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Abstract
The movie distribution company Netflix has generated considerable buzz in the statistics community
by offering a million dollar prize for improvements to its movie rating system. Among the statisticians
and computer scientists who have disclosed their techniques, the emphasis has been on machine
learning approaches. This article has the modest goal of discussing a simple model for movie rating
and other forms of democratic rating. Because the model involves a large number of parameters, it
is nontrivial to carry out maximum likelihood estimation. Here we derive a straightforward EM
algorithm from the perspective of the more general MM algorithm. The algorithm is capable of
finding the global maximum on a likelihood landscape littered with inferior modes. We apply two
variants of the model to a dataset from the MovieLens archive and compare their results. Our model
identifies quirky raters, redefines the raw rankings, and permits imputation of missing ratings. The
model is intended to stimulate discussion and development of better theory rather than to win the
prize. It has the added benefit of introducing readers to some of the issues connected with analyzing
high-dimensional data.

Keywords
EM and MM algorithms; High-dimensional data; Maximum likelihood; Ranking

1. INTRODUCTION
Many statistical applications involve esoteric scientific theories. In teaching statistics, it is
helpful to have interesting examples closer to the surface of public understanding. Sports
statistics obviously furnish many opportunities. Another field of universal appeal is film.
Websites such as IMDB now allow users to interactively rate movies. Rating itself is becoming
more pervasive. The public rates books on Amazon, buyers and sellers rate each other on eBay,
experts rate institutions such as universities in reputational surveys, and fans rate players for
all star games. Inevitably, some dishonest raters give biased ratings for commercial reasons,
and some idiosyncratic raters supply random ratings. This raises several interesting questions:
(a) how can we tell the unreliable raters from the others, (b) how do we evaluate the true
reputation of the items being rated, and (c) how can we predict what rating a rater will give to
a new item?

In attacking these questions, we adopt a modeling approach. In contrast, previous research in
the field of collaborative filtering (recommendation systems) has focused on making
predictions or recommendations (Adomavicius and Tuzhilin 2005; ACM SIGCHI 2007; ACM
SIGKDD and Netflix 2007), which often lack a strong statistical basis and fail to provide
rankings or confidence levels for rankings. Although our model is reasonably simple to state,
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it involves a large number of parameters. High-dimensional problems are becoming part of the
staple diet of statisticians, so the model is a good vehicle for demonstrating modern techniques
of parameter estimation. In particular, we derive an EM (expectation–maximization) algorithm
from the perspective of the more general MM algorithm (de Leeuw 1994; Heiser 1995; Becker,
Yang, and Lange 1997; Lange, Hunter, and Yang 2000; Hunter and Lange 2004; Wu and Lange
2009). In maximum likelihood estimation, the first stage of an MM algorithm involves
constructing a surrogate function that minorizes the log-likelihood. The EM algorithm
accomplishes this task by calculating a certain conditional expectation. The surrogate function
is maximized in the second stage. Every EM is an MM algorithm but not vice versa. EM and
MM algorithms constructed for the same problem can be different.

We compare two simple variants of the model, one of which is particularly plagued by multiple
inferior likelihood modes. Our discussion of the model selection and computational issues in
this application aims to introduce some of the dilemmas encountered in analyzing high-
dimensional data.

2. A REPRESENTATIVE DATASET
For purposes of illustration, we consider a representative dataset sampled by the GroupLens
Research Project at the University of Minnesota (movielens.umn.edu) during the seven-month
period from September 19, 1997 through April 22, 1998. The dataset consists of 100,000 movie
ratings on a scale of 1 to 5 collected from 943 users on 1,682 movies. To avoid sparse data,
we discard movies or raters with fewer than 20 ratings. This leaves 94,443 ratings from 917
raters on 937 movies. Age, gender, occupation, and zip code are recorded on each rater.
Although our model initially ignores these interesting covariates, we also implement it on
subsets of the raters stratified by age and gender.

