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Abstract
We study a general class of partially linear transformation models, which extend linear transformation
models by incorporating nonlinear covariate effects in survival data analysis. A new martingale-
based estimating equation approach, consisting of both global and kernel-weighted local estimation
equations, is developed for estimating the parametric and nonparametric covariate effects in a unified
manner. We show that with a proper choice of the kernel bandwidth parameter, one can obtain the
consistent and asymptotically normal parameter estimates for the linear effects. Asymptotic
properties of the estimated nonlinear effects are established as well. We further suggest a simple
resampling method to estimate the asymptotic variance of the linear estimates and show its
effectiveness. To facilitate the implementation of the new procedure, an iterative algorithm is
developed. Numerical examples are given to illustrate the finite-sample performance of the
procedure.
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1. INTRODUCTION
Linear transformation models provide a general framework for model estimation and
inferences in censored survival data analysis, and they have recently attracted considerable
attention due to their high flexibility (Clayton and Cuzick, 1985; Bickel et al., 1993; Cheng et
al., 1995, 1997; Fine et al., 1998; Chen et al., 2002; Zeng and Lin, 2006; among others). Let
T be the survival time and Z be the p-dimensional covariate vector. To the model effects of
Z on the response T, the linear transformation models assume that

(1)

where H is a completely unspecified strictly increasing function, β is a p × 1 vector of unknown
regression coefficients, and the error term ∊ has a known continuous distribution that is
independent of Z. In the presence of censoring, we observe the event time  and
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the censoring indicator δ = I(T ≤ C), where C is the censoring time and I(·) is the indicator
function. It is usually assumed that the censoring variable C is independent of T given Z.

Linear transformation models include many useful models as special cases. For example, if
∊ follows the extreme value distribution, then the model (1) becomes the Cox’s proportional
hazards model (Cox, 1972); if ∊ follows the standard logistic distribution, then (1) reduces to
the proportional odds model (Pettitt, 1982,1984;Bennett, 1983); if there is no censoring and
∊ follows the standard normal distribution, (1) generalizes the usual Box-Cox transformation
models. Many procedures have been suggested for estimating β in (1). Among them, Cheng
et al. (1995) proposed the inverse censoring-probability weighted (ICPW) method for
estimating β and studied the asymptotic properties of the resulting estimator. A key assumption
in their work is that the censoring variable C is independent of covariates, which makes it
possible to construct the Kaplan-Meier estimator for the censoring probability. The ICPW
method was further studied by Cheng et al. (1997),Fine et al. (1998) and Cai et al. (2000). More
recently, Chen et al. (2002) proposed a martingale representation based estimating equation
approach for simultaneously estimating H and β in (1), where the covariate-independent
censoring assumption was relaxed. In addition, Zeng and Lin (2006) studied the nonparametric
maximum likelihood estimation for a more general class of linear transformation models that
allow time-dependent covariates.

Despite these accomplishments, one limitation of linear transformation models is that all
covariate effects are assumed to be linear. This assumption is sometimes too restrictive or
unrealistic. For example, in the analysis of the lung cancer data from the Veteran’s
Administration lung cancer trial (Kalbfleish and Prentice, 2002), the covariate age shows a
strong nonlinear effect (U-shape) on the patient survival time. However, such an important
effect may be missed by assuming the covariate effects to be linear (Tibshirani, 1997; Lu and
Zhang, 2007). Another motivation for the need of partially linear transformation models is
from the New York University women heath study (NYUWHS). In this study, one primary
interest is to study the effects of sex hormone levels on the time of developing breast carcinoma,
which usually show strongly nonlinear trends. The common practice is to break the continuous
hormone levels into discrete quantiles (Zeleniuch-Jacquotte et al., 2004). However, such a
discretization method can not make use of the entire data effectively, and more unpleasantly,
the final fit can not retain the smooth curve of the nonlinear effect. Therefore, it is desired to
provide a more powerful class of semiparametric survival models which can accommodate
both linear and nonlinear covariate effects under one unified framework.

