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Abstract

How to identify true transcription factor binding sites on the basis of sequence motif information (e.g., motif pattern, location,
combination, etc.) is an important question in bioinformatics. We present ‘‘PeakRegressor,’’ a system that identifies binding
motifs by combining DNA-sequence data and ChIP-Seq data. PeakRegressor uses L1-norm log linear regression in order to
predict peak values from binding motif candidates. Our approach successfully predicts the peak values of STAT1 and RNA
Polymerase II with correlation coefficients as high as 0.65 and 0.66, respectively. Using PeakRegressor, we could identify
composite motifs for STAT1, as well as potential regulatory SNPs (rSNPs) involved in the regulation of transcription levels of
neighboring genes. In addition, we show that among five regression methods, L1-norm log linear regression achieves the best
performance with respect to binding motif identification, biological interpretability and computational efficiency.

Citation: Pessiot J-F, Chiba H, Hyakkoku H, Taniguchi T, Fujibuchi W (2010) PeakRegressor Identifies Composite Sequence Motifs Responsible for STAT1 Binding
Sites and Their Potential rSNPs. PLoS ONE 5(8): e11881. doi:10.1371/journal.pone.0011881

Editor: Xiaolin Wu, National Cancer Institute at Frederick, United States of America

Received January 15, 2010; Accepted June 7, 2010; Published August 27, 2010

Copyright: � 2010 Pessiot et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by general subsidies from the National Institute of Advanced Industrial Science and Technology, Japan. This funder had no
role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Takeaki Taniguchi is employed by the Mitsubishi Research
Institute, Inc. His wages were funded by the company and he participated in performing the computational experiments. This funder also had no role in study
design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: Takeaki Taniguchi is employed by the Mitsubishi Research Institute, Inc. There are no patents, products in development, or marketed
products related to this research, and his involvement does not alter the adherence to all the PLoS ONE policies on sharing data and materials.

* E-mail: w.fujibuchi@aist.go.jp

Introduction

The experimental identification of cis-regulatory sites based on

transcription factor binding motifs (TFBMs) is a difficult and time-

consuming task. In this regard, in silico analysis of TFBMs has

recently attracted attention as a promising tool for discovering true

cis-regulatory sites. Previous works attempt to find TFBMs to

model the mechanisms underlying the control of gene expression

levels [1,2]. They assume that the gene expression levels are

determined by the presence of certain motifs in the upstream

regions of the genes. Based on this assumption, they find TFBM

candidates which show a strong correlation with changes in the

gene expression levels. [3] Instead of modeling the expression

levels, another solution is to model the binding affinities between a

protein and its target genes based on the thermodynamics theory.

However, the binding affinities are difficult to measure and related

works use transcription factor occupancy to approximate binding

affinity [4,5].

In this article, we present PeakRegressor, a new tool for the

identification of functional TFBMs from ChIP-Seq data. As far as

we know, this is the first attempt at performing peak signal

regression based on candidate motif models. Because PeakRe-

gressor is computationally efficient and the models are easy to

interpret, it is usable with large-scale datasets. We apply

PeakRegressor to two ChIP-Seq datasets and show its ability to

recover motifs involved in the binding of STAT1 and RNA

Polymerase II.

Results and Discussion

Results with PeakRegressor
Table 1 shows the correlation coefficients between the peak

scores and their predicted values by PeakRegressor in the test

dataset. We keep the highest correlation coefficient among various

b for each iteration of the 30-fold cross-validation, and those 30

correlation coefficients are averaged and shown here. Obviously,

the filtering with peak existence probability, i.e., Q-value, over the

control experiment enhances the regressions. The filtering with

promoter region proximity improves the regressions of RNA

Polymerase II but not of STAT1.

In Figure 1, we plot the STAT1 peak scores with two

filtering methods such as Q-value v10{3 and promoter

proximity in the test dataset against their predictions by

PeakRegressor. The correlation coefficient is as high as 0.65

between the peak and predicted values for the Q-value

filtering, whilst it is as low as 0.41 for promoter proximity

filtering. Interestingly, however, the data points that are

selected by promoter proximity existed only in a biased region,

leading to worse prediction.

