predict through selection of biological candidates for sequencing

in unexplained patients. The best approach for identifying the

genetic cause of unexplained CMT remains linkage mapping in

multiplex families, with adequate statistical power dependent on

the mode of transmission, the specifics of pedigree and local

population structure.

We report the mapping of a novel form of autosomal recessive

axonal CMT through homozygosity mapping in an extended

consanguineous pedigree of a local founder population. The

identified gene appears to play a role in vesicle metabolism,

consistent with some other CMT genes.
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Results/Discussion

In the course of clinical work, we ascertained a patient with

Charcot-Marie-Tooth disease, most closely similar to subtype AR-

CMT2 (recessive, axonal), although this clinical presentation has

sometimes been included as a type of CMT4[16]. The index

patient noted the gradual onset of weakness around age 20,

particularly affecting his distal lower extremities, but also present

in the hands. He noted episodic muscle cramping of extremity and

trunk muscles. He lost the ability to run in his early 20s. He denied

sensory symptoms. He had erectile dysfunction and urgency of

urination, but no other autonomic symptoms or evidence of

spasticity. At the time of examination he demonstrated bilateral pes

cavus, with marked wasting of distal lower extremity muscles and

mild wasting of hand intrinsic muscles. Fasciculations were present

in upper and lower extremity muscles. In the lower extremities he

had grade 4 out of 5 ankle dorsiflexion strength (MRC scale),

grade 4 hand intrinsic muscle strength and other muscles were

grade 5. He could not walk on either the toes or heels. There was

no gait ataxia. Upper and lower extremity tendon reflexes were

absent. He had mild loss of sensation on the fingertips and severe

loss of sensation in the feet and legs, most markedly to vibration,

but also involving proprioception and pain perception. Laboratory

investigation demonstrated an elevated serum creatine kinase (CK)

from 1082 to 1921 U/L (18-199 U/L). Nerve conduction studies

and needle electromyography demonstrated a diffuse sensorimotor

peripheral neuropathy. There was no evidence of a primary

muscle disorder. The predominant electrophysiological pattern

was consistent with axonal degeneration (see Table S1). Sensory

nerve action potentials were small or absent. All of the upper

extremity motor nerve conduction velocities were faster than

38 m/s. The ulnar compound muscle action potential amplitude

was small and a repeat study 2 years later demonstrated both

median and ulnar compound muscle action potential amplitudes

were small with normal motor conduction velocities. These are

accepted criteria for an axonal CMT [1]. Upper and lower

extremity muscles demonstrated ample denervation and partial

reinnervation, with fibrillation and reduced recruitment of large

motor unit potentials. Denervation of paraspinal muscles indicated

axonal degeneration was present at very proximal nerve levels.

Temporal dispersion was seen in some motor nerve conductions,

but no conduction block, which may be an indication of an

element of secondary demyelination, but the predominant

electrophysiologic pattern was axonal.

The proband is a member of an extended multiply consan-

guineous family derived from a rural eastern Canadian population

isolate; the extended pedigree includes five additional affected

individuals with similar suites of symptoms (Figure 1A). Other

affected family members exhibited sensory and motor dysfunction

with pes cavus. Autonomic symptoms have not been consistently

reported. Weakness and wasting has usually been moderate and

predominantly in distal lower extremity muscles. The onset of

symptoms has usually been in early adult years. One patient was

not aware of any difficulties, but had examination abnormalities in

his 40’s. Some of the affected individuals are able to ambulate into

later years, though others have become wheelchair dependent.

Sensory symptoms are sometimes not reported, but sensory

examination is consistently markedly abnormal, with loss of

vibration sense often up to proximal legs and hips. Proprioception

loss has been severe in some affecteds with accompanying sensory

ataxia. Laboratory abnormalities that are available in only a few

patients include mild increased CSF protein and increased serum

CK. One patient had significant essential tremor, but that has not

usually been reported. When EMG data is available, the pattern is

typically predominantly axonal degeneration with only mildly

slowed or normal motor nerve conduction velocities and no upper

extremity motor nerve conduction velocities slower than 38 m/s.

One other patient had evidence of paraspinal muscle denervation,

with a normal MRI of the spine, suggesting axonal degeneration at

very proximal nerve levels from the neuropathy.

