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     INTRODUCTION 

 Plague is a disease caused by the bacterium  Yersinia pestis . 
Humans may accidentally become infected when bitten by 
plague-infectious flea vectors or when handling plague-infected 
hosts. 1–  3  Unless quickly treated with antibiotics, the disease 
is fatal to humans. 1,  2  Plague is circulating and/or persisting in 
many populations of small mammals and other wildlife species 
in diverse biotopes around the world. 4  Human-plague cases 
occur regularly in the western United States. 5  Plague was first 
introduced to the United States in San Francisco during the 
last pandemic (1899), most likely by a merchant ship arriving 
from Hong Kong, China. 6,  7  Ultimately, transmission among 
native rodents and their fleas resulted in an eastward spread 
of the disease and the establishment of discontinuous plague 
foci across the western United States 8,  9  as far east as the 100th 
meridian. 6,  10  Within 10 years, plague had spread from urban 
rats to wild rodents such as sciurid, sigmodontine, or microtine 
rodents living in surrounding rural areas. 9  Climate factors are 
known to regulate both host and vector abundances. 11–  14  Small 
mammal population dynamics are controlled by both intrin-
sic and extrinsic factors, where the latter includes contempo-
raneous and past local temperature and precipitation. 11,  14–  20  
Fleas spend the majority of their life cycle in the environment 
and thus, are affected by surrounding conditions, notably by 
temperature and humidity changes. 21–  23  During plague epi-
zootics, the abundance of these hosts and the prevalence of 
 Y. pestis  in them, as well as the numbers of active fleas, 24  are 
high. 25–  27  At such times, the disease expands spatially, increas-
ing the chances of infection for ecologically associated species 
or humans and their domestic animals. 9  Earlier studies have 
consistently showed that these scenarios happen while local 
climatic conditions are favorable to both hosts and vectors, 28,  29  
possibly because of a cascade of events involving above-normal 
precipitation and mild temperatures. 29,  30  

 The specific combination of rodent and flea species respon-
sible for plague maintenance and amplification in the United 
States varies markedly across the region. 9  It is, therefore, 

desirable to develop means of understanding and predicting 
the current occurrence of human plague and how this may 
change with possible climatic changes that are independent of 
the particular rodents and fleas involved. Earlier studies had 
concluded that there was no significant association between 
human-plague occurrence and large-scale climate variability, 29  
and this conclusion has been widely accepted in World Health 
Organization (WHO) reports and other sources. 2,  28,  31–  36  

 At interannual scales, climate variability over the west-
ern United States is primarily characterized by two modes of 
fluctuations, with a spatial imprint extending outside this lim-
ited region: the Pacific Decadal Oscillation (PDO; decadal 
time periods) 37  and El Niño Southern Oscillation (ENSO; 
3- to 4-year time periods). 38  Positive (respectively [resp.]   ; neg-
ative) PDO and ENSO (El Niño; resp. La Niña) phases are 
both associated with wetter (resp.; drier) and milder climate 
over the western United States. A variety of ecosystems have 
been shown to respond to either or both of these climate fluc-
tuations. 37,  39  Recently, it was shown that the number of human 
cases in this region is linearly linked to PDO and the number of 
abnormally hot days, 40  but both PDO and ENSO are responsi-
ble for the spatially coherent and predictable climate anomalies 
in this region. 37,  41,  42  These large-scale climate indices are known 
to be efficient predictors of ecological processes in other sys-
tems, including rodent population dynamics and demographic 
rates. 43–  48  In this study, we examine the associations between 
climate anomalies driven by PDO and ENSO and the dynam-
ics of human plague and discuss the mechanisms that might 
underlie such associations. Specifically, we focus our discussion 
on one link in the cascade hypothesis, namely the effect of pre-
cipitation and temperature patterns (as captured by PDO and 
ENSO) on primary production (i.e., rodents host food avail-
ability as captured by the normalized difference vegetation 
index [NDVI] index) in the plague areas. Finally, we look at the 
possible effects of climate change on plague dynamics. 

