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Abstract
In vivo, in vitro and computational studies were used to investigate the impact of the synaptic
background activity observed in neocortical neurons in vivo. We simulated background activity in
vitro using two stochastic Ornstein-Uhlenbeck processes describing glutamatergic and GABAergic
synaptic conductances, which were injected into a cell in real time using the dynamic clamp
technique. With parameters chosen to mimic in vivo conditions, layer 5 rat prefrontal cortex cells
recorded in vitro were depolarized by about 15 mV, their membrane fluctuated with a S.D. of about
4 mV, their input resistances decreased five-fold, their spontaneous firing had a high coefficient of
variation and an average firing rate of about 5–10 Hz. Brief changes in the variance of the α-amino-3-
hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) synaptic conductance fluctuations induced
time-locked spiking without significantly changing the average membrane potential of the cell. These
transients mimicked increases in the correlation of excitatory inputs. Background activity was highly
effective in modulating the firing-rate/current curve of the cell: the variance of the simulated γ-
aminobutyric acid (GABA) and AMPA conductances individually set the input/output gain, the mean
excitatory and inhibitory conductances set the working point, and the mean inhibitory conductance
controlled the input resistance. An average ratio of inhibitory to excitatory mean conductances close
to 4 was optimal in generating membrane potential fluctuations with high coefficients of variation.
We conclude that background synaptic activity can dynamically modulate the input/output properties
of individual neocortical neurons in vivo.
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The response of cortical neurons in vivo to a repeated sensory stimulus is highly variable
(Softky and Koch, 1993; Holt et al., 1996; Shadlen and Newsome, 1998). Since the spike
generating mechanism in vitro shows considerably more reliability and precision than observed
in vivo (Mainen and Sejnowski, 1995; Fellous et al., 2001), most of the in vivo variability is
likely due to the variability of synaptic inputs (Zador, 1998). The level of synaptic background
noise has significant consequences for the input/output characteristics of an individual cortical
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neuron and affects its ability to detect transient or sustained input signals (Destexhe and Paré,
1999; Destexhe et al., 2003).

Correlated firing in small groups of neurons may occur in response to a stimulus (Sejnowski,
1976; Gawne and Richmond, 1993; Shadlen and Newsome, 1998; Bair, 1999; Bazhenov et al.,
2001) and may be modulated by attention (Steinmetz et al., 2000; Fries et al., 2001; Salinas
and Sejnowski, 2001). Recent computational studies indicate that the synaptic correlations
resulting from a sustained increase in presynaptic synchrony may significantly modulate the
incoming synaptic noise statistics and can influence the firing rate and the firing variability of
a postsynaptic neuron (Salinas and Sejnowski, 2000; Svirskis and Rinzel, 2000; Tiesinga et
al., 2000). In many cortical systems however, signals are transient rather than sustained. In the
visual cortex for example, visual stimuli produce transient synchronization lasting tens of
milliseconds in subpopulations of neurons (Zador, 1999; Fabre-Thorpe et al., 2001; Keysers
et al., 2001; Reinagel and Reid, 2002). Cortical neurons should be capable of detecting these
increases in input correlation despite intrinsic membrane noise and background synaptic
activity as predicted by modeling studies (Rudolph and Destexhe, 2001). It has been difficult
to experimentally assess the correlation detection ability of a cell mainly because the classical
techniques do not allow for the manipulation of the level of correlation between synaptic inputs.
Recently Chance et al. (2002) have explored these issues in vitro using a dynamic clamp. We
extend these results by independently varying the magnitudes and variability of the excitatory
and inhibitory conductances injected into neurons.

A precise characterization of synaptic background activity based on intracellular recordings
in vivo was only possible in preparations where the animal is anesthetized (Paré et al., 1998).
In this condition, the magnitude and time structure of synaptic inputs cannot be easily
manipulated, and the neurochemical environment of a neuron cannot be easily monitored. In
an in vitro preparation however, precise control of the stimulation patterns, a tight control of
the neurochemical environment, and a realistic level of intrinsic membrane noise are possible.
However, neurons in vitro have a greatly diminished amount of spontaneous synaptic activity
because of the slicing procedure and their membrane potentials typically remain constant well
below threshold. In contrast, spontaneous synaptic inputs in vivo can produce on average a
membrane depolarization of about 15 mV, voltage fluctuations of 10 mV in amplitude (4 mV
S.D.), an 80% decrease in input resistance, and a baseline discharge (2–10 Hz) with a high
coefficient of variation (Paré et al., 1998; Destexhe and Paré, 1999; Destexhe et al., 2003).

In order to study the input/output characteristics of neurons that receive background synaptic
noise, we used the dynamic clamp technique (Sharp et al., 1993) to create a real-time interface
between a neuron recorded in vitro and a computer model of in vivo synaptic background
activity. In this hybrid preparation, the stimulation of a neuron and its neurochemical
environment can be tightly controlled, the intrinsic membrane noise is intact, and simulated
background in vivo-like synaptic noise is injected into the neuron. Synaptic background activity
can be explicitly simulated by large numbers of excitatory and inhibitory synapses that release
randomly (Bernander et al., 1991; Destexhe and Paré, 1999; Svirskis and Rinzel, 2000;
Tiesinga et al., 2000). Previous work has shown that, at the soma, the synaptic input resulting
from the activation of thousands of inhibitory and excitatory synaptic conductances distributed
throughout the dendritic tree is statistically equivalent to two independent fluctuating point-
conductance injections modeled as Ornstein-Uhlenbeck (OU) stochastic processes (Destexhe
et al., 2001, 2003).

In this study, we first investigated the parameter ranges within which synaptic background
activity modeled as OU conductances restores in vivo-like passive and active properties in cells
recorded at their soma in vitro. Using a detailed compartment model, we then examined how
changes in the correlations of synaptic inputs resulted in predictable changes in the variance
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of the membrane potential voltage at the soma. This change in variance can be simulated in a
point-conductance model by changing the variance of the stochastic process describing
excitatory inputs. In order to investigate transient changes in synchrony in cells receiving
continuous synaptic background inputs, we studied the spiking probability of cells in response
to brief changes in the variance of this stochastic process. Finally, we examined the firing rate
sensitivity to sustained current injections (firing-rate vs. current (F-I) curve) as a function of
the mean and variance of the simulated synaptic background activity.

EXPERIMENTAL PROCEDURES
In vivo experiments

The methods used in the in vivo preparations are similar to those described elsewhere (Henze
et al., 2000). Three Sprague–Dawley rats (300–500 g) were anesthetized with urethane (1.65
g/kg; Sigma) and placed in a stereotaxic apparatus (Kopf, Tujunga, CA, USA). The body
temperature of the rat was monitored and kept around 35 °C. A small portion of the skull was
drilled (about 1 mm×1 mm) above the pre-limbic/infra-limbic areas of the pre-frontal cortex
(2.0 mm anterior from Bregma, 1.0 mm lateral, in either hemisphere) and cells were recorded
about 3 mm below the surface. The dura mater was carefully punctured to expose the brain
tissue. A 0.9% NaCl solution was used to keep the opening moist. Intracellular recordings were
obtained using 1.8 mm or 2.0 mm capillary glass (Sutter Instrument Inc., Novato, CA, USA)
filled with 1 M potassium acetate (80–120 MΩ, determined using bridge balancing). Once the
electrode tip was placed in contact with the brain, the hole was filled with a mixture of paraffin
(50%) and paraffin oil (50%) to prevent the drying of the brain and to decrease pulsations. The
electrode was then advanced using a Sutter MP-285 micromanipulator (depth: 1.0 mm–4.0
mm) to obtain intracellular recordings. Amplification was achieved using an Axoclamp 2A
amplifier (Axon Instruments, Foster City, CA, USA) in current clamp mode and data were
digitized using a PCI16-E1 data acquisition board (National Instrument, Austin, TX, USA).
Data acquisition rate was 10 kHz. Six putative pyramidal cells were recorded (regularly spiking
with adapting responses to current pulses). Two of these cells exhibited up and down states.
Because these states are driven by structured synaptic activity (Lewis and O’Donnell, 2000)
they were not considered in a state of ‘background’ synaptic activity, and were discarded from
our analysis. The four other cells were used in this study.