Based on transmission of the trait in the pedigree, the genetics

are consistent with an autosomal recessive disorder. Given the

isolation of the regional population, it seemed likely that all

affected individuals in our cohort might be homozygous for the

same causal mutation, sharing a chromosomal haplotype around

the causal gene. We sampled DNA from six affected patients and

related family members. We performed high density genome-wide

SNP genotyping of five affected individuals. Formal linkage

analysis using a recessive model was not deemed useful, given

the highly consanguineous pedigree structure and also the

impossibility of obtaining reliable marker allele frequencies for

this small subpopulation. Instead, we used the homozygous

haplotype (HH) method to test for linkage to any of 23 known

relevant CMT loci. The HH method is a rapid non-parametric

algorithm that utilizes the subset of completely homozygous

markers in samples from affected individuals, and looks for

consistent loci by excluding regions where affected individuals are

homozygous for different alleles of a given SNP [20,21]. The

method is robust due to the high density of commercial genotyping

panels. In this case, HH confidently excluded all of the known

relevant CMT loci, under the assumption that all five affected

individuals in our pedigree are homozygous for the same causal

allele. HH flagged three chromosomal regions as potentially

linked, on chromosomes 9, 15 and 17 (Figure 1B).

Subsequently we genotyped additional pedigree members

including one more affected, and looked for regions of ex-

tended homozygosity shared identical-by-state (IBS) in the six

affected individuals but not in unaffecteds. As shown in Table 1,

among the longest series of consecutive homozygous SNPs, a

region on chromosome 9 appeared as a clear outlier. This

region corresponds to that predicted from HH analysis, and

extends from rs1324475 at 122,423,730 Mbp to rs10987845 at

129,841,977 Mbp. It is interrupted by several single heterozy-

Author Summary

Sensory motor neuropathies are diseases of the peripheral
nervous system, involving primarily the nerves which
control our muscles. These can result from either genetic
or non-genetic causes, with genetic causes usually referred
to as Charcot-Marie-Tooth (CMT) disease after the three
clinicians who first described the key diagnostic markers.
CMT patients lose muscle function, mainly in their arms
and legs, with increasing severity during their lives. There
are almost two dozen known genes that can mutate to
cause CMT, and these fall into a wide variety of
biochemical cellular pathways. We identified a group of
patients with CMT from a small rural community, with
good reason to suspect a genetic basis for their disease.
Using high-throughput mapping and DNA sequencing
technologies developed as part of the Human Genome
Project, we were able to find the likely mutated gene,
which was not any of the previously known CMT genes.
Based on its sequence, the gene, called LRSAM1, probably
plays a role in the correct metabolism of other proteins in
the cell. Among the known CMT genes, some are also
involved in protein metabolism, suggesting that this is a
generally important pathway in the neurons that control
muscle activity.

LRSAM1 Mutations in CMT
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gous SNPs, mostly in one particular sample; these presumably

represent false heterozygote genotype calls. In contrast, the

potential regions found by HH on chromosomes 15 and 17 were

not homozygous in all six affected individuals when all marker

data was considered. The likely linked interval is 7.42 Mbp in size

on chromosome 9, and includes 84 RefSeq annotated genes,

including a cluster of 14 olfactory receptor genes which were not

considered likely candidates.

We prioritized genes likely to have neuronal or neuromuscular

function based on manual review. In all we sequenced 314 coding

exons of 18 genes (HSPA5, DENND1A, RABGAP1, RAB14,

STXBP1, DNM1, SPTAN1, DAB2IP, LHX2, TOR1A, GSN,

LHX6, LMX1B, CDK9, CDK5RAP2, FPGS, SH2D3C,

LRSAM1), until we observed a particular homozygous variant

in the gene LRSAM1 (Figure 2A). This variant changes a coding

exon consensus splice acceptor AG dinucleotide to an AA. There

are three RefSeq annotated isoforms of LRSAM1, differing in the

59 noncoding region, generating transcripts of either 25 or 26

exons. All three splice forms predict the same open reading frame;

the variant identified in our patients lies in the penultimate coding

exon, either 24 (isoforms 1, 2) or 25 (isoform 3). The variant was

found homozygous in all six affected individuals, and either wild

type or heterozygous as expected among sequenced parents and

siblings (Figure 1A). This variant is not present in dbSNP build

130 which includes 2 million novel SNPS recently submitted by

the 1000 Genomes project, nor was it detected in any of 150 local

control (a mix of anglo- and franco-phonic individuals) or 96

CEPH Caucasian control samples, totalling almost 500 control

chromosomes. No other homozygous coding variants were

detected by sequencing this set of candidate genes.