In this paper, we consider a class of partially linear transformation models and study their
estimation and inference properties. In particular, we consider

(2)

where β is the vector of regression parameters for linear covariates and f is an unknown smooth
function with f(0) = 0. Here the nonlinear covariate X is assumed to be univariate. Throughout
the paper, we assume that the censoring variable C is independent of T given Z and X. There
is a rich literature on studying the proportional hazards model with nonlinear or partially linear
covariate effects (Hastie and Tibshirani, 1990; Gray, 1992; Sasieni, 1992; O’Sullivan, 1993;
Grambsch and Therneau, 1994; Fan et al. 1997; Huang, 1999; Huang et al., 2000; Cai et al.,
2007, 2008; among others) based on the partial likelihood function (Cox, 1975). Various
nonparametric techniques including the kernel method, regression splines, smoothing splines
and local polynomials were suggested for parameter estimation and inferences. However,
relatively fewer methods have been developed for partially linear transformation models.
Among them available, Ma and Kosorok (2005) studied the penalized log-likelihood estimation
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for the partially linear transformation model with current status data. The partially linear
transformation model involves two nonparametric components H and f that need to be
estimated under different constraints: the monotonicity on H and the smoothness on f. It is
intriguing how to take into account both constraints seamlessly in the estimation.

In this paper we propose a system of martingale representation based global and local
estimating equations to naturally deal with all these difficulties. Furthermore, under appropriate
regularity conditions, we show that with a range of choices of the smoother parameter (the
kernel bandwidth), the estimator of β is root-n consistent. The asymptotic normality is also
obtained for the estimates of the linear and nonlinear parameters. The idea of the local
estimating equation approach to nonparametric regression problems was pioneered by Carroll
et al. (1998). It is also noted that our proposed estimating equations based method is related to
some existing quasi/partial-likelihood based algorithms for partially linear models (Carroll et
al. 1997; Cai et al., 2007, 2008). However, for partially linear transformation models, the need
of estimating two nonparametric functions simultaneously imposes enormous challenges for
both model estimation and inferences.

The rest of the article is organized as follows. In Section 2, we describe the global and local
estimating equations for the parameters β, H and f in model (2), and we establish the asymptotic
normality for the estimates of β. In addition, a new and simple resampling scheme is proposed
to estimate the asymptotic variance of the resulting estimates. In Section 3, we conduct
simulation studies to examine the finite-sample properties of the new estimator and further
illustrate its performance via a real example. We give concluding remarks in Section 4. All
technical proofs are relegated to an online supplementary appendix.

2. MODEL ESTIMATION AND INFERENCES
In this section, we propose a system of estimating equations based on the martingale
representation to simultaneously estimate H, β, and f. The main motivation is to generalize the
estimating equation method of Chen et al. (2002) for linear transformation models to partially
linear transformation models. In order to estimate the extra nonparametric component f in (2),
we use the local polynomial regression technique (Fan and Gijbels, 1996) to construct a set of
locally-weighted estimating equations. As shown in the following, the new procedure naturally
combines the global and local estimating equations in one unified framework, which greatly
facilitates the computation and model inferences.

2.1 Global and Local Estimating Equations

Suppose there are n subjects in the study. Let Ti, Ci and  be respectively the failure
time, censoring time, and covariates of the ith subject, for i = 1, … ,n. The observations then

consist of , i = 1, … ,n, which are independent copies of . Let

 and  denote respectively the counting and at-risk processes
of the ith subject. In addition, define

(3)

where Λ(·) is the known cumulative hazard function of ∊ and (β0, H0, f0) are the true values of
(β, H, f). Then Mi(t) is a martingale process by the counting process theory (Fleming and
Harrington, 1991; Andersen et al., 1993).
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If the nonparametric function f were known, partially linear transformation models reduce to
linear transformation models, and thus we can adopt the estimation equation suggested by
Chen et al. (2002) to estimate β and H. Motivated by this, we first propose a set of “global
estimating equations” to solve global parameters β and H, with f being fixed at its current value.