In vitro experiments
Coronal slices of rat pre-limbic and infra limbic areas of prefrontal cortex were obtained from
2–4 week old Sprague–Dawley rats. Rats were anesthetized with Isoflurane (Abbott
Laboratories, IL, USA) and decapitated. Their brain were removed and cut into 350 μm thick
slices using standard techniques. Patch-clamp was performed under visual control at 30–32 °
C. In most experiments Lucifer Yellow (RBI; 0.4%) or Biocytin (Sigma; 0.5%) was added to
the internal solution. In some experiments, synaptic transmission was blocked by D-2-amino-5-
phosphonovaleric acid (50 μM), 6,7-dinitroquinoxaline-2,3, dione (10 μM), and bicuculline
methiodide (20 μM). All drugs were obtained from RBI or Sigma, freshly prepared in ACSF
and bath applied. Whole cell patch-clamp recordings were achieved using glass electrodes (4–
10 MΩ) containing (mM: KmeSO4, 140; HEPES, 10; NaCl, 4; EGTA, 0.1; Mg-ATP, 4; Mg-
GTP, 0.3; phosphocreatine 14). Data were acquired in current clamp mode using an Axoclamp
2A amplifier. Extracellular stimulation (Fig. 1B) was conducted with a large tip (100 μm)
bipolar electrode (FHC, Bowdoinham, ME, USA) placed between layers 2/3 and layer 5, about
100 μm away from the cell’s main axis. The electrode was attached to an analog stimulus
isolation unit (Getting Instruments, IA, USA) commanded by the data acquisition computer
(see below). We used regularly spiking layer five pyramidal cells.
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All in vitro voltage measurement were corrected for the liquid junction potential. This junction
potential is negligible when sharp electrodes are used (as in the in vivo experiments described
above) because the concentration of ions in the electrode is high and because the ions’ mobility
is similar. For the patch clamp technique however, this junction potential cannot be neglected.
In control experiments we measured the junction potential. We first placed the internal solution
in the bath and we zeroed the amplifier. We then replaced the bath solution by the standard
ACSF and measured the junction potential in current clamp mode. The junction potential was
consistently between 8 and 10 mV (9 mV±1; three electrodes, five measurements), so we
subtracted 10 mV from all the measurements obtained in vitro, in current clamp mode. Details
of the estimation and measurements of liquid junction potentials can be found elsewhere (Barry
and Lynch, 1991; Barry, 1994; Neher, 1995).

Histology
Cell staining (Fig. 5A, inset) was conducted using a standard diaminobenzidine procedure.
Slices were fixed for at least 4 h in a solution of 4% paraformaldehyde. Sections were then
washed 20 min with 1% H2O2 to eliminate endogenous peroxidase. Slices were repeatedly
(4×5 min) washed in a phosphate-buffered saline containing 2.5% dimethyl sulfoxide.
Following 2 h incubation in avidin biotin complex (ABC kit; Vector Laboratories, Burlingame,
CA, USA), the peroxidase product was revealed using tetramethylbenzidine using the
following procedure. Slices were incubated for 20 min in a phosphate buffer solution (0.1 M;
pH 6.0) containing 0.4% ammonium chloride and 0.001% tetramethylbenzidine. This reaction
was stabilized by incubating the tissue for 15 min in a phosphate buffer containing 0.4%
NH4Cl, 1% cobalt chloride, 0.1% diaminobenzidine and 0.05% H2O2. Slices were then
mounted and dried for tracing using a Neurolucida system (Micro-brightfield Inc., Colchester,
VT, USA).

Data acquisition
Data were acquired using two computers. The first computer was used for standard data
acquisition and current injection. Programs were written using Labview 6.1 (National
Instrument), and data were acquired with a PCI16-E1 data acquisition board (National
Instrument). Data acquisition rate was either 10 or 20 kHz. The second computer was dedicated
to dynamic clamp (Fig. 1B). Programs were written using either a Labview RT 5.1 (National
Instrument) or a Dapview (Microstar Laboratory, Bellevue, WA, USA) front-end and a
language C backend. Dynamic clamp (Sharp et al., 1993;Hughes et al., 1998;Jaeger and Bower,
1999) was implemented using a PCI-7030 board (National Instrument) at a rate of 1.2 kHz, or
a DAP-5216a board (Microstar Laboratory) at a rate of 10 kHz. Dynamic clamp was achieved
by implementing a rapid (0.83 ms or 0.1 ms) acquisition/injection loop in current clamp mode.
There was no difference between the two experimental setups; therefore, all data were pooled.
All experiments were carried in accordance with animal protocols approved by the N.I.H.
Efforts were made to minimize the number of animals used and their suffering. A total of 33
pyramidal cells were used in this study.

Data analysis
Fitting procedures were based on the Nelder-Mead minimization method with a tolerance of
1% (Nelder and Mead, 1965). To have a good estimate of the coefficient of variation, the
histograms of inter-spike intervals (ISIs) were fitted by a gamma distribution (Fig. 4A) of the
form:

FELLOUS et al. Page 4

Neuroscience. Author manuscript; available in PMC 2010 August 26.

H
H

M
I Author M

anuscript
H

H
M

I Author M
anuscript

H
H

M
I Author M

anuscript



where μ, τd and r were free parameters such that μ=1/(<ISI>-τd), r=1/(σISI μ)2 τd>0 was the
‘dead time, and Γ(r) is the gamma function.’ For a Poisson distribution r=1. Across all
conditions, the binning of the histograms of the ISIs remained fixed at 100, and the highest bin
was six times the mean ISI. We found that these values ensured a good fit, irrespective of
average firing rate and experimental variability. The coefficient of variation (CV) was
calculated using the values of the fit:

Spike probability was computed as the ratio n/nt, where n is the number of spikes elicited during
the stimuli and 5 ms after the stimuli offsets, and nt was the total number of spikes recorded.

For Figs. 7 and 8, the amplitudes of the input were expressed in units of the S.D. of the
background noise (labeled ‘signal-to-noise ratio,’ or SNR), so that an amplitude of 1
corresponded to the case where the S.D. of the fluctuations during an input transient and before
the transient were identical. When no background noise was included, the amplitudes of the
signal current pulses were represented in the units of the S.D. of the noisy case, so that an
amplitude of 1 corresponded to the S.D. of the background current injected in the noisy
condition when no inputs were present.

Data were analyzed offline using MATLAB (The Mathworks, Natick, MA, USA).

Results are given as mean±S.D.

Computational modeling
Computational simulations were performed using two morphologically reconstructed models
of cortical neurons. Simulations were performed based on a cat neocortical pyramidal layer 6
neuron from parietal cortex extensively studied and tuned to experimental data (total membrane
area 34,636 μm2; details in Contreras et al., 1996), and a rat prefrontal cortex layer 5 pyramidal
cell obtained for the purpose of this study (total membrane area 28,642 μm2; Fig. 5A, inset).
This cell was recorded using the patch clamp technique while synaptic transmission was
blocked. The resting membrane potential was −81 mV. The cell input resistance was 185
MΩ and was computed as the slope of the V-I curve obtained from a series of hyperpolarizing
pulses of different amplitudes. The cell time constant was 37±5 ms and was obtained using the
fit with a double exponential of the voltage drop elicited by 6 hyperpolarizing pulses of varying
amplitude, repeated at least three times.

For the cat cell, passive model parameters were adjusted to fit intracellular recordings obtained
after application of TTX and synaptic blockers (Destexhe and Paré, 1999) and they were kept
constant over all simulations. An axial resistivity of Ra=250 Ωcm, membrane resistivity of
Rm=22 kΩcm2 (Rm=50 kΩcm2 in the axon), and capacitance of Cm=1 μF/cm2 (Cm=0.04 μF/
cm2 in the axon) were used, where Cm was increased and Rm were decreased by a factor of
1.45 to account for the surface correction due to dendritic spines (DeFelipe and Fariñas,
1992). Ra and Rm for the rat cell were fitted to results obtained from hyperpolarizing current
injection in vitro, and were Ra=50 Ωcm and Rm=67 kΩcm2 (Rm=50 kΩcm2 in the axon). The
same values for spine correction and capacitance were used as in the case of the cat cell.