The variant in question changes the consensus splice acceptor

site. We tested three splice site prediction programs (Berkeley

Drosophila Project, NetGene2 and SplicePort) to see whether they

were sensitive to the alternative site used in the homozygous

patients. All three programs correctly predicted the bona fide splice

acceptor site in the wild type sequence. The Berkeley tool failed to

predict the alternative AG two nucleotides internally in the mutant

sequence, while NetGene2 and SplicePort predicted this acceptor

site though with low confidence. We were able to test directly

whether splicing of the exon was altered, using total RNA

extracted from a fresh blood sample from one affected patient

(1702). By qualitative RT-PCR, we saw a product of the

appropriate size in both a control sample and the affected patient

sample, at roughly equivalent intensities (d.n.s.) Although the

Figure 1. Maritime family with Charcot-Marie-Tooth and genetic mapping. (A) Pedigree, with affected patients shaded in black, sampled
individuals have four digit id numbers directly below symbols, proband 1675 is indicated with black arrowhead. Sequenced individuals have
mutation status indicated (wild type is GG, homozygous mutant is AA, heterozygous mutant is AG). (B) Homozygous haplotype (HH) analysis. Map of
the RCHH intervals shared by 5 patients identified by Homozygosity Haplotype algorithm with a cutoff of 3.0 cM.
doi:10.1371/journal.pgen.1001081.g001

LRSAM1 Mutations in CMT
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resolution of the electrophoresis was much less than single

nucleotide, sequencing of the sample product from the affected

patient showed that splicing was to the next AG directly following

the true acceptor site, two bases into penultimate exon 24 (or 25 as

per isoform 3) (Figure 2B). This causes an obligatory frameshift,

leading to an altered open reading frame and premature

truncation of the protein after 643 (out of 723) residues in all

three spliced isoforms. The effect of this change on protein

expression was tested directly by Western blot using EBV-

transformed B-lymphocyte cell lines (B-LCL) derived from a

healthy control and from one of the affected CMT patients. While

a single strong band was detected by the anti-LRSAM1 antibody

in the control B-LCL (molecular weight approximately 78 kDa),

no protein was detected in the B-LCL derived from the CMT

patient (Figure 2C). Either the truncated protein is rapidly

degraded, or else is rendered non-reactive with our antibody. In

either case, the result is most likely to be a significant loss-of-

function of the gene product, although unusual gain-of-function

effects of a truncated protein can be imagined (though these might

be expected to behave in a dominant not recessive fashion).

LRSAM1, leucine rich repeat and sterile alpha motif containing

1, is predicted to be an E3 type ubiquitin ligase [22]. It is also

known as TAL (TSG101-associated ligase) and RIFLE. TSG101

itself is a tumor suppressor gene, with a reported role in

maturation of human immunodeficiency virus, and LRSAM1 is

implicated in its metabolism directly by polyubiquitination.

TSG101 is involved in retroviral vacuolar budding. Interestingly,

another TSG101-ubiquitinating ligase is known, (Mahogunin, or

MGRN1), for which knockout mice exist and exhibit a

neurodegenerative phenotype. Moreover, the known CMT gene

LITAF, also called SIMPLE, interacts with mouse ubiquitin ligase

gene product NEDD4 [23], also potentially with TSG101 [24],

and may itself be an E3 ubiquitin ligase [25], These related

findings support the interpretation that mutation of LRSAM1 is

probably causal in our patients. It remains to be determined

whether the pathogenic effects of mutations in these protein

degradation pathway genes act directly via specific neuron-specific

proteins (such as PMP22) or more generally through decreasing

cell viability.

The currently recommended diagnostic paradigm for Charcot-

Marie-Tooth entails a complex flow chart combining clinical,

familial and molecular genetic analyses [3]. While this approach

makes sense when DNA sequencing technologies are cost-limiting,

this mixed paradigm could soon be replaced by a more

comprehensive and pre-emptive molecular analysis. With the

advent of whole genome reagents such as all-exon hybridization

capture oligonucleotide libraries, together with the tremendous

cost-reductions in DNA sequencing using next-generation nano-

technologies, it should soon be feasible to sequence either entire

patient genomes, or entire exomes, for less than the cost of

traditional Sanger-based fluorescent capillary sequencing of sets of

candidate genes [26–28]. We envisage an analysis paradigm

whereby all patients with a potential genetic diagnosis, across any

medical subdiscipline, may first be sequenced to identify likely

pathogenic variants, which can then be cross-indexed with clinical

parameters to flag likely causal genes. This approach has recently

been shown to be feasible in a research context, including

detection of a pathogenic variant in a family segregating a known

form of CMT [29–32].