Global Estimating Equations—

(4)

(5)

where . Note that (4) is a martingale difference equation used for
estimating the transformation function H when β is fixed, while (5) is a martingale integral
equation used for identifying β. The resulting estimate  is a nondecreasing step function with
jumps at the observed J failure times 0 < t1 < ⋯ < tJ < ∞ among the n observations.

Next, in order to estimate f, we approximate it locally by a linear function

for x in a neighborhood of u, where γ0(u) = f(u) and . The superscript dot denotes
the first-order derivatives. Let K be a symmetric probability density function and Kh(t) = K(t/
h)/h be the rescaled function of K, with h as the bandwidth parameter. Given β and H, we
propose to solve the following kernel-weighted local estimating equations for f(·):

Local Estimating Equations—

(6)

(7)

Altogether, we need to solve four estimating equations (4)-(7) iteratively: solve (4)-(5) for β
and H with f being fixed, and solve (6)-(7) for f(·) with β and H fixed.

We now present an iterative algorithm to implement our estimation procedure. The algorithm
is given as follows:

Step 0 (Initialization step). Choose an initial estimate . Solve (4) and (5) to
obtain  and  using Chen et al. (2002) for linear transformation models. Set  and

.
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Step 1. (Local estimation equation step) Fix  and  at their current values. For x = Xi,
solve (6) and (7) by the Newton-Ralphson method to obtain  and , for i = 1,
… ,n.

Step 2. (Global estimation equation step) Update  by solving the equations (4) and
(5) by fixing , i = 1, … ,n.

Step 3. Repeat Steps 1 and 2 until convergence.

Step 4. Fix  at its estimated value from Step 3. The final estimate of f(x) is

, where  are obtained by solving (6) and
(7).

Remark 1: In the supplementary Appendix A, we propose a one-step estimator as the initial
estimator  and show its local consistency. In practice, to save the computation cost, one
can posit a parametric form for f and estimate it using the method of Chen et al. (2002) for the
linear transformation model to obtain .

Remark 2: The proposed algorithm above is in the similar spirit as Carroll et al. (1997) for
generalized partially linear single-index models and Cai et al. (2007, 2008) for partially linear
hazard regression models with multivariate survival data. All these algorithms, in their own
contexts, alternatively optimize the global and local quasi-likelihood functions until
convergence.

In the estimation procedure above, one needs to select the smoothing parameter h in Steps 1-3
and Step 4. It is worth noting that h plays different roles in different steps: in the first three
steps, h should be chosen to ensure the proper estimation of β and H; in the last step, however,
h should be optimal for estimating the nonparametric function f. Consequently, we suggest
using one value of h in Steps 1-3 and using another value of h in Step 4. In the simulation
section, we give more details on how to select the optimal h based on either the theoretical
convergence rate or some data-adaptive tuning criteria.

2.2 Asymptotic Properties

In this section we establish the asymptotic properties of the estimators , ,  and
. Let  and . Following the notations used in Chen et al.

(2002), for any t, s ∈ (0, τ], define

In addition, we define
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where b⊗2 = bb’ for any vector b. For i = 1, … ,n, we further let

mZ(t) = α(t)λ*{H0(t)}/B2(t), and α(t) be a solution to the following Fredholm integral equation
of the second kind:

(8)

where D1(·, ·), D2(·) and ρ(·) are defined in the supplementary Appendix B.

To derive the asymptotic properties of our estimators, we need the following regularity
conditions:

(C1) The covariates Z and X are of compact support, and the density g(·) of X has a bounded
second derivative.

(C2) β0 belongs to the interior of a known compact set , H0 has a continuous and positive
derivative, and f0 has a continuous second derivative.

(C3) λ(·) is positive, ψ(·) is continuous, and limt→-∞ λ(t) = 0 = limt→-∞ ψ(t).

(C4) τ is finite with P(T > τ) > 0 and P(C > τ ) > 0.