Voltage-dependent conductances were inserted in the soma, dendrites and the axon of each
reconstructed cell to simulate active currents (sodium current INa, delayed-rectifier potassium
current IKd and voltage-dependent potassium current IM). All currents were described by
Hodgkin-Huxley type models with kinetics taken from a model of hippocampal pyramidal cells
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(Traub and Miles, 1991), adjusted to match voltage-clamp data of cortical pyramidal cells
(Huguenard et al., 1988). For the rat cell, maximal dendritic conductance densities of 44.8 mS/
cm2 (30.9 mS/cm2 in soma, 309 mS/cm2 in axon) for INa, 8.6 mS/cm2 (6 mS/cm2 in soma, 60
mS/cm2 in axon) for IKd, and 0.43 mS/cm2 (0.3 mS/cm2 in soma) for IM (no IM in axon) were
used. Slightly larger values of 52.3 mS/cm2 (36.1 mS/cm2 in soma, 361 mS/cm2 in the axon)
for INa, 10.1 mS/cm2 (7 mS/cm2 in soma, 70 mS/cm2 in axon) for IKd, and 0.51 mS/cm2 (0.35
mS/cm2 in soma) for IM (no IM in the axon) were used for the cat cell.

Synaptic currents were incorporated using two-state kinetic models of glutamate α-amino-3-
hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and GABAA receptor types (Destexhe
et al., 1994) with quantal conductances of 869 pS for distal regions, 600 pS for proximal region
for AMPA and 1739 pS for GABAA. The contribution of NMDA receptors was assessed in
control experiments. In a few simulations NMDA currents were included along with AMPA
currents (see Results). No metabotropic receptors were included. For both cells, the densities
of synapses in different regions were estimated from morphological studies of neocortical
pyramidal cells (White, 1989; Larkman, 1991; DeFelipe and Fariñas, 1992; e.g. 16,563
glutamatergic- and 3376 GABAergic-simulated synapses for the cat cell). An accelerating
algorithm (Lytton, 1996) was used to perform the simulations in a time-efficient manner.

Synaptic background activity was explicitly simulated by the random activity of inhibitory and
excitatory synapses according to Poisson processes with average rates of 5.5 Hz for GABAA
synapses, and 1.0 Hz for AMPA synapses. These firing rates were chosen to account for the
average low probability of release at excitatory synapses and were estimated from intracellular
recordings of pyramidal neurons before and after application of TTX (Paré et al., 1998;
Destexhe and Paré, 1999). The statistics of the synaptic background activity was modified by
introducing a correlation in the random background activity. To accomplish this, we introduced
some redundancy in the release events, without changing the mean release rate at single
terminals (and therefore without change in the overall synaptic conductance). N0 independent
Poisson-distributed streams of release events were redistributed among all N synapses, which
for N0<N led to a co-release of several synapses, whereas the release at each terminal still
followed a Poisson process (see details in (Destexhe and Paré, 1999; Rudolph and Destexhe,
2001). A correlation of 0 was obtained when N0=N, and a correlation of 1 for N0=1 (Destexhe
and Paré, 1999; Rudolph and Destexhe, 2001).

Current injections resembled the protocol used in the experimental setup, and consisted of a 3
s current pulse from which F-I curves were obtained. The un-normalized F-I curves were fit
to a sigmoid of the form:

where the “working point” is defined as the stimulus amplitude corresponding to 50% of the
maximal asymptotic firing rate, and the “gain” is defined as the maximum slope.

All simulations were performed using the NEURON simulation program (Hines and
Carnevale, 1997), running on Dell computers (Dell Computer Corporation, Round Rock, TX,
USA) under the LINUX operating system.

Point conductance model
A simplified model of synaptic background activity was incorporated into one-compartment
models with membrane area, passive settings and voltage-dependent currents INa, IKd and IM
appropriate for the cat and rat pyramidal cells.
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The synaptic background activity was simulated as a fluctuating point conductance, as
previously described (Destexhe et al., 2001). The total synaptic current injected in dynamic
clamp was calculated as the sum of two independent conductances

where EAMPA and EGABA are the reversal potentials for AMPA and GABAA conductances (0
mV and −75 mV respectively), and V is the instantaneous membrane voltage of the recorded
pyramidal cell. The fluctuating conductances Ge and Gi are given by two OU processes
(Uhlenbeck and Ornstein, 1930):

where Ge0 and Gi0 are average conductances, and τe and τi are time constants (2.7 ms and 10.7
ms respectively throughout this study), χ1(t) and χ2(t) are Gaussian white noise terms of unit
S.D., De and Di are the “diffusion” coefficients, and Ge and Gi are Gaussian variables with
S.D.s  and  respectively. The procedure used for numerical
integration of these stochastic equations is detailed elsewhere (Destexhe et al., 2001).

This formulation allows for an analytical expression of the power spectral characteristics of
Ge and Gi (Gillespie, 1996). In previous work we showed that σe, σi, Ge0 and Gi0 can be tuned
to match the S.D. and power spectral characteristics of the overall excitatory and inhibitory
synaptic conductances measured at the soma of a reconstructed cat pyramidal cell undergoing
random synaptic inputs (Destexhe et al., 2001). This study showed that, irrespective of the cell
morphology, best fits were obtained for Gi0≈5Ge0 and σi≈2.5σe. Unless otherwise noted, σe,
σi, Ge0 and Gi0 will follow these constraints. Intracellular recordings during periods of intense
network activity revealed an average Vm of about −65 mV when IPSPs reverse around −75
mV, and of about −51 mV when IPSPs reverse at −55 mV, as obtained with chloride-filled
sharp electrodes (Destexhe and Paré, 1999). These values imply that chloride-mediated events
(presumably GABAA conductances) dominate the overall conductance due to network activity.

Simulations of the point conductance model were performed with NEURON, and Visual C+
+ (Microsoft) was used to program the dynamic-clamp current injections from Labview RT,
or Dapview.

RESULTS
Recreation of in vivo-like activity

Intracellularly recorded (n=5) layer 5 pyramidal cells of rat prefrontal cortex in vivo under
urethane anesthesia exhibit large fluctuations in their membrane potentials, accompanied by
occasional spontaneous discharges (Fig. 1A). These membrane fluctuations had a S.D. of about
4 mV (3.9±0.5 mV; n=4), the average membrane potential was around −65 mV (−65±2.6 mV;
n=4), and the spontaneous discharge rate was highly irregular with a CV around 1 (0.94±0.17;
n=4) and an average firing rate of about 4 Hz (3.7±1.5 Hz; n=4). The input resistances of these
cells were around 40 MΩ (44±14 MΩ; n=5) and were low compared with in vitro recordings.
These characteristics obtained under urethane anesthesia in rat prefrontal cortex were similar
to those obtained in cat parietal cortex in vivo under ketamine-xylazine anesthesia (Paré et al.,
1998;Destexhe and Paré, 1999).
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In contrast, the slice preparation of rat prefrontal cortex showed little spontaneous activity.
Intracellularly recorded layer 5 pyramidal neurons (n=21) in this in vitro preparation had no
spontaneous firing, and their membrane potentials were almost constant around a resting value
of −82±3 mV (n=21), as shown for the cell in Fig. 1B1. We attempted to mimic in vivo
conditions in vitro using a stochastic model of background synaptic activity, implemented by
the real-time injection of a fluctuating conductance (Fig. 1B, left) obtained as the sum of two
random processes with time constants given by AMPA (2.7 ms) and GABAA (10.7 ms)
postsynaptic conductances variation (see Experimental Procedures). Fig. 1B3 shows the
current resulting from the injection of these two fluctuating conductances, and Fig. 1B2 shows
the corresponding membrane potential. Fig. 1C shows a free running bout of activity of a
prefrontal cortex cell in vitro undergoing simulated synaptic background activity. With the
proper parameter tuning, this cell mimicked the measurements of background activity obtained
in vivo (Fig. 1A; Paré et al., 1998;Destexhe and Paré, 1999): It had a low input resistance (41
MΩ), an average membrane potential of −65.8 mV (an estimated 10 mV junction potential was
subtracted from the measured membrane potential; see Experimental Procedures), a S.D. for
the membrane potential fluctuations of 4.6 mV, a CV of 0.91 and an average firing rate of 2.5
Hz. Because this cell was not bursting, its CV was slightly lower than that typically obtained
from in vivo recordings (Holt et al., 1996). Also, the membrane potential in vitro contained
more spectral power at high frequency than that obtained in vivo. The conductances were fit
to the spectral characteristics of the excitatory and inhibitory somatic conductances measured
on a reconstructed multi-compartmental cell receiving a realistic distribution of 16,563
glutamatergic synapses and 3376 GABAergic synapses releasing in a Poisson fashion at 1 Hz
and 5.5 Hz respectively (Destexhe et al., 2001). Additional simulations were conducted to
assess the influence of NMDA receptors on input resistance and average depolarization level.
In these simulations, NMDA receptors were paired with AMPA receptors, with an NMDA/
AMPA conductance ratio that was varied between 0 and 0.5 (McAllister and Stevens,
2000;Watt et al., 2000). GABAA synapses were left unchanged. The simulations showed than
the input resistance changed by less than 5% and Vm changed by less than 4% in comparison
with the model where only AMPA and GABAA receptors were included (not shown). These
results show that a judicious choice of the first two moments (mean and S.D.) of synaptic
background activity for excitation and inhibition (captured here by two OU processes) are
sufficient to capture essential in vivo characteristics in vitro.