   MATERIALS AND METHODS 

  Data.    Plague data.   We used annual counts of human plague 
cases in the counties of exposure, available from 1950 to 2005. 
We considered all 105 counties (distributed across 13 states) 
reporting at least one plague case over the study period. No 
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correlation exists between plague outbreak frequency and 
population density at the county level. The largest human-
plague outbreaks typically occur in primarily rural counties 
with close to median population density (?3/km 2 ). Plague 
counts are adjusted by county population density to produce 
county-level human-plague time series compatible with 
climate. Population density, D (c,y) , for county (c) in year (y) is 
given as D (c,y)  = population (c,y) /area (c)  and is based on linearly 
interpolated population censuses for each county performed 
every 10 years by the US Census Bureau ( http://www.census.
gov/ ). The adjusted plague time series (P adj ) is calculated as 
P adj(c,y)  = P (c,y) /D (c,y) . The raw (P) and adjusted plague time 
series exhibit a strong correlation (correlation = 0.92;  P  value 
< 0.001) (Supplemental  Figure S1 , available at  www.ajtmh
.org ). The data reveal a period of increased mean infection 
during 1970–1988, with an overall peak of 40 human cases 
around 1983. 

   Climate data.   Our analyses use sea surface temperature 
(SST) averaged over the so-called NINO3.4 region (5° S–5° N; 
170–120° W) for the same time window (1950–2005). We 
calculated the standard deviation (SD) for this index and 
considered three different phases for ENSO: El Nino (index 
> 1 SD), neutral (−1 SD < index < 1 SD), and La Nina (index 
< −1 SD). The strongest ENSO signal in precipitation over the 
southwestern United States is observed in late winter to early 
spring (i.e., when local precipitation has been documented 
by Parmenter and others 29  to be important for plague hosts 
and vectors). Values for the PDO index were obtained from 
 http://jisao.washington.edu/data_sets/ . Both ENSO and PDO 
are characterized by high persistence through the fall and 
winter until early spring. March values for these indices are 
representative of recent conditions as well as a measure 
of springtime climate forcing, which, as we shall see, is very 
important for summertime plague.  Figure 1B  and  C  depicts 
the time series of March PDO and March NINO3.4. 

  Extensive temperature and precipitation records are freely 
available (NCDC, 2003, http://www.ncdc.noaa.gov/oa/ncdc.html   ) 
for thousands of available meteorological stations in the United 
States. From these records, we chose a network of the 100 sta-
tions with the highest quality data (defined as those with the 
fewest missing data and the highest proximity to plague coun-
ties) ( Figure 2 ) to build proxies for monthly temperature and 
precipitation regimens across the western United States. 

    NDVI data.   The NDVI 49  data cover the study area (100–125° W, 
30–45° N) in a 0.25° resolution grid of monthly composite val-
ues compiled over the period 1982–1998. This is roughly the 
time period over which    advanced very high resolution radiom-
eter (AVHRR) data from Pathfinder are available with con-
comitant solar zenith angle and view zenith angle (and relative 
azimuth) so that a Fourier-Adjusted, Sensor and Solar Zenith 
Angle-Corrected, Interpolated, Reconstructed (FASIR) can 
be constructed (O. S. Los, personal communication). NDVI is 
an index of the light absorbed by chlorophyll and thereby, a 
derived measure of primary production. In arid zones with a 
simple vegetation structure, NDVI reflects variation in ground 
chlorophyll and vegetation coverage when snow cover is 
absent. For data documentation, see  http://islscp2.sesda.com/
ISLSCP2_1/data/vegetation/ . 

    Wavelet analyses.   In nature, non-stationary processes are 
common, and increasing evidence suggests the importance 
of transient dynamics in ecological processes. 50–  53  Epidemiolo-
gical time series are typically noisy, complex, and strongly 

non-stationary. 54  Wavelet analyses provide powerful tools for 
analyzing such signals. 55–  58  It is indeed well-suited to dealing 
with transient relationships between two signals (e.g., climate 
interaction with the dynamics of an epidemic). Wavelet analysis 
performs a time-frequency (f) decomposition of the signal and 
allows one to follow the evolution of the different frequency 
components as time progresses. We used wavelet analysis and 
its bivariate extensions, wavelet cross-spectrum and wavelet 
coherency, 55  to analyze the plague data and their statistical 
relationships with the climatic time series (PDO and ENSO). 
The statistical significance of the univariate and bivariate 
analyses was assessed using β surrogates. 59  This approach 
accounts for the autocorrelation structure of the original 
time series by assuming an underlying 1/f model for its power 
spectrum. Contrary to white noise and autoregressive processes, 
it reproduces the relative distribution of the whole range of 
frequencies in the signal and thus, accounts for the dominance 
of low frequencies often found in ecological time series. 