We start with some summary statistics. The 94,443 movie ratings have mean 3.57, variance
1.22, and histogram displayed in Figure 1. The number of ratings per person ranges from 20
to 539, with mean 102.99, median 65, and histogram displayed in Figure 2. The number of
ratings per movie ranges from 20 to 579, with mean 100.79, median 69, and histogram
displayed in Figure 3. Star Wars (1977) receives the most ratings (579). Histograms for the
randomly chosen raters 408, 565, 727, and 754 appear in the second column of Table 2 in
Section 6. Histograms for the randomly chosen movies 166, 381, 692, and 864 appear in the
second column of Table 3 in Section 6.

From the outset, it is worth emphasizing the transient popularity of most movies. Except for a
few movies such as Casablanca, Schindler’s List, and Star Wars, it is doubtful that most of
the highly rated movies from this period will survive the test of time.

3. AN ADMIXTURE MODEL
Suppose a website or company asks consumers to rate movies on an integer scale from 1 to
d; often d = 5 or 10. Let Mi be the set of movies rated by person i. Denote the cardinality of
Mi by |Mi|. Each rater does so in one of two modes that we will call “quirky” and “consensus.”
In quirky mode, rater i has a private rating distribution with probability mass function q(x |
αi) that applies to every movie regardless of its intrinsic merit. In consensus mode, rater i rates
movie j according to a distribution with probability mass function c(x | βj) shared with all other
raters in consensus mode. For every movie i rates, he or she makes a quirky decision with
probability πi and a consensus decision with probability 1 − πi. These decisions are made
independently across raters and movies. If xij is the rating given to movie j by rater i, then the
likelihood of the data is
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(1)

where θ = (π, α, β) is the parameter vector of the model. Once we estimate the parameters, we
can rank the reliability of rater i by the estimate π̂i and the popularity of movie j by its estimated
average rating Σk kc(k | β̂j) in consensus mode.

There are obviously many possibilities for the discrete densities q(x | αi) and c(x | βj). Probably
the most natural choice is a multinomial distribution across the d categories. Under the
multinomial model, the discrete densities are

Here the parameter vectors αi = (αi1, …, αid) and βj = (βj1, …, βjd) lie on the unit simplex in
ℝd. We contrast this choice to the shifted binomial distribution with d − 1 trials and values 1,
…, d rather than 0, …, d − 1. The discrete densities now become

where the binomial parameters αi and βj occur on the unit interval [0,1]. The shifted binomial
model is more parsimonious, but both models require a large number of parameters. If there
are a raters and b movies, the multinomial model involves a + a(d − 1) + b(d − 1) free
parameters. The shifted binomial model involves a + a + b free parameters. For the current
dataset, these formulas translate into 8,333 and 2,771 free parameters, respectively. We will
compare the fit of these two models by their AIC (Akaike information criterion) and BIC
(Bayesian information criterion) numbers.

4. EM ALGORITHMS
Our natural impulse is to estimate parameters by the method of maximum likelihood. Although
scoring and Newton’s method are not completely out of the question, they are apt to be
frustrated by the large number of parameters and the constraints on the parameters. The
advantage of Newton’s method is its quadratic rate of convergence. However, each iteration
requires storage, calculation, and inversion of the observed or expected information matrix.
These are expensive operations in high-dimensional problems. Also additional tactics are
required to deal with parameter constraints and to keep the iterates from veering toward
irrelevant stationary points. It is far easier to implement an EM algorithm (Dempster, Laird,
and Rubin 1977; McLachlan and Krishnan 1997). We will compare the running times of both
Newton’s method and the EM algorithm for the binomial model in Section 5.

The well-known EM algorithm for admixture models has been successfully applied in many
settings (McLachlan and Peel 2000). To keep our exposition self-contained, we will derive the
EM algorithm from the perspective of the more general MM algorithm (de Leeuw 1994; Heiser
1995; Becker, Yang, and Lange 1997; Lange, Hunter, and Yang 2000; Hunter and Lange
2004; Wu and Lange 2009). The MM algorithm, like the EM algorithm, is a principle for
creating algorithms rather than a single algorithm. There are two versions of the MM principle.
In maximization the acronym MM stands for iterative minorization-maximization; in
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minimization it stands for majorization-minimization. Here we deal only with the
maximization version. Let f (θ) be the objective function we seek to maximize. An MM
algorithm involves minorizing f (θ) by a surrogate function g(θ | θn) anchored at the current
iterate θn of a search. Minorization is defined by the two properties

(2)

(3)

In other words, the surface θ ↦ g(θ | θn) lies below the surface θ ↦ f (θ) and is tangent to it
at the point θ = θn. Construction of the minorizing function g(θ | θn) constitutes the first M of
the MM algorithm.