(C5) There exist positive constants ζ0 and ζ1 such that supt∈[0, τ] B2(t) > ζ0 and supt∈[0, τ]
{B2(t) + ∣B1(t)∣} ≤ ζ1.

(C6) The kernel D1(·, ·) in (8) satisfies .

(C7) The matrices A = A1 − A2 and Σ are finite and nondegenerate.

Remark 3—Conditions (C1)-(C5) are similar to those in Chen et al. (2002) for establishing
asymptotic results for linear transformation models. Condition (C6) is used to assure that there
exists a unique solution to the integral equation (8), which is usually satisfied when the
covariates are bounded and also the functions f(·), λ(·) and  are bounded on their supports.
Condition (C7) is needed for establishing the asymptotic normality of the estimators.

The following theorems establish the asymptotic properties of , ,  and . The
proofs of all theorems and the necessary regularity conditions are relegated to the
supplementary Appendix B for ease of exposition.
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Theorem 1: Under the regularity conditions (C1)-(C7), if nh2/{log(1/h)} → ∞ and nh4 → 0,
we have that, given  in a small neighborhood of β0,  and

(9)

in distribution as n → ∞.

Theorem 2: Under the regularity conditions (C1)-(C7), if nh2/{log(1/h)} → ∞ and nh4 → 0,
we have the asymptotic representation

for t ∈ (0, τ], where κi(t)’s are independent mean zero functions and their definitions are given
in the supplementary Appendix B.

Theorem 3: Assume that conditions (C1)-(C4) hold. If nh5 is bounded, and β and H are
estimated at the order Op(n−1/2), then

(10)

in distribution as n → ∞, where  and the definitions of V1(x),
V2(x) and bn(x) are given in the supplementary Appendix B.

Remark 4—Theorems 1 and 2 establish the root-n consistency of  and , respectively.
They are used to establish the standard nonparametric rate for the estimates of the nonlinear
covariate effect presented in Theorem 3.

2.3 Estimation of Asymptotic Variance of 

As shown in Theorem 1, the asymptotic variance of  has a standard sandwich form A−1Σ
(A−1)’. However, the matrices A and Σ are of complicated analytic forms and their computation
requires one to solve the Fredholm integral equation (8), which is often difficult and unstable
even for a moderate sample size. Therefore, it is desired to have a feasible computation
approach to approximate the asymptotic variance of . In this section, we propose to use a
resampling scheme (Jin et al., 2001) to approximate the asymptotic distribution of .

The resampling algorithm proceeds as follows. First, we generate n i.i.d. exponential random
variables {ξi, i = 1, … , n} with mean 1 and variance 1. Fixing data at their observed values,
we solve the following ξi-weighted estimation equations and denote the solutions as β*, H*
(t) and f*(x):

(11)
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(12)

(13)

(14)

The estimates β*, H* and f*(x) can be obtained using the same iterative algorithm proposed in
Section 2.2. In the following theorem, we establish the validity of the proposed resampling
method.

Theorem 4—Under the regularity conditions (C1)-(C7) and the same rate of h, the conditional

distribution of  given the observed data converges almost surely to the asymptotic

distribution of .

Based on Theorem 4, by repeatedly generating {ξ1, … ,ξn} many times, we may obtain a large
number of realizations of β*. The variance estimate of  can then be obtained by referring to
the empirical distribution of β*.

3. NUMERICAL STUDIES
3.1 Simulation

We examine in this section the finite sample performance of the proposed estimators. The
failure times Ti’s are generated from the partially linear transformation model (2). For the linear
component, two independent covariates (Zi1, Zi2) are considered, where Zi1’s are generated
from a Bernoulli distribution with the success probability 0.5 and Zi2’s are from a uniform
distribution on (0, 1); for the nonlinear component, a scalar covariate Xi is generated from a
uniform distribution on (0, 1) and is independent of (Zi1, Zi2). We take β0 = (−1, 1)’ and consider
two designs for the nonparametric function:

Design I: f(x) = 8(x − x3),

Design II: f(x) = 0.05{exp(3x) − 1}.