 All of the computations were done using R version 2.4 ( www
.Rproject.org    ) on the basis of the wavelet libraries developed 
by Cazelles and others   . 50,  54,  55  

    RESULTS 

  PDO and ENSO affect precipitation and primary produc-
tion in the western United States.   PDO exhibits coherent posi-
tive correlations with late winter/early spring precipitation 
throughout the area. 37,  42,  60,  61  Consistent positive precipitation 
anomalies occur in late winter to spring when PDO is high 
(i.e., above 1 SD); this pattern is most marked when El Niño 
events combine with positive PDO. Conversely, a low PDO/
La Niña combination results in below normal precipitation 
( Figure 3 ). Snow anomalies (measured as the amount of water 
precipitated on days when the daytime temperature is below 
freezing) are also higher during El Niño/PDO positive phases 
(Supplemental  Figure S2 , available at  www.ajtmh.org ). 

  NDVI is a good indicator of yearly food availability for 
small mammals living in semi-arid areas. 62,  63  Yearly maximum 
NDVI, a proxy for yearly maximum food available for small 
mammals, 64,  65  reveals above- and below-mean values between 
1982 and 1998. NDVI above-mean years coincide with above-
mean total precipitation ( Figure 1 ). In the Four Corners region 
plateau, NDVI spatial anomalies during El Niño/positive PDO 
years are consistently above normal (120–150% in 1983, 1987, 
1992, and 1998) and below normal during the La Niña/PDO 
negative year (60–80% in 1989). This pattern is less consistent 
in the Pacific and Northwest areas ( Figure 3 ). 

   PDO and ENSO significantly explain the temporal variability 
of plague cases.   To explore human-plague patterns across the 
whole region, we used the spatial sum of all population density-
scaled human cases ( Figure 1A  and Supplemental  Figure S3 , 
available at  www.ajtmh.org ) (a measure we refer to as the 
plague time series; see also plague occurrences in consecutive 
time windows). Plague outbreaks occur predominantly during 
positive phases of PDO; the number of population-adjusted 
human-plague occurrences is, on average, 4.4 during positive 
PDO phases and 0.9 during negative phases (or respective 
plague anomalies of 138% against 59%;  P  < 0.05) ( Table 1 ). 
The correlation between the plague time series and the ENSO 
index alone is, however, generally not significant. Looking 
more carefully, periods of high plague occurrence seem to 
occur when El Niño events coincide with a positive PDO 
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phase (e.g., 1959, 1983, 1987, and 1992). Conversely, decreases 
in plague cases after La Nina events are accentuated if they 
occur during PDO negative phases (36% versus 52%;  P  < 0.05) 
( Table 1 ). 

      Because the strong autocorrelation at lag one in the plague 
time series ( r  [plague t , plague t − 1 ] = 0.72;  P  < 0.001) might lead 
to an overestimation of the tested significance of the associa-
tions measured in  Table 1 , we carried out a wavelet analysis 
of the plague time series and cross-wavelet analysis of both 

PDO/ENSO and plague case numbers. We tested significances 
against 1,000 bootstrapped time series with similar frequency 
spectra (i.e., a dominance of low frequency; see Materials and 
Methods). The plague time series shows interannual cycles 
with periods of 7–8 years and 3–4 years that are most marked 
from the mid-1970s to the late 1980s after a major PDO shift 
( Figures 1B  and  4 ). This is not inconsistent with the time 
periods generally associated with PDO and ENSO. To test a 
plague ENSO association conditional to PDO, we computed 