The input resistance of a cell determines how much current will be required to bring it to
threshold, and hence the minimum synaptic input needed to elicit a spike. We attempted to
reproduce the five-fold increase in input resistance observed in vivo when background activity
was suppressed by TTX (Paré et al., 1998; Destexhe and Paré, 1999). We first tried to mimic
these in vivo conditions by using a large stimulating electrode to stimulate the afferents to a
pyramidal cell recorded intracellularly in vitro (Fig. 1B, right panel). The stimulation patterns
were Poisson trains (120 Hz and 200 Hz) of pulses of variable amplitude (Fig. 2A, lower trace).
During the synaptic stimulation, negative pulses of different amplitudes were somatically
injected (time t1 in Fig. 2A), and the input resistance was computed as the slope of the resulting
I–V curve. Fig. 2B shows that the average membrane potential only increased by about 9 mV
in this cell, while the input resistance decreased only by a factor of 1.25. Changing the
extracellular stimulation strength and frequency was unsuccessful in generating more than a
1.5-fold decrease of input resistance (1.4±0.3; n=5).

In contrast to the results of extracellular stimulation, the simulation of synaptic activity using
the point-conductance clamp depolarized the cell by about 16 mV and decreased its input
resistance by a factor of 4.4, closer to what would be observed in vivo (Fig. 2C). The point
conductance clamp was constrained by four main parameters: The average excitatory Ge0 and
inhibitory Gi0 conductances, and their S.D.s σe and σi respectively (see Experimental
Procedures). A systematic variation of these parameters revealed that the reduction of input
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resistance was mainly due to the mean level of inhibitory conductance Gi0 (Fig. 3A and B).
The relationship between the reduction in input resistance and average inhibitory conductance
was linear (Fig. 3C) with an increase in the mean inhibitory conductance yielding a proportional
decrease in input resistance (slope: 260%/μS). The point-conductance model reproduced well
these experimental findings (Fig. 3D), and further explained why such a reduction in input
resistance occurred; As Gi0 was increased, the membrane potential became dynamically
‘clamped’ to the reversal potential of GABA (−75 mV), and any voltage deflection produced
by a current pulse was apparently reduced, if it tended to push the membrane potential away
from −75 mV. Because the absolute values for Gi0 were about four times greater than for
Ge0 (from the rest, about −60 mV, the differential to the GABA reversal (15 mV) is four times
smaller than the voltage differential to the AMPA reversal potential (60 mV)), it follows that
Rin should be more sensitive to Gi0 variation than to Ge0 variations. In general, this sensitivity
should not be strictly linear because it depends on the voltage dependence of the currents active
at rest. However, Fig. 3 shows that the linear approximation gave a good fit. Changes in the
S.D. of excitatory and inhibitory inputs introduced no significant change in input resistance
(not shown).

Firing variability
The spontaneous firing pattern of cells recorded in the point-conductance model were highly
irregular. The ISI histogram had the shape of a γ distribution (Fig. 4A). The best fits of the ISI
distribution with a γ function yielded low r coefficients (see Experimental Procedures; 2.2±0.5;
n=7), indicating that the ISI distribution approximated a Poisson process with refractory period.
A measure of the spiking irregularity was given by computing the CV of the ISIs, defined as
the ratio of the S.D. of the ISIs to its mean. For the cell shown in Fig. 4B, the CV reached a
steady state value (less than 3% variation per 20 s) of about 0.7 after about 150 s. The CV
depended on the mean excitatory conductance Ge0 (Fig. 4C). In this cell, the CV was maximal
for Gi0 to Ge0 ratios between 4 and 5 (4.3±1.1; n=4 with maximum average CV of 0.83±0.04).
For high Gi0/Ge0 ratios the cell had a low firing rate (about 1 Hz for Ge0=0.0025 μS) and large
regular ISIs. This regularity at low frequencies may be due to a slow inactivation of a spike-
induced potassium current (such as a slow calcium-dependent IAHP or slowly inactivating
potassium currents). Further pharmacological studies would be required to better characterize
these currents. For low ratios, the cell tended to fire at higher rates (19 Hz for Ge0=0.011 μS)
with a low CV that was obtained when the CV vs. time curve reached a stable state (less than
3% variation per 20 s). CV2 yielded qualitatively the same result because there was no
significant modulation of the firing rate during the data collection (Holt et al., 1996). Since the
excitatory driving force is about four to five times larger than the inhibitory driving force, these
results indicate that the firing variability is maximal (CV highest) in conditions where the
excitatory and inhibitory currents are about equal, in other words when excitatory and
inhibitory inputs are balanced (Shadlen and Newsome, 1994;Troyer and Miller, 1997).

These results provided a basis for the choice of the values of the parameters of the two OU
processes that describe synaptic background activity. σe was set to yield an appropriate level
of membrane fluctuations (about 4 mV; typical values range between 3 and 10 nS), Ge0 was
set to yield an appropriate level of average depolarization and background firing (15 mV
depolarization and 5–10 Hz respectively; typical values range between 5 and 15 nS), and the
value of Gi0 was the primary determinant of the input resistance of the cell (about 50 MΩ;
typical values range between 25 and 70 nS). σi Remained a free variable that could be used to
set the gain of the cell (see below; typical values range between 7 and 25 nS). Note that the
manipulation of σe to adjust membrane potential fluctuations may also have consequences for
the firing rate of the cell. Ge0 did not affect the membrane fluctuation, so σe should be set first.
The exact values for these four parameters are set in accordance to the intrinsic passive
properties of the particular cell being recorded.
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Variance detection
Input signals consisting in the simultaneous firing of a population of cells occur in vivo on a
background of random synaptic noise. In order to assess how correlated synaptic events are
reflected at the soma, we use a reconstructed multi-compartmental cell (Fig. 5A) from the rat
prefrontal cortex that received 16,563 AMPA synapses and 3376 GABA synapses discharging
in a Poisson manner at 1 Hz and 5.5 Hz respectively (Destexhe and Paré, 1999). At the soma,
these synaptic inputs yielded voltage fluctuations that depended on the amount of correlations
introduced among the synaptic inputs. Fig. 5A shows sample traces in cases of low (0.1) and
high (0.9) correlations in the excitatory synaptic inputs, and the relationship between the S.D.
of the membrane potential measured at the soma and the synaptic correlation (right panel). Fig.
5B shows that for the point-conductance model (one compartment) it was possible to find a
unique value of the S.D. σe of the stochastic variable Ge that resulted in a simulated somatic
synaptic current that yielded membrane voltage fluctuations equivalent to the ones of the
detailed model. For comparison, we also show the curves obtained with the reconstructed
model of a cat pyramidal cell extensively used in other studies, and for which parameters have
been directly constrained by in vivo recordings (Destexhe and Paré, 1999). There were no
significant differences between the two reconstructed cells.