The hazard function of the error term ∊ is chosen as

with ζ = 0, 1, 0.5 (Dabrowska and Doksum, 1988). Note that the partially linear proportional
hazards (PLPH) and the partially linear proportional odds (PLPO) models correspond to ζ = 0
and ζ = 1, respectively. The function H(t) is chosen respectively as log(t) for ζ = 0, log(et − 1)
for ζ = 1, and log(2e0.5t − 2) for ζ = 0.5.
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We consider two types of censoring mechanisms: covariate-independent censoring and
covariate-dependent censoring. For covariate-independent censoring, the censoring times
Ci’s are generated from a uniform distribution on (0, c0); for covariate-dependent censoring,
Ci’s are generated from exponential distributions with the means exp(c0 + c1Zi1). Here the
constants c0 and c1 are chosen to achieve the desired censoring level 20% or 40%. In each
scenario, we conduct 500 runs of simulations with the sample size n = 100 and 200.

In our computational algorithm, we choose the initial values as . For the estimation
of the parametric component, we set the bandwidth parameter h = α1n−1/3 as suggested by the
asymptotic theory. We have tried various values of α1 from 0.01 to 0.5, and found that α1 =
0.05 works very well under all the scenarios. Therefore, we only report the simulation results
based on this choice. In practice, we may also use a similar cross-validation method as that of
Tian et al. (2005) for the kernel estimation of the proportional hazards model with time-varying
coefficients to choose the optimal bandwidth based on estimating equations. In order to assess
the performance of the proposed resampling method for variance estimation, we generated
M = 500 sets of ξ’s for each simulated data and computed the asymptotic variance estimates
of  based on the empirical variance of β*’s. The estimation results for β with n = 100 under
the covariate-independent and covariate-dependent censoring schemes are summarized
respectively in Tables 1 and 2. It is clear that the proposed estimators are nearly unbiased in
all simulated scenarios, and the proposed asymptotic standard error (SE) estimates based on
the resampling method match those sample standard deviations (SD) of the parameter estimates
reasonably well. Furthermore, the Wald-type 95% confidence intervals have proper converge
probabilities. We also reported the averaged Monte Carlo standard errors of Bias, mean squared
error (MSE) of estimates, and SE/SD for each model. Here the Monte Carlo standard errors of
SE/SD were computed using the Jackknife method.

For the estimation of the nonparametric function f, a finer tuning with the mean integrated
squared error (MISE) score was conducted. In particular, we set h = α2n−1/5, where α2 = 0.5,
0.25, 0.1, 0.05, 0.025 and selected the optimal α2 by minimizing the MISE. Here we only
present the results for design I under the PLPH and PLPO models. The results for design II
and the model corresponding to ζ = 0.5 are quite similar and hence omitted. To present the
performance of our procedure of nonparametric estimation, we plot the estimated functions for
the PLPH model obtained under various scenarios in Figure 1. The left column of Figure 1
depicts the typical estimated functions corresponding to the 10th best, the 50th best (median),
and the 90th best according to MISE among 500 simulations. The top plot is for n = 100 and
the bottom plot is for n = 200. It is evident that the estimated curves are able to capture the
shape of the true function very well, and their performance improves when the sample
increases. In order to describe the sampling variability of the estimated nonparametric function
at each point, we also depict a 95% pointwise confidence interval for f in the right column of
Figure 1. The upper and lower bound of the confidence interval are respectively given by the
2.5th and 97.5th percentiles of the estimated function at each grid point among 500 simulations.
The results show that the function f is estimated with reasonably good accuracy. As the sample
size increases from 100 to 200, the confidence interval becomes narrower as expected. In Figure
2, we plot the estimated nonparametric function and the associated 95% pointwise confidence
interval for the PLPO model. Similar conclusions as the PLPH model can be drawn from Figure
2.