  Figure  1.    ( A ) Total density-adjusted human-plague cases (so-called plague time series). A total of 430 cases were recorded from 1950 to 2005. 
( B ) PDO index (March value). Red (resp. blue) bars indicate positive (resp. negative) values. (Note the major shift in the mid-1970s). ( C ) NINO3.4 
index (March value). Red (resp. blue) dots mark significant (i.e., values above 1 SD) El Niño (resp. La Niña) events. ( D ) Late-winter to spring 
precipitation summed over the area (125–100° W; 28–47° N). ( E ) Anomaly (calculated as a distance to the average) of the yearly maximum NDVI 
(1982–1998). ( F ) Average of the number of days recording a temperature above 37°C (1950–2005). ( G ) Average of the minimum temperatures 
(1950–2005). ( D–F ) Red and blue dots mark significant El Niño (resp. la Niña) events that coincide with significant positive PDO (resp. negative), 
significant being defined as above 1 SD.    
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a cross-wavelet correlation and coherency. It revealed that 
plague and PDO are significantly coherent ( P  < 0.05) through-
out the entire time window ( Figure 4 ). 

  Three main plague regions reportedly exist in the west, 9  
which led us to subdivide the plague time series into three 
aggregated series for the southwest (30–42° N, 115–100° W), 
the North (42–45° N, 125–100° W), and the Pacific plague 
regions (30–42° N, 125–115° W) (Supplemental  Figure S4  A, 
available at  www.ajtmh.org ). Phase analysis revealed that 
summed plague cases in these three regions are synchro-
nized from around the plague outbreak in 1980–1983 until 
the mid-1990s (Supplemental  Figure S4 C, available at  www
.ajtmh.org ). Time-frequency decomposition of the time series 
(Supplmental  Figure S4 B, available at  www.ajtmh.org ) also 
revealed that although the three regions have a dominant peri-
odicity around 8 years, it is significant only in the Southwest 
(note that from around 1980–1990, all areas show a significant 
dominant periodicity at 3–4 years). Precipitation and NDVI 
anomalies ( Figure 3 ) also revealed subtle opposite tendencies 
between the southwest on one hand and the north and Pacific 
on the other hand. 

   Climate change.   We explored the possible effect of climate 
change in the 1990s to explain discrepancies between the 
expected and observed number of plague cases. Indeed, 
the 1998 El Niño event occurring at high PDO, which lead 
to above-mean precipitation and NDVIs, did not result in 
above-normal plague cases. However, above-mean counts of 
hot days were recorded in 1998 at all stations (temperature 
> 37°C) ( Figure 1F ), which should be detrimental to plague 28,  40 ; 
warm nighttime temperatures also were observed at this 
time ( Figure 1G ) (see Discussion). Climate change has been 
pointed out by some as partly responsible for these trends, and 
nighttime temperatures have increased about 0.5°C in the west 
since 1990 ( Figure 1G ). In the case that these trends continue, 
some have proposed that areas of recurrent plague activity 
(i.e., endemic areas) will shift to higher latitudes/elevations. 36,  66  

In our data, we indeed find a trend to higher elevation/latitude, 
but this trend may have started in the 1980s (Supplemental 
 Figure S5 , available at  www.ajtmh.org ) and is not significant; 
the use of exposure-site data for cases rather than county-
level data could provide more specific conclusions to be made 
on the possible role of climate change on what locations will 
have the greatest amounts of human-plague activity in the 
future, but such analyses are outside the scope of the current 
study. 

    DISCUSSION 

 In our efforts to identify a region-wide, system-independent 
link between climate and the occurrence of human-plague 
cases in the western United States, we found that ENSO and 
PDO patterns, especially in combination, can be related—first, 
to climatic variables in the United States known to be impor-
tant in determining the probability of human plague, and sec-
ond, to the number of human-plague cases themselves. We 
showed that the years that had both high numbers of plague 
cases and high precipitation coincide with above-mean values 
of NDVI. We also noted that recent rises in temperature asso-
ciated with reductions of the snow pack and its persistence 
correspond to anomalously low numbers of plague cases. 