In the second M of the algorithm, we maximize the surrogate g(θ | θn) rather than f (θ). If
θn+1 denotes the maximum point of g(θ | θn), then this action forces the ascent property f
(θn+1) ≥ f (θn). The straightforward proof

reflects definitions (2) and (3) and the choice of θn+1. The ascent property is the source of the
MM algorithm’s numerical stability. Strictly speaking, it depends only on increasing g(θ |
θn), not on maximizing g(θ | θn).

One of the strengths of the MM principle is that we are allowed to work piecemeal on a
complicated objective function such as the log of the likelihood (1). The art in devising an MM
algorithm revolves around intelligent choices of minorizing functions and skill with
inequalities. For our purposes, the crucial observation is that γ ↦ ln γ is a concave function.
Therefore, Jensen’s inequality implies

(4)

Note here that all parameter values are positive and that equality holds when  for all i.

If we apply the minorization (4) to a typical summand of the log-likelihood, then we get

where  is a constant that depends on θn but not on θ and  is the weight

(5)
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This gives the overall surrogate

(6)

The most remarkable feature of the surrogate is that it separates the parameters into convenient
subsets for the maximization stage of the MM algorithm.

To estimate πi, we treat  as the number of successes and  as the number
of failures in |Mi| Bernoulli trials. Standard calculus arguments then yield the MM update

The updates of α and β depend on the model selected for the discrete densities q(x | αi) and c
(x | βj).

Consider first the multinomial model. The surrogate function (6) cleanly isolates the
contribution

of the quirky mode distribution αi = (αi1, …, αid) for rater i. This is just the log-likelihood of

a multinomial distribution with a noninteger count  for each proportion αik.
Hence, the usual calculus argument with a Lagrange multiplier yields the MM update

(7)

Likewise, the surrogate function (6) isolates the contribution

of the consensus mode distribution βj = (βj1,…,βjd) for movie j. By the same reasoning, we
arrive at the MM update

(8)
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Under the binomial model, the parameters αi and βj are scalar success probabilities. There are
d − 1 trials per observation, with the number of successes xij − 1 ranging from 0 to d − 1.
Because the surrogate function separates the parameters, we get the MM updates

(9)

(10)

These updates make intuitive sense. The average number of successes per rater or movie is
equated to the ratio of the total conditional number of successes to the total conditional number
of trials.

For both the multinomial and binomial models, the MM algorithms coincide with their EM
counterparts. In the EM setting the missing data consist of indicator random variables assigning
each person-movie pair (i, j) to quirky or consensus mode. The weights  are the conditional
expectations of the missing indicators calculated by Bayes’s rule; the Q function of the EM
algorithms reduces to the surrogate function (6). One advantage of the MM principle is its
generality. For example, if we model the q(x | α) and c(x | β) by beta-binomial distributions,
then maximization of the Q function in the EM algorithm has to be done numerically. In contrast
it is straightforward to invoke further minorizations and derive an explicit MM algorithm
(Zhou and Lange 2009).

5. IMPLEMENTATION OF THE TWO MODELS
We implemented the two MM algorithms in Matlab. As demonstrated earlier, both algorithms
enjoy the ascent property. In applying the algorithms, we iterate until the relative change of
the log-likelihood between successive iterations falls below a preset threshold. In other words,
we stop at iteration n when

for a small ε > 0. In the multinomial model, we start with the neutral values , and

. For the binomial model, we start with the neutral values , and . Table
1 records the results of running the two algorithms on the MovieLens data on a laptop computer.
In the table we adopt the convergence criterion ε = 10−9. If we adopt the looser criterion ε =
10−4, the multinomial algorithm converges in just 22 iterations and the binomial model in 27
iterations. For a simple comparison, we also fit the binomial model using the fmincon function
(Trust–Region–Reflective Algorithm) in the Matlab optimization toolbox. This interior-
reflective Newton’s method takes 2,391 iterations and 1,068 seconds to achieve the same log-
likelihood.