In order to examine the numerical stability and efficiency of the proposed iterative algorithm,
we also conducted several simulations to study: (i) the effects of different initial values for the
nonlinear covariate on the solution; and (ii) how much efficiency is lost if the true covariate
effect is linear while the proposed method is used. The results are presented in the
supplementary Appendix C. Based on these results, we observe that the estimated linear
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parameters produced from different initial values are quite similar to each other and close to
the truth, and the efficiency loss of our method is relatively small compared with that of Chen
et al. (2002) for the linear transformation model when the true covariate effects are really linear.

3.2 Application to lung cancer data
In this section, we apply our method to the lung cancer data from the Veteran’s Administration
lung cancer trial (Kalbfleishch and Prentice, 2002). In this trial, 137 males with advanced
inoperable lung cancer were randomized to either a standard treatment or chemotherapy.
Besides the treatment indicator, there were five covariates: Cell type (1=squamous, 2=small
cell, 3=adeno, 4=large), Karnofsky score, Months from Diagnosis, Age, and Prior therapy
(0=no, 10=yes). The data set has been analyzed by many authors, for example, Tibshirani
(1997) fitted the proportional hazards model and Lu and Zhang (2007) considered the
proportional odds model. They found that both Cell type and Karnofsky score were significant
while others were not. In both methods, all covariates were assumed linear, which may not be
true, particularly for the age effect. It is well known that age is a complex confounding factor,
and its effect usually shows a nonlinear trend.

We fitted both the PLPH and PLPO models to the data with three covariates: treatment, cell
type and age, where age is assumed to be nonlinear. For estimation, we first rescaled age
between 0 and 1, and set h = 0.05n−1/3 as in simulations. Table 3 summarizes the estimated
coefficients and their standard errors obtained based on 500 resamplings for both models. As
found in the literature, Cell type (small vs large, adeno vs large) is significant while treatment
is not in both models. Moreover, Figure 3 gives the estimates of the nonlinear components: the
left panel for the PLPH model and the right panel for the PLPO model. The red curves are
estimated nonparametric functions and the blue curves are the 95% point-wise confidence
intervals constructed based on the resampling method. Based on the plots, the covariate age
showed clearly a nonlinear effect (U-shape) on survival times. It is noted that the zero line is
not included in the 95% confidence intervals. This example suggests that the partially linear
transformation models can be more powerful in discovering significant covariates than those
assuming simply linear covariate effects.

4. DISCUSSION
We study a general class of partially linear transformation models, and develop the
corresponding inference procedure by solving a unified global and local estimating equation
system based on the martingale representation. We established the root-n consistency and
asymptotical normality for the estimates of regression coefficients, and studied the
convergence rates of the estimates for nonparametric components including the transformation
function and nonlinear covariate effect. We also provide consistent estimates for the asymptotic
variance of the regression coefficient estimates based on a feasible resampling scheme. It is
noted that the proposed martingale-based estimating equations are ad hoc and are generally
not efficient. Recently, Chen (2009) proposed a nice approach using the weighted Breslow-
type estimator to construct efficient estimating equations for the linear transformation model.
It is interesting to explore whether such an approach can be generalized to the partially linear
transformation model. A thorough investigation is warranted for future research.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
The estimated nonlinear function, confidence envelop and 95% point-wise confidence interval
for the PLPH model.
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Figure 2.
The estimated nonlinear function, confidence envelop and 95% point-wise confidence interval
for the PLPO model.
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Figure 3.
The estimated nonlinear function and its 95% point-wise confidence interval.
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Table 3

Estimates and standard errors of linear coefficients for lung cancer data.

Covariate PLPH PLPO

Est. SE Est. SE

Treatment 0.182 0.192 0.191 0.335

squamous vs large −0.307 0.255 −0.514 0.476

small vs large 0.723 0.235 1.375 0.425

adeno vs large 0.808 0.234 1.440 0.410

Est., estimates of regression coefficients; SE, estimated standard errors based on 500 resamplings.
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