In previous models (Rudolph and Destexhe, 2001) of pyramidal neurons, transient correlation
changes down to 2 ms duration could be detected. As shown here (Fig. 5) and previously
(Destexhe et al., 2001), the correlation of synaptic inputs translates into the variance of synaptic
conductances. Together these results predict that cortical neurons should be able to detect brief
changes in the variance of synaptic conductance. To test this prediction, we assessed the ability
of cells recorded in vitro to detect transient changes in the variance of their background synaptic
conductances. Fig. 6 shows an example of a cell that received continuous simulated noise
(Ge0=5 nS, Gi0=25 nS, σe=5 nS, σi=12.5 nS). Under these conditions, the cell fired
spontaneously at less than 1 Hz, and its membrane potential fluctuated around −68 mV±3.6
mV. At predetermined times, the S.D. of the noise (both σe and σi) was doubled for 30 ms
every 330 ms, mimicking a 3 Hz signal consisting of synchronous inhibitory and excitatory
inputs. The inset of panel A shows the average membrane potential and S.D. around such a
pulse, across all the trials. The average membrane potential during the signal increased, but
remained smaller than the S.D. of the membrane potential before or after the signal (horizontal
dashed lines). The cell, however, fired preferentially during these 30 ms transients, as indicated
by the firing histogram across about 100 trials (Fig. 6A). The cell was able to detect events that
were as short as 10 ms (Fig. 6B-left, dashed curve), a time scale much shorter than the cells’
typical membrane time constant (about 30 ms). The probability that a spike was elicited in
response to a transient depended on the spontaneous firing rate of the cell. Fig. 6B-left shows
the probability as a function of signal length, for four different spontaneous firing rates, in a
different cell (continuous curves). The shortest signals this cell was able to detect (probability
>0.5) ranged from 20 ms to 65 ms as its background firing-rate increased from 2 Hz to about
7 Hz (more than twice the frequency of the signal). As the background firing rate increased,
the probability for the input signal to arrive within the relative refractory period of the cell
increased, and the probability of spiking in response to the signal therefore decreased. This
might explain why the same signal is better detected with low background firing. An accurate
model of the biophysical properties of prefrontal regular spiking cells would be warranted to
assess the relative refractory period of these cells and its dependence on various intrinsic
currents. Unfortunately, sufficient information on intrinsic currents is not yet available for these
cells. Note that for low firing rates (<7 Hz), the detection probability was non-linear. As the
spontaneous firing of the cell increased, the probability of detecting a spike belonging to the
signal became proportional to the signal length. Qualitatively similar results were obtained in
eight other cells. The point conductance model reproduced this finding (Fig. 6B right).
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Fig. 7 shows the probability of spiking of a cell that received somatically injected current pulses
of fixed duration (20 ms) and varying amplitude. In a first series of experiments, the cell did
not receive simulated background synaptic activity. In this condition, its response was all-or-
none (dashed curves) marking the presence of a current threshold below which signals were
not detected, and above which signals were always detected. This protocol was repeated in the
presence of simulated synaptic noise (Ge0=7 nS, Gi0=26 nS, σe=2.5 nS, σi=7.5 nS, same
somatic current pulses as above). The slope of the response curve changed, indicating that the
cell was able to partially detect signals that were below the ‘classical’ threshold. However, the
detection probability remained smaller than 0.5. At P=0.5, the ratio of the slopes in the noise
case to the no-noise case was 0.51±0.25 (n=6 cells; 19 curves with pulse widths of 10, 20 or
30 ms). Note that the absolute values for the mean and S.D. of excitatory and inhibitory
conductance differed slightly from cell to cell, due to their difference in input resistance and
threshold. These values were tuned for each cell to simultaneously achieve the desired
depolarization (approximately −60 mV, spontaneous rate <3 Hz), membrane potential
fluctuations (S.D. approximately 4 mV), and input resistance (approximately four times smaller
than without noise).

The variance transients are completely determined by their duration and amplitude. Fig. 8
shows the sensitivity of the cell to several transient increases in σe and σi of various amplitude
for durations of 10 ms, 20 ms and 30 ms. In these experiments, Gi0 was set to yield a low input
resistance (Gi0=22.5 nS; Rin=36.3 MΩ; Fig. 3C). Since variations in mean excitatory input
did not change the cell input resistance significantly (Fig. 3A), Ge0 was an independent
parameter that could be used to set the spontaneous firing rate of the cell. Ge0 was adjusted to
obtain a low spontaneous firing rate (0.9 Hz; Ge0=14 nS), σe was set to yield about 4 mV
fluctuations in the membrane potential (σe=5 nS), and σi was set to 2.5×σe in accordance with
previous simulation studies (Destexhe et al., 2001). In the presence of this noise, the cell was
able to detect transient variance changes of 10 ms duration and of amplitude equal to about 1.5
times the S.D. of its noisy excitatory inputs, while it was above chance for inputs as small as
2.2 times the SNR (filled arrow). Without the simulated synaptic background noise but with
the cell depolarized to the same level as with background synaptic noise (−62 mV), its ability
of detecting current steps of 10 ms durations and varying input amplitude adopted an all-or-
none step profile (dashed curves). The SNR for detection corresponded to about 2.7 times the
S.D. of the previously injected noise (open arrows). As the duration of the signal increased,
the threshold for detection decreased. In all cases, the cell was more sensitive to its input if it
was injected with simulated synaptic background noise (filled arrows are always to the left of
the open arrows). The points where P>0.5 in the noisy cases were 1.47 (±0.4, n=8), 0.98 (±0.25,
n=8), 0.65 (±0.14, n=8) lower than the corresponding points of the all-or-none curves for pulses
of 10, 20 and 30 ms, respectively (none were higher). Note that the relative difference in SNR
between the two curves at P=0.5 is progressively reduced as the length of the transient is
increased. These results indicate that the improvement in signal detection due to synaptic
background noise decreases as the signal duration increases to about 40 ms (the approximate
time constant of the cells’ membrane). Very short transients (2 ms and 5 ms) were ineffective
in eliciting spiking probabilities greater than 0.9 with σe transients smaller than six times the
S.D. of the background noise (data not shown). For such values, the average membrane
potential variation during the transient was typically greater than its average before the transient
(unlike Fig. 6A inset).

The coding strategies of cortical cells are still largely unknown. The response to short signals
such as described above may only be one way of detecting information. On longer time scales,
other ways may include the modulation of the cell’s firing rate (deCharms and Zador, 2000).
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Gain modulation
In order to assess the ability of the cells to respond to sustained rather than transient increase
in their input, we measured their responses to 3 s long current pulses injected at the soma. Fig.
9 shows the firing rate of a cell when the four parameters of the point conductance model were
systematically varied. An increase in mean excitatory or inhibitory conductances resulted in a
leftward (7.5 pA/nS) or rightward (2.8 pA/nS) shift of the F-I curve without any significant
change to the gain of the cell (Fig. 9C and D). The maximal firing rate allowed by the cell
given its adaptation currents (saturation) remained almost unaffected by changes in mean
conductances. Increases in the S.D. of the simulated excitatory inputs resulted in a slight shift
of the F-I curve upwards (0.6 Hz/nS), and an increase in the slope of the sigmoid fit (in Fig.
9A, with a 100 pA input, the gain of the cell increased by 3.2 Hz/pA per nS increase in σe).
Increases in the S.D. of inhibitory inputs had two effects on the cell’s F-I curve. The first was
to increase its maximal firing rate for a given current pulse amplitude. The second was to
increase the mid-height slope of the curve (In Fig. 9B, with a 100 pA input, this slope increased
by 6.1 Hz/pA per nS increase in σi) compatible with other recent studies performed in
constrained excitatory and inhibitory balanced conditions (Chance et al., 2002). The slope (also
called gain) of the F-I curve taken at mid-height between the spontaneous firing rate, and the
maximal firing rate is a measure of the sensitivity of the cell to its inputs. A low gain (slope)
indicates that large inputs will be required to induce noticeable changes in firing rate; at high
gain, small variations in the inputs will results in large variation in the cell’s output firing rate.
Note that for this cell, the increase in gain varied non-linearly with σi: a doubling in σi with
σi=2.5 nS resulted in a smaller slope increase than a doubling of σi with σi=9 nS. Increases in
S.D. of either the excitatory or inhibitory inputs had the same general effects on the maximal
firing rate and slope. Because the mean inhibitory and excitatory conductances were kept
constant, changing the variance of either synaptic input had little effect on the total synaptic
conductance received by the cell, and on its input resistance (not shown). To assess the
robustness of our measurements of slope and mid-point, we recorded from cells in stationary
conditions (same Ge0, Gi0, σi and σe), and we repeatedly measured the F-I curve at regular
intervals. The mid-point currents, and mid-point slopes of the F-I curve were obtained from
the sigmoidal fits and were used to quantitatively assess the error in working point and slope
estimation. The slope varied by less than 9%, and the midpoint varied by less than 8% (three
cells, at least 15 curves each, data not shown).