Zhou and Lange Page 6

Am Stat. Author manuscript; available in PMC 2010 August 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



In terms of model selection, it is interesting that the AIC favors the multinomial model whereas
the BIC favors the binomial model. On data with a finer rating scale such as the IMDB data
with d = 10, we imagine that the AIC would also favor the more parsimonious binomial model.
A simple likelihood ratio test does not apply here because the maximum likelihood estimates
of many parameters fall on a boundary and invalidate the chi-square approximation.

As mentioned, the models suffer from multiple likelihood modes. To assess the magnitude of
the problem, we restarted the likelihood search in each model from 100 random points. For
both models we sampled the πi independently and uniformly from the interval [0, 1]. In the
binomial model, we sampled the scalar success probabilities αi and βj similarly. In the
multinomial model, we sampled the proportion vectors αi and βj independently and uniformly
from the unit simplex in ℝ5. Figure 4 shows the histograms of the converged log-likelihoods
under the stopping criterion ε = 10−9. For the binomial model, the log-likelihoods range from
−119,937.5 to −119,076.8; for the multinomial model, the log-likelihoods range from
−112,532.4 to −112,528.6. The binomial model exhibits more severe multimodality problems.
Fortunately, in both models the neutral starting points lead to converged log-likelihoods within
0.01% of the best log-likelihoods found. For the sake of reproducibility, all subsequent results
are based on the estimates from the neutral starting points under the stopping criterion ε =
10−9.

6. MORE DETAILED RESULTS
The differences between the two models are strikingly obvious when we examine the estimated
propensities π̂i for rating in quirky mode. Figure 5 displays histograms of these estimates under
the two models. For a sizeable proportion of raters, π̂i is approximately 1, particularly under
the multinomial model. The binomial model identifies more raters at the other extreme when
π̂i is approximately 0 and a rater acts completely in consensus mode. Figure 6 plots the
histograms of the means of the estimated quirky mode distributions q(x | α ̂i) for both models.
The binomial model suggests that quirky raters tend to be more polarized in their ratings. Figure
7 plots the corresponding histograms for the consensus mode distributions. A glance at these
plots shows that the two models differ more in how they handle quirky mode than in how they
handle consensus mode. Tables 2 and 3 display histograms of the raw and estimated rating
distributions for the four sample raters and the four sample movies. Tables 4 and 5 provide
detailed estimates for the five top-ranked movies. Finally, Table 6 shows the top ten raw,
multinomial, and binomial rankings.

Although it is hard to draw absolutely convincing conclusions from this complex interplay of
data and models, it seems safe to say that the raw rankings differ more from the two model
rankings than the two model rankings differ from each other. We will address how to estimate
the confidence of the rankings in a moment. Perhaps, a more interesting question is what
happens to the rankings when we stratify raters by gender and age. Table 7 tallies the number
of raters and ratings for four different subsets and lists their average estimated propensities
π̂i under both the multinomial and binomial models. Women and older people operate in quirky
mode more often than men and younger people. In the case of females, this difference may
stem from the fact that 70% of the raters are male.

The last four columns of Table 6 contain the top 10 ranked movies for each of the subsets under
the multinomial model. It is worth noting that the high female rankings of the movies Ma vie
en rose, Turbulence, Once Were Warriors, and Paradise Lost: The Child Murders at Robin
Hood Hills may reflect the low number of ratings these movies receive (9, 2, 7, and 7,
respectively). Similarly, the high rankings of The Umbrellas of Cherbourg and Paths of
Glory by people under 30 may be artifacts of the low number of ratings these movies receive
(1 and 10, respectively). Some of the intergroup differences are predictable. Females liked
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Persuasion and Shall We Dance, and males liked Casablanca and Star Wars. People under 30
liked Titanic, and people over 30 liked Schindler’s List.

7. CONFIDENCE IN RANKINGS
An obvious question is should we trust the rankings of movies or the credibility of the raters
implied by the model estimates? If a movie is rated just a handful of times, then its estimated
consensus distribution is apt to be highly variable and may not adequately reflect the true
popularity or reputation of the movie. This pitfall may be avoided in at least three ways. First,
as in our sample dataset, we may drop movies with low numbers of ratings. Second, in principle
we may calculate the asymptotic standard error of the rank statistic Σk kc(k|β̂j) for each movie
j. Third, we can estimate the distribution of the rankings by the bootstrap. We briefly explore
the bootstrap option here.