Materials and Methods

Clinical ascertainment and consent
Approval for the research study was obtained from the Capital

Health research ethics board. Patients were identified in the course

of routine clinical ascertainment and treatment of movement

disorders in the neurology clinic at the Halifax Infirmary. All

sampled family members provided informed consent to participate

in the study. DNA was obtained from blood samples using routine

extraction methods.

Genotyping and analysis
Whole-genome SNP scanning was performed at the McGill

University and Genome Quebec Centre for Innovation, using the

Illumina Human610-Quadv1_B panel. Data were scanned using

the Bead Array Reader, plate Crane Ex, and Illumina BeadLab

software, on Infinium II fast scan setting. Allele calls were

generated using Beadstudio version 3.1 with genotyping module.

Table 1. All intervals of 35 or more consecutive SNPs homozygous and identical by state among the six affected CMT samples.

SNPs Chr StartSNP EndSNP Start(bp) End(bp) Size(bp)

378 9 rs2479106 rs10123453 125 565 033 127 899 007 2 333 975

337 9 rs9409287 rs7039798 128 044 215 129 597 047 1 552 833

219 9 rs4837971 rs10986087 124 289 305 125 482 561 1 193 257

177 9 rs1324475 rs10760198 122 423 730 123 650 357 1 226 628

146 9 rs10760198 rs4837971 123 650 357 124 289 305 638 949

67 9 rs10123453 rs9409287 127 899 007 128 044 215 145 209

57 18 rs17240415 rs3891810 64 801 868 64 929 306 127 439

49 21 rs8132309 rs363568 29 767 744 29 954 834 187 091

46 4 rs17353301 rs10517306 33 489 284 34 049 422 560 139

41 7 rs4646450 rs2246709 99 104 254 99 203 655 99 402

40 9 rs7039798 rs10987845 129 597 047 129 841 977 244 931

37 1 rs6660164 rs4310401 80 222 072 80 428 702 206 631

36 9 rs11787664 rs10118040 116 821 477 116 919 235 97 759

35 4 rs4696998 rs7655220 21 588 415 21 746 131 157 717

Intervals are in descending order of number of consecutive SNPs, although the chromosome 9 italicized regions are contiguous.
doi:10.1371/journal.pgen.1001081.t001

LRSAM1 Mutations in CMT
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Data are generated in three different output formats, AB, Forward

strand, and Top strand (as defined by Illumina). We used AB

format for all linkage analyses.

Homozygosity haplotype (HH) analysis was performed accord-

ing to the method of Miyazawa [21]. The source code of HH

program was modified to customize the format of output. The

parameter LARGEGAP defined in the header file, which is used

to define large gap of two consecutive SNPs like centromere, was

changed from the default value 300,000 bp to 400,000 bp to

accommodate some non-centromere spaces for HumanHap610

genotypes. The revised C source code of HH program was

compiled with GNU compiler on a Linux-based operating system

Fedora. HH analysis requires a SNP annotation file, which

includes SNP name, physical coordinates, genetic distances, and

minor allele frequencies. The SNP annotation file provided by HH

software is for the Affymetrix 500K GeneChips Human Mapping

Array Set. The HH format annotation of Illumina HumanHap610

for CEPH population was created from the SNP annotations

downloaded from Illumina website. The genetic distances of SNPs

with empty value, inconsistent value, or zero were interpolated

Figure 2. Sequence showing mutation in genomic and cDNA of affected patient. (A) Mutation of splice acceptor site AG of LRSAM1 exon
24 (25 in alternative isoform 3) to dinucleotide AA in genomic DNA of patient 1702. Upper to lower panels: translation of coding exon; virtual
chromatogram of consensus genomic sequence forward direction; sequence chromatogram of affected patient reverse direction; virtual
chromatogram of consensus genomic sequence reverse direction. Red arrow points to homozygous mutation. (B) Sequence of cDNA from RNA of
patient 1702 showing aberrant splice site utilization and frameshift of encoded protein. Upper panel, sequence chromatogram of correctly spliced
cDNA from exon 24 to 25 (per isoform 3); lower panel, sequence chromatogram of incorrectly spliced cDNA from affected patient. Two base deletion
caused by splicing interior to exon 25 (red arrow). (C) Western blot of LRSAM1 protein in cells cultured from patient homozygous for LRSAM1
mutation. EBV-transformed B- lymphocytes from control or patient 1675 were extracted and Western blotted with anti-LRSAM1 antibody. Left, anti-
LRSAM1; center, anti-actin; right, Fast green total protein stain.
doi:10.1371/journal.pgen.1001081.g002

