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Abstract

A 1:1 mixture of [P(t-Bu)2o-biphenyl]AuCl and AgSbF6 catalyzes the intermolecular amination of
allylic alcohols with 1-methyl-imidazolidin-2-one and related nucleophiles that, in the case of γ-
unsubstituted or γ-methyl-substituted allylic alcohols, occurs with high γ-regioselectivity and syn-
stereoselectivity.

There has been an ongoing interest in the direct catalytic amination of underivatized allylic
alcohols as a route to allylic amines and related derivatives.1 Initial headway in this area was
realized through the in situ activation of the hydroxyl functionality with Lewis acid co-
catalysts.2 In 2002 Ozawa reported the amination of allylic alcohols with anilines catalyzed
by a cationic Pd(II) π-allyl complex in the absence of Lewis acidic co-catalysts.3 Since this
time, a number of metals including Pd(0),4 Pt(II),5 Mo(VI),6 Bi(III),7 Au(I), and Au(III)8 have
been shown to catalyze the intermolecular amination of underivatized allylic alcohols without
the assistance of a Lewis acidic co-catalyst.9 Although a number of these transformations
display high regio- and/or stereoselectivity, regiospecific amination of allylic alcohols remains
problematic, presumably due to the intermediacy of π-allyl complexes or allylic carbocations.
Here we describe a gold(I)-catalyzed protocol for the intermolecular amination of allyl alcohols
with 1-methyl-imidazolidin-2-one (1) and related nucleophiles that, in the case of γ-
unsubstituted or γ-methyl-substituted allylic alcohols, occurs with high γ-regioselectivity and
syn-stereoselectivity.10

We recently reported the intermolecular hydroamination of unactivated 1-alkenes with cyclic
ureas catalyzed by gold(I) o-biphenyl phosphine complexes.11 As part of our ongoing efforts
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to expand the scope of intermolecular alkene hydroamination, we investigated the gold(I)-
catalyzed reaction of cyclic ureas with allylic ethers. However, reaction of 1 with either
allyloxytrimethylsilane or diallyl ether catalyzed by a 1:1 mixture of (2)AuCl [2 = P(t-Bu)2o-
biphenyl] and AgSbF6 gave none of the anticipated hydroamination products but instead led
to allylic amination with isolation of 1-allyl-3-methyl-imidazolidin-2-one (3) in >95% yield
(Scheme 1).

The efficient amination of both allyloxytrimethylsilane and diallyl ether suggested that
unprotected allylic alcohols might also undergo gold(I)-catalyzed allylic amination. Indeed,
reaction of 1 with allyl alcohol (1 equiv) catalyzed by (2)AuCl/AgSbF6 at 60 °C for 2 h led to
isolation of 3 in 99% yield (Table 1, entry 1).12 In addition to 1, oxazolidin-2-one,
imidazolidin-2-one, and primary and secondary sulfonamides underwent efficient gold(I)-
catalyzed allylation with allylic alcohol (Table 1, entries 2, and 4 - 7). Pyrrolidin-2-one and
benzyl carbamate also underwent gold(I)-catalyzed allylation with allylic alcohol, albeit with
diminished efficiency (Table 1, entries 3 and 8).

We evaluated the scope and stereospecificity of the gold(I)-catalyzed allylation of 1 as a
function of allylic alcohol (Table 2). In the cases of γ-unsubstituted or γ-methyl substituted
allylic alcohols, amination occurred selectively at the γ-carbon atom of the allylic alcohol. For
example, gold(I)-catalyzed reaction of 1 with 1,1-dideuterio-2-propenol led to exclusive
formation of 1-(3,3-dideuterio-2-propenyl)-3-methyl-imidazolidin-2-one (3-γ,γ-d2) (Table 2,
entry 1). Likewise, gold(I)-catalyzed amination of 3-buten-2-ol with 1 led to exclusive
formation of the N-2-butenyl urea 4 while amination of 2-buten-1-ol with 1 formed exclusively
the N-(1-methyl-2-propenyl) urea 8 (Table 2, entries 2 and 6). Gold(I)-catalyzed reaction of
1 with 2-deuterio-3-penten-2-ol (10-1-d1) formed allylic urea 11-γ-d1 as the exclusive product
(Table 2, entry 8) while gold(I)-catalyzed reaction of 1 with 4-hexen-3-ol (13) led to exclusive
formation of urea 14 (Table 2, entry 10). Conversely, gold(I)-catalyzed amination of cinnamyl
alcohol with 1 led to exclusive formation of α-substitution product 5 whereas gold(I)-catalyzed
reaction amination of 3-methyl-2-buten-1-ol with 1 led to formation of a 12:1 mixture of α-
substitution product 6a and γ-substitution product 6b in quantitative yield (Table 2, entries 11
and 12).

The presence of a γ-selective pathway in the gold(I)-catalyzed amination of γ-methyl
substituted allylic alcohols pointed to the potential for 1,3-chirality transfer in these
transformations. Indeed, two experiments employing enantiomerically enriched allylic
alcohols established the preferential addition of urea to the alkene π-face syn to the departing
hydroxyl group. In one experiment, gold(I)-catalyzed reaction of (R)-10 (92% ee) with 1 at 60
°C gave a 4.2:1 mixture of (S,E)-11 with 86% ee and (R,Z)-11 with 92% ee in 99% combined
yield (Scheme 2). In a second experiment, gold(I)-catalyzed reaction of 1 with (R)-13 (96%
ee) at 60 °C for 24 h led to isolation of a 4.3:1 mixture of (S,E)-14 with 91% ee and (R,Z)-14
with ≥95% ee in quantitative yield (Scheme 2).