Due to the length of the experiments required to obtain the curves displayed in Fig. 9, it was
not possible to collect data for more than three or four values for each of the four parameters
Ge0, Gi0, σe and σi of the stochastic model. In order to better assess the effects of these
parameters on the gain of the cell, we studied the computational model placed in the same
condition as in the experiments. These simulations showed that the working point of the cell
was mainly determined by the balance of mean inhibition and excitation, and the S.D.s of
excitatory and inhibitory inputs could individually modulate the gain (the slope range due to
σe variations was 75–89 Hz/nA and was 72–92 Hz/nA for σi). Simulations performed with the
same model, but using stimuli consisting of AMPA conductance changes (instead of current
transients) yielded qualitatively similar results for the impact of the various parameters Ge0,
Gi0, σe and σi (not shown). These simulation results were in qualitative agreement with the
experimental findings of Fig. 9; the mean excitation and mean inhibition modulated the
working point, and the excitatory and inhibitory variances modulated primarily the gain. Three
currents (INa, Ikd and IM) were therefore sufficient to capture the influence of synaptic
background noise on the I-F curve observed experimentally.
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DISCUSSION
Although the properties of neurons recorded in vitro are quite different from those recorded
in vivo, they were much more similar when neurons in vitro were stimulated with two stochastic
processes simulating excitatory and inhibitory conductances. We used the dynamic clamp
technique to inject these conductances in layer 5 pyramidal cells of the rat prefrontal cortex.
As a consequence, cells were depolarized by about 15 mV, their input resistances were
decreased four-five-fold, and their membrane voltages fluctuated with a 4 mV S.D. They were
able to produce action potentials at low rates (2–10 Hz) with a high coefficient of variation.
We showed that the mean inhibitory input, but not the mean excitatory input, was a key
determinant of the input resistance of the cell and that the coefficient of variation of the ISIs
was maximal when the mean excitatory and mean inhibitory conductances had a ratio of 4–5.
Using a detailed multi-compartmental model of a rat prefrontal cortex cell, we confirmed that
the S.D. of the stochastic variable representing excitatory inputs could be interpreted as a level
of correlation in presynaptic inputs (Destexhe et al., 2001). The cell could detect short increases
in the S.D. of the excitatory synaptic drive that mimicked transient increases in the correlation
of the inputs, as observed in vivo (Azouz and Gray, 1999). The presence of synaptic background
activity also allowed the cell to detect transient increases in the S.D. of the excitatory
conductances that would otherwise be subthreshold. Using modeling and experimental
methods, we determined that the mean inhibitory and excitatory synaptic input levels set the
‘working point’ of the cell by shifting the F-I curve rightward or leftward respectively. The
S.D. of the inhibitory inputs to the cell was the major determinant of its gain.

Recently, Chance et al. (2002) presented experimental and theoretical evidence that synaptic
background noise modulates the gain of pyramidal cells of rat somatosensory cortex, consistent
with the present study. Both studies used the dynamic clamp technique, but our point-
conductance model (see Experimental Procedures) allowed the mean and S.D. of the excitatory
and inhibitory synaptic background activity to be separately manipulated. This allowed the
input resistance (set by Gi0), the subthreshold membrane fluctuation amplitude (set primarily
by σe), the level of depolarization of the neuron (set by Ge0) and its gain (set by σi) to be
independently varied. Consequently, the CV values obtained here were closer to their values
measured in vivo than those reported in Chance et al. (2002) and the cells were sufficiently
adapted that their firing rates rarely exceeded 50 Hz for large current values, as observed in
the behaving monkey in vivo. The F-I curves of cells in the Chance et al. (2002) study were
best fit by a second order polynomial, which inevitably included a ‘hard threshold’ below which
the firing rates are zero. In contrast, in our sample from prefrontal cortex, the cells were best
fit by a sigmoid function that had no ‘hard’ thresholds.

Another difference was that Chance et al. (2002) focused on conditions where the excitatory
and inhibitory synaptic conductances were balanced, whereas the present study focused on
‘near threshold’ conditions where cells have a low spontaneous firing rate, as observed in
vivo. We showed here that the gain of a cell may be modulated separately by either excitation
alone, or inhibition alone. In addition, under these conditions an increase in the S.D. of
inhibitory noise resulted primarily in an increase in the gain of the cell (slope of the sigmoid
curve at mid-height; Fig. 9A and 9B), whereas Chance et al. (2002) reported that when the
excitatory and inhibitory conductances were increased together, there was a decrease in the
gain (initial slope of the F-I curve). This decrease was also observed with a simple one-
compartmental model that included only INa, Ikd and IM currents (not shown). The reason for
the apparent discrepancy in our conclusions is that large fluctuations of the membrane potential
in the hyperpolarizing direction tend to de-inactivate the sodium channels responsible for spike
initiation as well as activate hyperpolarization-activated currents such as Ih. This results in a
greater sensitivity of the cell (increase in gain) when subsequent excitatory inputs arrive,
consistent with earlier studies in which the spike-triggered average shows a hyperpolarization
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just before a spike (Mainen and Sejnowski, 1995). Large membrane fluctuations (especially
those produced by synchronized inhibition) should therefore yield higher sensitivity. This
raises the intriguing possibility that noise-induced gain modulation may be different in neurons
that have a complex mix of intrinsic conductances that yield low firing rates, such as those in
the prefrontal cortex, compared with neurons with high firing rates, as in the somatosensory
cortex.

The study of stochastic resonance has established that inputs may be best detected for an
optimal amount of somatic current noise (McNamara and Wiesenfeld, 1989; Longtin, 1993;
Levin and Miller, 1996; White et al., 1998; Stacey and Durand, 2000). However, cortical
neurons in vivo are in a ‘high conductance’ state (Paré et al., 1998; Destexhe and Paré, 1999;
Destexhe et al., 2003), and their membrane fluctuations are best described as variability in
synaptic conductances rather than variability in somatic currents. Moreover, voltage clamp
recordings in the cat visual system in vivo showed that the large variations in membrane
conductance due to visual inputs was mainly due to a transient (< 50 ms) increase in shunting
inhibition (Borg-Graham et al., 1998). Our results show that inhibition was indeed the most
effective determinant of membrane input resistance, and that in in vivo-like conditions, cells
were able to detect transient conductance changes (10–80 ms) of the order of the ones measured
in vivo.

Recent theoretical work has shown that synaptic background activity enhances the
responsiveness of model neurons to inputs that would otherwise stay subthreshold (Hô and
Destexhe, 2000). The enhancement by synaptic background noise of the responsiveness of the
model cell was robust to changes in the dendritic morphology, distribution of leak currents,
the value of axial resistivity, the densities of voltage-dependent current and the spatial
distribution of synaptic inputs (Hô and Destexhe, 2000). In this model, the input signal was
carried by a set of synapses that were not otherwise active. However, when activated, the
correlation of their discharges could be detected in time windows as short as 2 ms (Rudolph
and Destexhe, 2001). Consistent with these results, we have shown here that cells placed in in
vivo-like conditions of synaptic and intrinsic noise are able to detect short signals that would
have remained subthreshold without the presence of background synaptic noise (Fig. 7). A
higher excitatory synaptic background mean conductance brings the membrane closer to
threshold (because the reversal potential for AMPA is at 0 mV) and increases the background
firing rate of the cell and its response to a given current pulse (Fig. 9C). Conversely, a higher
inhibitory mean conductance pushes the membrane potential away from threshold and reduces
the spontaneous firing rate of the cell (Fig. 9D). However, changes in the variances of synaptic
background noise do not change the mean conductances or the mean membrane potential, but
rather change the fluctuations around the mean (in both directions, for both excitation and
inhibition). Therefore, increases in both σe and σi are capable of inducing depolarizing
deviations of the membrane voltage leading to an increase in the probability to cross the spike
threshold (Fig. 6).

Pyramidal cells recorded in vitro could not detect signals shorter than 10 ms unless they
consisted in large variations (more than six-fold) in the S.D. of the background noise. This
discrepancy might be due to slow membrane currents, such as h-currents or calcium-dependent
potassium currents that were present in vitro, but not included in the models. Another difference
is in the somatic localization of the point-conductance clamp, whereas synaptic inputs occur
on dendrites where they may participate in local interactions with intrinsic conductances.
Further work will be needed to evaluate the impact of these different contributions.

Recent experimental work showed that the detection of subthreshold signals could be improved
by increasing the background levels of presynaptic firing (Stacey and Durand, 2001). In these
slice experiments, synaptic background noise was elicited by extracellular stimulation of the

FELLOUS et al. Page 14

Neuroscience. Author manuscript; available in PMC 2010 August 26.