LRSAM1 Mutations in CMT
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according to the physical coordinates of their flanking SNPs. HH

analysis was performed with a cutoff value 3.0 cM. Homozygosity

analysis was performed using customized scripts and manual

inspection comparing samples from affected and unaffected

pedigree members.

Mutation detection and analysis
Annotated coding exons were amplified by PCR using standard

methods, and sequenced at Dalhousie University, using Sanger

fluorescent sequencing and capillary electrophoresis. Sequence

traces were analyzed using MutationSurveyor (Soft Genetics, Inc.)

Specific primers for amplification of LRSAM1 exons and PCR

conditions are provided in Table S2.

Western blot
EBV-transformed B-LCL cells derived from a healthy subject or

CMT patient 1675 were cultured in RPMI with 10% FBS and 1%

pen/strep in 5% CO2. Cells were pelleted and lysed in lysis buffer

(50 mM Tris-HCL, pH 7.4, 150 mM NaCl, 2 mM EDTA, 0.2%

Triton X-100 with 1 mM PMSF and protease inhibitor tablet

(Sigma) added to ice cold buffer immediately prior to use). Cells

were broken by vortexing for 1 minute. Cell debris was removed

by centrifugation at 160006g for 10 minutes. Protein concentra-

tion was determined by the Bradford method (Sigma). Samples

were diluted to 6 microg/microL in lysis buffer, then to 2 microg/

microL in sample dye (125 mM Tris-HCL ph 6.8 with 20%

glycerol, 4% SDS, 0.04% bromophenol blue, 10% 2-mercapto-

ethanol). Samples were heated to 95uC for 5 minutes prior to

separation of 50 ug sample on a 7.5% SDS-PAGE gel. Benchmark

pre-stained protein ladder (Invitrogen) was included on the gel.

Protein was transferred by wet transfer to methanol-wetted PVDF

membrane in transfer buffer (25 mM Tris-base, 192 mM glycine).

Membranes were blocked overnight in blocking buffer (5% skim

milk powder, 0.05% Tween 20, in PBS pH 7.4). Anti-LRSAM1

antibody (abcam) diluted 1:500 in blocking buffer was incubated

overnight at 4 degrees. Blots were washed in PBS- (0.05% Tween

20 in PBS pH 7.4) 15 minutes plus 365 minutes. HRP labelled

secondary anti-mouse antibody, diluted 1:2500 in blocking buffer,

was incubated for 1 hour at room temperature. Blots were washed

as above. HRP was visualized using SuperSignal West Pico

Substrate (Fisher Scientific) and exposing to X-ray film for 3-5

minutes. Protein transfer to the gel was confirmed by staining the

PVDF membrane with Fast Green.

The URLs for the data and analytic approaches presented

herein are as follows:

Online Mendelian Inheritance in Man (OMIM), http://www.

ncbi.nlm.nih.gov/Omim/

UCSC Genome Browser, http://genome.ucsc.edu/

NCBI, http://www.ncbi.nlm.nih.gov/

Database of inherited peripheral neuropathies, http://www.

molgen.ua.ac.be/CMTMutations/Home/Default.cfm

Supporting Information

Table S1 Nerve conduction study of proband. Normal values in

brackets. Abbreviations: NR (not recordable), EDB (extensor

digitorum brevis), AH (abductor hallucis), APB (abductor pollicus

brevis), ADM (abductor digiti minimi).

Found at: doi:10.1371/journal.pgen.1001081.s001 (0.02 MB

DOC)

Table S2 LRSAM1 PCR primers and conditions. 95C for 2 min.

Followed by 25 cycles of 95C for 30 sec, the appropriate annealing

temperature (listed in table above) for 30 sec, and 72C for 1 min.

Finish with 72C for 5 min.

Found at: doi:10.1371/journal.pgen.1001081.s002 (0.06 MB

DOC)
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