  Significant association between large-scale climate variability 
and plague.   In an earlier study, Parmenter and others 29  showed 
that local precipitation in winter and spring significantly 
increased the number of human-plague cases in New Mexico. 
These authors tried but were unable to find significant links 
between plague and ENSO, the dominant mode of Pacific-
sector climate variability. They concluded, therefore, that 
local, not large-scale, climate drives plague dynamics. Several 
reasons may have led to this conclusion, including the use of 
an overaggregated index of ENSO (i.e., mean from October 
to May of the Southern Oscillation Index [SOI]) that is not 
the most relevant for North American precipitation anomalies 
(SST averaged over the so-called NINO3.4 region [5S–5° N; 
170–120° W] is more relevant for well-documented reasons). 42  
Additionally, the North Pacific decadal climate variability 
(i.e., PDO) also exerts a direct influence on North American 
climate, sometimes enhancing and sometimes obscuring ENSO 
teleconnections. 37  In this context, the clearest link is between 
PDO and plague levels in the west. 40  The present study 
proposes a mechanistic explanation for this link by showing 
the existence of spatio-temporal coherent anomaly patterns in 
surface temperature and precipitation associated with PDO. 
This result is consistent with the dominance of PDO over 
ENSO regarding the storm-track position. 60  Seasonal climate 
anomalies over North America exhibit strong variability 
between years characterized by the same ENSO phase and are 
caused largely by modulation by PDO. 42  Earlier studies 28,  29,  40  
did not take this into account and were unable to find links 
between southwestern plague and ENSO. El Nino (resp., La 
Nina) signals to North American climate are strongest and 
most spatially coherent and predictable when El Nino (resp., 
La Nina) occurs during the positive (resp., negative) phase of 
PDO. 42  Therefore, Los Niños consistently results in fairly mild 
winters and above-normal precipitation if occurring during 
the positive phase of PDO (i.e., in 1953, 1966, 1983, 1987, 1992, 
1993, and 1998), 37  whereas La Nina events result in coherent 
dry and above-normal hot climate over the western United 
States, especially if occurring during the negative PDO phase 

  Figure  2.    Plague distribution over the western United States; red 
crosses are placed at the center of the counties (delimited by grey 
lines) reporting human plague, and grey dots are at the 100 optimal 
(see Text) weather stations.    
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(i.e., in 1950, 1951, 1955, 1956, 1971, and 1974). Accordingly, 
we found that El Niño events occurring during positive PDO 
excursions are related to high plague counts and that La Niña 
events occurring during negative PDO consistently led to low 
plague values ( Table 1 ). A notable exception is the most recent 
El Niño event, which was not followed by increased plague 
numbers (i.e., in 1998 [positive PDO]); the same was true, to 

a lesser extent, in 2003 (neutral PDO), but see discussion of 
climate change for further information. 

 Wavelet analysis enabled us to better determine the tran-
sient associations between PDO/ENSO and the plague time 
series. The coherency analysis and cross-wavelet spectrum of 
PDO and plague confirmed that both signals are significantly 
coherent over the total study period ( Figure 4 ). Furthermore, 

  Figure  3.    ( A ) Composite late-winter to spring precipitation anomalies for years combining significant ( Left ) negative (resp. positive;  Right ) 
PDO and La Niña (resp. El Niño) events as defined by below (resp. above) 1 SD for both indices. ( B ) Composite NDVI anomalies with similar 
combination of PDO and ENSO values as above. Black crosses are placed at centroid of plague counties. Their size being proportional to the num-
ber of plague cases for the period 1950–2005.    

 Table 1           
Contingency table of population-density-adjusted plague cases for southwestern US for each El Nino (La Nina) years crossed with High (Low) 

values of the PDO (as percentage of mean) with significance
El Nino Neutral La Nina Total

PDO + 5.2 (171%), 5, SD = 5.21 4 (133%), 22, SD = 3.56 3.6 (118%), 2, SD = 2.70 4.2 (138%), *  29, SD = 3.72
PDO − 2.4 (80%), 2, SD = 1.59 2 (67%), 17, SD = 3.20 1.1 (36%), *  8, SD = 1.01 † 1.8 (59%), *  27, SD = 2.62
Total 4.4 (145%), 7, SD = 4.5 3.1 (103%), 39, SD = 3.51 1.6 (52%), 10, SD = 1.65 3.1 (100%), 56, SD = 3.44   