H
H

M
I Author M

anuscript
H

H
M

I Author M
anuscript

H
H

M
I Author M

anuscript



CA3 region of the hippocampus, while an intracellular recording was obtained from a CA1
cell. These results are compatible with ours, even though the levels of synaptic noise were
lower than that expected in vivo, and even though the input resistance of the CA1 cell during
the extracellular stimulation was probably higher than it would have been in vivo (Fig. 2). These
two shortcomings are inherent to the slice preparation where synaptic inputs are greatly
reduced. The method we used here circumvented these shortcomings and allowed the
independent control of the excitatory and inhibitory contributions to synaptic inputs.

Correlation of synaptic inputs increases the fluctuations of the membrane potential of the
postsynaptic cell. A sustained increase in correlation has predictable consequences on the mean
firing rate of the neuron and on its firing variability (Salinas and Sejnowski, 2000; Svirskis
and Rinzel, 2000). We showed that responses to sustained increases in their inputs (long current
pulses) depended on the variance of the noise while their thresholds for detecting sustained
events (‘working point’) were set by the mean excitatory and inhibitory synaptic drives. The
sensitivity (gain) was dynamically set by the S.D. of their inhibitory synaptic inputs. The
synaptic background noise coming from the ‘context’ is therefore a key determinant of the
specific signal processing capabilities of the cell. The distinction between the influences of the
mean synaptic inputs from the variances of the inputs has important computational
consequences for cortical processing, as first explored in Sejnowski (1976, 1981). These results
predict that the responsiveness of a given cell may be modulated by the level of synchronization
present in its background synaptic inputs. It is in general difficult to modulate in vivo the level
of background synchrony to a given cell. There is however a useful experimental observation
that may be used to test this hypothesis. Under specific kinds of anesthesia, cortical networks
spontaneously synchronize at low frequencies (1–2 Hz; Steriade et al., 1993; Contreras and
Steriade, 1995; Kisley and Gerstein, 1999). This synchronization occurs with fast onset and
smoothly decreases with time in a stereotypical manner and could therefore be used as an in
vivo assay of background synaptic synchrony. Our results showed that the gain of a cell was
positively related (Fig. 9A, B) to the amount of variance (i.e. correlation Fig. 5) in the
background synaptic inputs. After each spontaneously discharges, the slope of the input/output
curve (gain) would be initially steep (high synchrony) and decrease smoothly. The consequence
of this decrease would be that shortly after each spontaneous discharges (small delays) the cells
would be very responsive to external stimuli (fast onset, large number of spikes), while later
(longer delays, but before a new discharge) the cell’s gain would be lower, and the cell would
be less responsive (slower onset, smaller number of spikes). These results have indeed been
observed in vivo in the rat using auditory stimuli that were time locked to these spontaneous
discharges (Kisley and Gerstein, 1999).

We limited our study to regularly spiking pyramidal cells. Recent experiments suggest,
however, that the detection of synchronous inputs (here simulated by an increase in the S.D.
of the synaptic noise) could also be effectively achieved by a network of fast spiking
interneurons (Galarreta and Hestrin, 2001). Because interneurons are in general
electrotonically more compact, and because their firing rate can potentially be much higher
than pyramidal cells, it is likely that their responses to transient or sustained variation in their
inputs will be more sensitive to the makeup of the synaptic noise. Interestingly, the electrotonus
and firing rates of pyramidal cells can be significantly modulated by substances such as
acetylcholine, serotonin, dopamine or norepinephrine that are abundant in vivo, but absent in
most in vitro preparations (Hasselmo, 1995). The exact consequences of various levels of these
neurochemical substances is still poorly understood, (see Fellous and Linster, 1998 for a
review). It is likely that neuromodulators will change the signal detection abilities of neurons
by modulating their gain (Servan-Schreiber et al., 1990) and their sensitivity to transient inputs.
Further work is needed to understand how the input/output properties of cells placed in in
vivo conditions of synaptic inputs are modulated by neuromodulators, and how this gain control
compares with the one obtained here by controlling fluctuating synaptic conductances. Our
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study is also limited by the fact that recordings in vitro were performed at the soma. While the
OU conductances used here accounted for the passive properties of typical dendritic trees, they
did not capture the eventual local dendritic computations that might occur during the course
of short or sustained signal transmission (Mel, 1994).

These results show that the makeup of synaptic background noise helps to dynamically
determine the input/ouput properties of individual cells. In cortical systems that include
feedback projections, this modulation can in principle implement a top-down influence on
bottom-up processing. In the visual pathway, for example, this mechanism can be used by
‘higher level’ processing centers such as the inferotemporal cortex (IT) to modulate the activity
of low-level perceptual centers such as V1. An object activating its representation in IT would
increase the synchrony of the neural responses of IT neurons. This increase in synchrony would
be reflected as an increase in the variance of the background synaptic inputs received by earlier
stages of visual processing, through the direct back-projections from IT to V2 or V1. This
increase of variance, as we showed, could result in an increase in the gain of these cells, thereby
increasing their sensitivity to the stimulus. This mechanism could be used to regulate attention
and also enhance signal processing.
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Abbreviations