The bootstrap is a computationally intensive procedure for estimating the sampling distribution
of a statistic. In our setting, suppose the data consist of r ratings. Consider the original data as
an r × 3 matrix in which each row is of the form (raterID, movieID, rating). Then in each
bootstrap replica, we resample the rows r times with replacement. The EM algorithm is
performed on the bootstrap sample, and the rankings are recorded. This procedure is performed
a large number of times. The reliability of an observed ranking can be estimated by the fraction
of the time the same or a higher ranking appears in the bootstrap samples. Note that in principle
a specific movie may not appear in some bootstrap samples. Also in a bootstrap sample a rater
may rate the same movie several times. In the latter case, we assume that each of the repeated
ratings is independent. We performed B = 100 bootstrap replicas on the MovieLens dataset.
The last column of Tables 4 and 5 shows the bootstrap confidence values for the rankings. For
example, under the multinomial model, the movie The Wrong Trousers is top ranked in 36 of
the 100 bootstrap replicas; the movie Schindler’s List is in the top 2 movies in 25 of the 100
bootstrap replicas, and so on.

8. DISCUSSION
It is in the interest of commercial entities such as Netflix to predict customers’ future movie
ratings. This translates into a classical prediction problem. Given the maximum likelihood
estimates for either the multinomial or binomial models, it is natural to assume that rater i will
rate movie j according to the distribution π̂iq(x | α ̂i) + (1 − π̂i)c(x | β̂j). Hence, the estimated
mean x̂ij = π̂i Σk kq(k | α ̂i) + (1 − π̂i) Σk kc(k | β̂j) is a sensible predictor of how customer i will
rank movie j. If an integer ranking is desired, then the mode of the distribution π̂iq(x | α̂i) + (1
− π̂i)c(x | β̂j) might serve better.

The models explored here should be considered preliminary. They can be elaborated in simple
ways. For instance, we could replace the binomial distribution throughout by the beta-binomial.
As previously noted, the MM algorithms successfully generalize. Alternatively, one could use
a mixed model with binomial quirky distributions and multinomial consensus distributions, or
vice versa. In any event, good models in this field will have to reach a balance between detail
and computability. Datasets are large and getting larger. Overelaborate models tend to be
intractable. In this context we would like to raise the following challenges: (a) how can we
integrate important covariates such as gender and age into the estimation process, (b) how can
we incorporate correlations in intraperson ratings, and (c) how can we exploit people with
similar rankings but shifted ratings? These are the million dollar questions in our thinking, not
the short-term questions raised by the Net-flix contest. Because ranking extends far beyond
movies, we should sort out the differences between explicit models and machine learning
techniques. The future of statistics hinges on which is the better approach across a spectrum
of problems.
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Figure 1.
Histogram of the 94,443 ratings.

Zhou and Lange Page 10

Am Stat. Author manuscript; available in PMC 2010 August 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2.
Histogram of the number of ratings each rater contributes.
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Figure 3.
Histogram of the number of ratings each movie receives.
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Figure 4.
Local maxima from 100 random starting points. Left: Multinomial model. Right: Binomial
model.
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Figure 5.
Histogram of the estimated quirkiness propensities π̂i. Left: Multinomial model. Right:
Binomial model.
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Figure 6.
Histogram of the means of the estimated quirky-mode rating distributions. Left: Multinomial
model. Right: Binomial model.
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Figure 7.
Histogram of the means of the estimated consensus-mode rating distributions. Left:
Multinomial model. Right: Binomial model.
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Table 3

Raw and consensus-mode distributions for the sample movies.

Movie j Histogram of xij Multinomial c(x|β ̂j) Binomial c(x|β ̂j)
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Table 7

Average propensities π̂i for different subsets of the raters.

Subset
Number of
raters

Number of
ratings

Multinomial
average π̂i

Binomial
average π̂i

Whole 917 94,443 0.5040 0.4102

Female 261 23,905 0.5589 0.4550

Male 656 70,538 0.4821 0.3924

≤30 439 48,592 0.4957 0.3946

>30 478 45,851 0.5116 0.4246
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