The stereochemical outcome of the gold(I)-catalyzed amination of (R)-10 and (R)-13 with 1
are characteristic of a concerted SN2′ substitution.13 However, a mechanism for the gold(I)-
catalyzed γ-amination of allylic alcohols involving σ-activation of the hydroxyl group appears
at odds with the low oxophilicity of gold(I), particularly considering the modest nucleophilicity
of 1. Rather, a mechanism involving π-activation of the allylic C=C bond also accounts for the
stereochemistry of gold(I)-catalyzed allylic amination and appears more in line with the
pronounced π-acidity of cationic gold(I) complexes.14 Notably, Maseras has proposed a π-
activation pathway for the gold(I)-catalyzed isomerization of allylic ethers with alcohols on
the basis of DFT calculations.15 Guided by these results, we propose a mechanism for gold(I)-
catalyzed allylic amination of (R)-10 initiated by formation of the gold(I) π-alkene complexes
si-I and re-I (Scheme 3). Outer-sphere addition of 1 to si-I and re-I, facilitated by an N–
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H….O hydrogen bond (si-II and re-II),15 would form the cyclic, hydrogen-bonded gold alkyl
intermediates (S,S,R)-III and (R,R,R)-III, respectively (Scheme 3). anti-Elimination of a
hydrogen-bonded water molecule followed by displacement of gold would then release allylic
ureas (S,E)-11 and (R,Z)-11 (Scheme 3). Preferential formation of (S,E)-11 relative to
(R,Z)-11 presumably results from the unfavorable cis relationship of the gold moiety and the
C1 methyl group in the transition state for formation of (R,R,R)-III that is absent in the
transition state for formation of (S,S,R)-III.

The π-activation mechanism for allylic amination outlined in Scheme 3 does not, however,
account for the formation of α-substitution products, as was observed for the amination of
cinnamyl alcohol and 3-methyl-2-buten-1-ol (Table 2, entries 11 and 12). These α-substitution
products may result from the presence of a Lewis acid-catalyzed reaction pathway involving
carbocationic intermediates. Alternatively, we have obtained evidence for the formation of α-
substitution product 6a in the gold(I)-catalyzed amination of 3-methyl-2-buten-1-ol with 1
through indirect pathways, in particular, the isomerization of γ-addition product 6b under
reaction conditions and the allylic transposition of 3-methyl-2-buten-1-ol followed by γ-
addition of 1. In support of the former pathway, an equimolar mixture of 1, 6b, cinnamyl
alcohol, and water that contained a catalytic amount of (2)AuCl and AgOTf was heated at 60
°C in dioxane for 24 h.16 1H NMR analysis of the purified reaction mixture revealed a ∼2:1:1
mixture of unreacted 6b, cinnamyl urea 5 and isomerized urea 6a (Scheme 4).

A pathway for formation of 6a in the gold(I)-catalyzed amination of 3-methyl-2-buten-1-ol
initiated by allylic transposition of 3-methyl-2-buten-1-ol was validated through a second set
of experiments. When an equimolar mixture of 3-methyl-2-buten-1-ol and 1 that contained a
catalytic amount of (2)AuCl and AgOTf was heated at 60 °C in dioxane-d8, 1H NMR analysis
at low conversion (∼17%) revealed the presence of 2-methyl-3-buten-2-ol and γ-alkoxylation
product 15 that together accounted for ∼3% of the reaction mixture (Scheme 5). These
compounds persisted throughout the conversion of 3-methyl-2-buten-1-ol to 6a and 6b and
were consumed at high conversion (∼95%). Importantly, gold(I)-catalyzed reaction of 1 with
either 2-methyl-3-buten-2-ol or 15 formed 6a as the exclusive product at rates that were ≥6
times greater than the rate of reaction of 1 with 3-methyl-2-buten-1-ol under comparable
conditions.17

In summary, we have developed a gold(I)-catalyzed method for the amination of allyl alcohols
with 1-methyl-imidazolidin-2-one (1) and related nucleophiles that proceedes in high yields
under mild conditions. In the case of γ-unsubstituted or γ-methyl-substituted allylic alcohols,
amination occurs with high γ-regioselectivity and syn-stereoselectivity. In the case of 3-
methyl-2-butene-1-ol or cinnamyl alcohol, gold(I)-catalyzed amination led to predominant
formation of α-amination products via secondary π-activation reaction pathways or through a
Lewis acid catalysis involving carbocationic intermediates. We are currently working toward
expanding the scope of gold(I)-catalyzed allylic amination with respect to nucleophile and
toward the development of more general and more selective catalyst systems for the γ-
amination of underivatized allylic alcohols.
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Refer to Web version on PubMed Central for supplementary material.
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Scheme 1.
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Scheme 2.
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Scheme 3.
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Scheme 4.
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Scheme 5.
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