  *,       †  signify statistical significance with 90, and 95% confidence, respectively. Significance is based on a two-tailed empirical test using 1000 bootstrapped samples. 63     
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both signals are significantly correlated from the mid-1970s at 
a quasi-decadal periodicity, suggesting that the low-frequency 
trend in the plague time series could be attributed to low-
frequency changes in the western climate. The observed dom-
inant 3- to 4-year periodicity in the plague spectrum could 
be linked to ENSO ( Figure 4A ). The time series in the three 
main plague regions 9  (Supplemental  Figure S4 ) studied inde-
pendently also exhibits oscillations with dominant periods at 
around 3–4 years that are particularly synchronous during the 
decade when plague was most active (1980–1990). The south-
western focus is the most active among the three major plague 
regions in North America, with the highest counts of human 
cases. This area exhibits a significant dominant periodicity at 
8–9 years and therefore, is primarily responsible for the coher-
ency between the plague time series and PDO. 

 We know that ENSO and PDO have a strong effect, par-
ticularly in the southwestern part of our study area—an effect 
that can be different for the northern part of the western 
United States ( Figure 3 ) ( http://www.atmos.washington.edu ). 37  
Indeed, spatial patterns of precipitation and NDVI anomalies 
show that the combination of El Niño and positive PDO corre-
sponds to wetter, greener years in the southwest, whereas the 
northwest and the Pacific tend to be less affected. Phase analy-
sis (Supplemental  Figure S4 C), nevertheless, strongly suggests 
that, during the strong 1983 El Niño event combined with high 
PDO, all areas were similarly affected, which resulted in the 
highest plague years of the time series ( Figure 1A ). The fact 
that the Western and Northern areas exhibit differences with 
the Southwest could be explained by differences in the domi-
nant flea species in these regions and their seasonality, 9  the 
delayed effects of high precipitation on local rodent popula-
tions, or more simply, the small number of cases. 

   Potential mechanisms to explain the association between 
human plague and climate variability.   We have shown that the 
number of human-plague cases exhibits large-scale coherent 
positive correlations with late winter to spring precipitation 
(Supplemental  Figure S6 , available at  www.ajtmh.org ). Although 
yet to be proven for plague, the cascade hypothesis provides us 
with a possible platform from which to understand the effects of 
climate variability on the plague system in the United States. 29,  30  
In assessing whether this general scheme was consistent at 
larger scales, we extended our precipitation analysis to NDVI 
anomalies. El Niño/PDO positive years inducing coherent 
positive precipitation anomalies corresponded to positive 
NDVI anomalies ( Figures 1E  and  3 ), suggesting that the food 
available for small mammals increases in the onset years of 

these events in the plague areas. The relationship between 
large increases in rodent populations and large-scale climate 
variability has been previously shown in many studies, 67–  69  
including those conducted in the United States. 34,  46,  70  In 
some instances, lead times for rodent population increases 
have been quite short. 17  In the case of Sin nombre virus 
(a type of hantavirus), which, like plague, is a rodent-associated 
zoonosis, 34,  70  these short lead times resulted in enhanced virus 
transmission soon after the period of enhanced precipita-
tion. Rodent densities are known to be associated, through 
bottom-up processes, with increased precipitation in relatively 
dry areas where it may be limiting. 48,  71  Obviously, rodent data 
would be necessary to confirm the correlation at interannual 
scales between primary production and hosts abundance; 
likewise, serological or flea sampling would be necessary to 
confirm whether increased rodent densities led to higher 
plague prevalence among hosts populations—a link that may 
not be simple or direct. 72  In the absence of these elements, we 
can neither accept nor reject with certainty the hypothesis that 
rodents were part of a trophic cascade that drove the dynamics 
of plague. 