GABA γ-aminobutyric acid

AMPA α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid

CV coefficient of variation

ISI inter-spike interval

IT inferotemporal cortex

OU Ornstein-Uhlenbeck

SNR signal-to-noise ratio
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Fig. 1.
Simulating synaptic inputs with dynamic clamp. A: In vivo recording of a layer 5 pyramidal
cell in rat prefrontal cortex. Note the variable pattern of discharges (CV=1.1, average firing
rate 2.1 Hz), the large membrane potential fluctuations (S.D. of 4.8 mV) and the level of
depolarization (average membrane potential was −66 mV). The input resistance was 38 MΩ.
B: Experimental protocol in vitro. Dynamic clamp was implemented as a fast loop (0.1–0.83
ms) in current clamp mode: Somatic membrane voltage was read, the instantaneous synaptic
conductance was computed and used with the current membrane voltage to produce the
synaptic current that was then injected back into the cell. We recorded from layer 5 pyramidal
cells, and stimulated in layers 2/3. The right panels show an example of the application of this
protocol. Trace 1 shows the membrane voltage of a layer 5 pyramidal cell recorded in vitro
with no point conductance clamp. The two lower traces show the membrane voltage (Vm, trace
2) resulting from the injection of the synaptic current (Isyn, trace 3) computed in real time with
the point-conductance model. (Ge0=5 nS, Gi0=25 nS, σe=5 nS, σi=12.5 nS). C: Sample free
running voltage trace of a cell in vitro undergoing simulated synaptic background activity. The
parameters of the point conductance clamp were adjusted to mimic the in vivo behavior of the
cell in A (Ge0=5 nS, Gi0=25 nS, σe=3 nS, σi=6.2 nS). Input resistance was 41 MΩ, average
membrane potential was −65.8 mV, S.D. of the membrane potential fluctuations was 4.6 mV,
the CV was 0.92 and average firing rate was 2.5 Hz.
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Fig. 2.
Reduction in input resistance during actual and simulated synaptic inputs in vitro. A: A layer
5 pyramidal cell (Vrest, −71 mV) received a train of afferent synaptic stimulation elicited by
extracellular stimulations in layers 2/3. The shocks started a t0, were Poisson distributed at a
frequency of 120 Hz, their amplitude was random (gaussian around a mean that elicited a
reliable epsp) and their width was 0.3 ms. The cell depolarized to about −62 mV and emitted
occasional spikes. At t1, 500 ms after the train onset, the cell was somatically injected with a
current pulse (−50 pA) to evaluate its input resistance. B: Superposed individual traces (top)
and average trace (middle) obtained with three different synaptic train patterns (two trains at
120 Hz and one train at 200 Hz, six trials each) in the same cell as in A. Stimulation artifacts
have been removed with low-pass filtering (500 Hz) and action potentials are truncated. The
I–V curve was constructed by repeated injection of five different hyperpolarizing current pulses
amplitudes. Input resistance was obtained as the slope of the linear fit to the I–V curve. During
these random synaptic inputs, the resistance of this cell was 185 MΩ, while it was 230 MΩ in
the absence of synaptic stimulation (panel C, top). C: Point conductance clamp. The same cell
as in A and B was injected with a 200 pA hyperpolarizing pulse. The two traces show the
average response (six trials) of the cell in control condition (top) and when it was subjected to
the point-conductance clamp (bottom: Ge0=3 nS, Gi0=15.5 nS, σe=5 nS, σi=12.5 nS). The input
resistance was reduced from 23s0 MΩ to 52 MΩ.
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Fig. 3.
The reduction of input resistance is mainly due to inhibitory synaptic inputs. Independent
variation of average excitatory (A) and inhibitory (B) conductances in the same cell. The cell
was initially tuned to yield about 80% reduction of input resistance (Gi0=75.2 nS, Ge0=15.2
nS). Gi0 and Ge0 variations are plotted with respect to these standard values (labeled 100%).
The percent reduction of input resistance (Rin) from the control condition, without point
conductance-clamp (321 MΩ), to the input resistance with point conductance-clamp depended
linearly on Gi0, but did not depend on variations in Ge0. Four independent measurements in
the standard conditions (labeled 100%) were performed at different times during the
experiment to estimate the variability of the resistance estimation procedure. C: Group data
for five pyramidal cells. Ge0 and Gi0 are initially tuned to yield a reduction of 75%. Gi0 is then
varied. The reduction in input resistance depended linearly on Gi0 (slope of the linear fit: 258%/
μS). All points were calculated on the basis of an average of five hyperpolarizing pulses (20–
140 pA) each repeated five times. D: dependence of input resistance on Ge0 and Gi0 in the
point conductance model (see Experimental Procedures and Fig. 5B).
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Fig. 4.
Interspike intervals are Poisson-distributed and highly variable. A: The distribution of ISIs
(bars; 10 ms bins) was well approximated by a Poisson distribution (curve; γ distribution;
coefficient r=1.8). ISIs were computed on the basis of 4000 spikes recorded during 660 s (6
Hz spontaneous firing rate). Panel B shows that the CV becomes stable after about 150 s (arrow;
900 spikes; final value 0.7; Ge0=6.3 nS, Gi0=9.3 nS, σe=7.5 nS, σi=19 nS). C: Dependence of
CV on Ge0 for two fixed values of the mean inhibitory conductance (σe=7.5 nS, σi=19 nS).
The CV depended on the average level of excitatory conductance (Ge0) and was above 0.6 for
a broad range of mean conductances (not shown). The highest values were obtained when
Gi0 was about four to five times larger than Ge0. Two examples for the same cell are shown
for two values of Gi0.
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Fig. 5.
Relationship between variance and correlation of synaptic inputs. A: Detailed model: The left
panels show sample voltage traces for low (c=0.1; average membrane potential −65.5 mV;
arrow) and high (c=0.9; average membrane potential −65.2 mV; arrow) AMPA synaptic
correlations. The right panel shows the relationship between the amount of synaptic
correlations and the resulting S.D. of the membrane voltage. Horizontal dashed lines
correspond to the sample traces shown on the left. The correlation among inhibitory synapses
was fixed (c=0). The inset shows the detailed morphology of the rat cell used in this study. B:
Point conductance model: The left panels show sample voltage traces for low (σe=5 nS; average
membrane potential −64.8 mV; arrow) and high (σe=11 nS; average membrane potential −64.9
mV; arrow) S.D. of the stochastic variable σe representing excitatory inputs to the one
compartment model. The right panel shows the relationship between σe and the resulting S.D.
of the membrane voltage of the point-conductance model. The dashed lines show that there is
a one-to-one correspondence between a value of the correlation and a σe. The S.D. of the
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stochastic variable representing inhibitory inputs was fixed (σi=15 nS). The dashed lines
correspond to the sample traces shown on the left. Low (5 nS) and high (11 nS) σe yield
membrane potential fluctuations and firing rate equivalent to correlations those obtained in the
detailed model for synaptic correlations c=0.1 and c=0.9 respectively.
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Fig. 6.
Detection of transient changes in the variance of synaptic inputs. A: A pyramidal cell was
injected with background synaptic noise (Ge0=5 nS, Gi0=25 nS, σe=5 nS, σi=12.5 nS). The
S.D. of the excitatory and inhibitory stochastic variables was doubled for a duration of 30 ms
(only σe is represented), mimicking the arrival of correlated synaptic inputs. The cell was able
to detect this transient by emitting a spike time locked to the signal onset. Top: Sample trace
showing two spontaneous spikes (*) and four evoked spikes. Note that the membrane potential
of the cell was not significantly affected by the 10 stimuli. Middle: Spike rastergram with about
100 of 200 trials shown. Inset: The thin curve shows the average membrane potential computed
around all transients, in all trials. The thick curves represent the S.D. of the membrane potential
around the transient. Note that the average membrane potential during the transient stayed
within the S.D. of the membrane noise (horizontal dashed lines). Inset scale bars=4 mV, 30
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ms. Bottom: spike histogram (10 ms bins) of the rastergram above, showing clear peaks at the
time of stimuli onset. The cell’s average membrane potentials (actions potentials truncated at
−50 mV) outside and inside the σe pulses were −68.1 mV (±3) and −67.1 mV (±4.2)
respectively. B: Left: Signal detection capability (probability that an action potential indicated
the presence of a transient input) for varying transient lengths. The dashed curve corresponds
to the cell shown in panel A. Note that this cell is able to detect about 50% of 10 ms long
stimuli. The cell had a spontaneous firing rate of about 1 Hz. The four other curves are from a
different cell. Four different levels of spontaneous firing (1.1 Hz, 2.5 Hz, 3 Hz and 7 Hz
corresponding to Ge0 values of 10, 13, 17, 24 nS, Gi0 fixed at 60 nS) are represented. Right:
The point conductance model reproduces qualitatively the experimental data. Note that for low
spontaneous firing rates, the detection capabilities of the cell depended non-linearly on
transient lengths (model and experiments).
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Fig. 7.
Effect of simulated synaptic background noise on the detection of transient current pulse
injections. The continuous curves show the sigmoid fits to the data points (circles) representing
the spiking probability of a cell undergoing simulated synaptic noise (Ge0=7 nS, Gi0=26 nS,
σe=2.5 nS, σi=7.5 nS, spontaneous firing 0.5 Hz) in response to 20 ms current pulses of
increasing amplitudes. The cell was able to detect amplitudes as small as 2.8 times the S.D. of
the current resulting from the injection of the synaptic noise. The firing probability was
however smaller than 0.5. The dashed curves were obtained when the same cell did not receive
simulated synaptic noise but was kept depolarized at the same average level as in the case with
fluctuating synaptic noise (Ge0=7 nS, Gi0=26 nS, σe=0 nS, σi=0 nS, spontaneous firing 0 Hz,
data points represented by crosses). Current pulses smaller than 4.5 times the S.D. of the current
resulting from of the noise injected previously rarely succeeded in eliciting spiking. Above this
value, the probability of spiking rapidly became 1. Each data point was obtained from 200
trials. Each curve was established on the basis of at least 10 data points. The experiment was
repeated four times in each condition to assess the robustness of the data acquisition and
analysis procedures.
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Fig. 8.
Enhancement of correlation detection by background synaptic noise. Probability that an action
potential indicated the presence of a transient input of 10 ms (top), 20 ms (middle) or 30 ms
(bottom) as a function of the amplitude of the input. In all panels, open symbols represent
experiments with synaptic background noise (Ge0=14 nS, Gi0=22.5 nS, σe=5 nS, σi=12.5 nS).
In these experiments, inputs consist in a short (10 ms, 20 ms or 30 ms) increase in the S.D. of
the background noise. In this condition, the spontaneous firing rate was about 1 Hz. Crosses
represent experiments without synaptic background noise. In these experiments, the cell was
depolarized to a resting level equivalent to the mean membrane potential with point-
conductance clamp, and inputs consisted in short (10 ms, 20 ms or 30 ms) current pulses of
varying amplitude. In this condition, the cell did not have a spontaneous firing rate. The curves
are sigmoid fits of the data points. Each point is computed from 120 trials. In the case where
synaptic background noise was included, the detection of the input signal (P>0.5; dashed lines)
occurred for inputs amplitudes smaller than when no synaptic background noise was included
(filled arrows and opened arrows respectively).
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Fig. 9.
Influence of the point conductance parameters on the F-I curves of prefrontal cortical cells
undergoing simulated synaptic background activity. A: Increases in the S.D. of excitatory
inputs slightly increased the slope of the response curves of this cell. B: An increase in the S.D.
of inhibitory inputs increased the slope of the response curves (gain of the cell), and increased
its maximum firing rate. C: An increase in the mean excitatory inputs shifted the response
curves leftward, keeping their slope constant and increasing its maximal value only slightly.
D: An increase in the mean inhibitory conductance drive shifted the response curves toward
the right, while their slope (gain) and maximal value remain constant. Panels B and C are from
the same cell. Panels A and D are from two other cells.
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