 Plague activity also reflects flea dynamics and activity. 2,  9,  28,  29  
Variations in humidity and temperature indirectly impact flea 
density and geographical distribution. 22,  73  Excessively high 
temperatures reduce flea survival, early-stage development, 
reproduction rates, 21,  74  fleas’ ability to transmit the disease, 74  
and thus, overall plague activity, which is expressed in the 
temperature-modulated cascade hypothesis. 30  Metabolic rates 
are higher and survival is lower when temperature increase 
or humidity is below a certain threshold. In fact, temperature 
and humidity together affect fleas. 21–  23,  75–  77  Rodent flea stages 
occurring off the host (i.e., all stages but fed fleas) are sen-
sitive to variations of the host environment and particularly, 
to burrow microclimatic conditions. 75,  78  The macroclimate to 
which humans are exposed is not necessarily the best indica-
tor of these conditions. 79  In burrows, soil moisture could be 
a better indicator of humidity, because it affects fleas, rather 
than above-ground measures of humidity. 80  Contrary to air 
(above-ground) and burrow temperatures that exhibit strong 
coherent correlations, burrow humidity depends more on past 
rainfall and soil type than on the humidity of the air outside 
the burrow. 80,  81  In this study, we have described how seasonal 
precipitation is instrumental in understanding the association 
between PDO/ENSO and human plague. Precipitation in win-
ter and early spring mainly falls as snow in the elevated plague 
areas. Soil moisture is well-predicted by snow accumulation 

  Figure  4.    ( A ) Time-frequency decomposition of the plague time series. ( B ) Coherency analysis between the plague time series and PDO. Thick 
discontinuous lines indicate significance ( P  < 0.1).    
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and the timing of the snow melt. The strong positive correlation 
between winter and early spring precipitation and plague rein-
forces the hypothesis that the effect of snow cover on summer-
time soil humidity is crucial for plague activity. 

   Likely decrease of plague activity in response to increased 
temperatures associated with climate change.   The West natu-
rally undergoes multidecadal fluctuations between wet and 
dry periods associated with PDO, 82  but previous studies 60,  61  
suggest that the region has been losing snow in favor of rela-
tively more rain and earlier snowmelt across a broad region 
of mountainous western North America. 83  Minimum (i.e., 
nighttime) temperatures, increasing since 1990, are related to 
reduced volume and persistence of the snow pack. Although 
global anthropogenic signals are often difficult to separate 
from natural climate variability at this regional scale and 
early stage of climate change, it has recently and convincingly 
been done for this region. 45  The observed regional trends 
of decreasing snow/rain ratio, 83  earlier spring snowmelt, 84  
and warmer spring and summer seasons 84,  85  are consistent 
with climate-model projections. These changes, which are 
because of both natural and anthropogenic causes, 45  influence 
summertime soil moisture in the western United States. 
Moreover, warmer temperature can dry the soil directly by 
enhancing evaporation, whereas dry soil, in turn, promotes 
warmer daytime temperature. These trends, if they continue 
and intensify as projected, 86  will likely lead to decreased soil 
humidity and increased temperatures as a result of the direct and 
indirect (e.g., through hydrology feedbacks) effects of global 
warming. This could decrease flea survival and reproduction 
rates 74,  87  and therefore, reduce the number of active fleas. 
Global warming is expected to continue and accelerate, which 
almost undoubtedly will result in increasingly unfavorable 
conditions for fleas and decreased primary production in the 
spring and summer; thereby, this will lead to less-favorable 
conditions for large increases in rodent populations and the 
occurrences of plague epizootics among these animals. Based 
on this reasoning and the results of our study, we suggest that 
human plague in the southwestern United States is likely to 
decrease over the coming decades. Nevertheless, in places 
like New Mexico where human-population expansion into 
the wildland–urban interface is expected to continue and 
where humans typically contract plague during epizootics in 
rodents, plague exposure and risk could still increase on a 
local basis. 

 Also, this overall decrease in plague can be expected to still 
be punctuated by episodic outbreaks as a result of natural cli-
mate variability for decades to come. At this time, we cannot 
determine how ENSO and PDO variability or their influences 
on southwestern climate will change in response to global 
warming. However, we may reasonably assume that the per-
sistence of the fall/winter PDO and ENSO into the next spring 
will continue to provide simple probabilistic means for pro-
jecting the severity of the next summer’s plague season. This 
study provides information needed for developing probabilis-
tic forecast models of seasonal plague risks. One such model 
would be based on simple PDO and ENSO persistence as well 
as long-term temperature trends. If based on the observed/
extrapolated values of PDO and ENSO in the fall, the fore-
cast model could involve long lead times, up to three seasons 
ahead. At shorter lead times (e.g., one season ahead), a more 
skillful model describing relationships between human plague 
and climate can be based on observed precipitation patterns 

(amount and type) and spring temperatures that would implic-
itly include natural and anthropogenic signals. 
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