In Tables 2 and 3, we show the top ten motifs for STAT1

and RNA Polymerase II identified by PeakRegressor, respec-

tively. The motifs are sorted according to the absolute values of

their averaged regression coefficients. A motif with a positive

(resp. negative) coefficient is thought to have a strengthening

(resp. weakening) effect on the binding. In the case of STAT1,
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it is clear that our approach correctly identifies the classical

GAS motif TTC[TC]N[GA]GAA as the main binding motif

[6]. Meanwhile, the RNA Polymerase II binding motifs also

contain known Downstream Promoter Element [AG]G[AT]

[CT][GAC] and Initiator Site [TC][TC]AN[TA][TC][TC]

[7].

STAT1 composite motifs. As the most important feature

of PeakRegressor, it can give us a list of putative composite

motifs. Basically, it is difficult to evaluate whether a composite

motif consists of the same motif or multiple (different) motifs. In

order to identify the composite motifs, we proceed as follows.

First, we consider the best set of motifs according to

PeakRegressor (i.e., the set which corresponds to the best

prediction accuracy). Among these, we select 136 motifs which

have a normalized coefficient higher than 0:1. We use these

motifs to represent each peak sequence as a binary vector,

indicating whether a motif is present or not in the peak

sequence. Then we cluster the resulting peak vectors using the

K-Means algorithm. Thus each cluster contains peak vectors

which show similar motif patterns, i.e., sequences containing

potential composite motifs.

Here we show an example of a composite motif that are

responsible for STAT1 binding signals:

TCACA TG½ �G ACG½ �z TC½ �TT CA½ �C CA½ � AG½ � GC½ � AC½ �A:

Comparison with other regression methods
PeakRegressor identifies potential TFBMs by solving a regression

problem. This regression problem is defined by a set of peak vectors

fxigi~1:::N and their corresponding peak scores fyigi~1:::N . The

goal is to predict the peak scores from the peak vectors. The fitted

regression model is then used to infer the TFBM candidates. We

expect the regression method to have three properties. First, it

should identify the true binding motifs. Second, it should identify the

strengthening and weakening motifs. Third, it should be compu-

tationally efficient in order to cope with large ChIP-Seq datasets.

In PeakRegressor, we choose to use the L1-norm log linear

regression to solve this problem. This approach favors sparse

solutions (i.e., solutions with a small number of motifs) and

therefore, we argue that it is more suitable for the TFBM

identification problem. However, many other regression methods

are available and can be used to solve the regression problem.

How do these approaches compare with the L1-norm log linear

regression with respect to the desired properties? In the following,

we compare our L1-norm log linear regression based approach

with other regression methods: linear least squares regression,

ridge regression, partial least squares regression, and principal

component regression. For each method, we evaluate its

performance on the STAT1 and RNA Polymerase II datasets

and discuss the results.
Linear least squares regression. In Tables 4 and 5, we

show the top ten motifs identified by the linear least squares

regression. In the case of STAT1 (Table 4), we can see that the

true GAS motif appears within the top ten motifs. However, two

problems appear. First, the regression coefficients of the GAS

Table 1. Influence of the peak filtering methods on the
correlation coefficients between peak values and their
predicted values in the test dataset.

Filtering method #Peaks (STAT1/Pol II) STAT1 Pol II

None 36998/24739 0.50 0.44

Promoter proximity 3,907/9,094 0.41 0.53

Q-value v10{3 16639/17580 0.65 0.66

The correlation coefficients are averaged in 30-fold cross-validation.
doi:10.1371/journal.pone.0011881.t001

Figure 1. STAT1 regression results with two filtering methods: Q-value (right) and promoter proximity (left). The correlation coefficients
on the test data between peak values and their predicted values are 0.65 and 0.41 for Q-value and promoter proximity filterings, respectively.
doi:10.1371/journal.pone.0011881.g001

Motif Prediction from ChIP-Seq
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motif are very low compared to those of the top motifs (between

0:01 and 0:02). This means that according to the linear least

squares regression, the true GAS motif has only a minor effect on

the binding, which contradicts existing biological knowledge.

Second, the most important motifs according to the linear

least squares regression are CCCCTCCC and CCCCACCC.

However, each of them is associated with opposite coefficients

({1:0 and 0:94 for CCCCTCCC, 0:34 and {0:34 for

CCCCACCC). Therefore, each of them is considered to have

both a strengthening effect and a weakening effect on the binding,

which is a contradictory result.

With the RNA Polymerase II dataset (Table 5), linear least

squares regression is able to identify the initiator site and the

downstream promoter element. However, the instances of the

initiator site have opposite coefficients ([CA]CAGACT with 0:62,

T[CT][TA]T[TG][AC][AT] with 0:62, and TT[TAC]TTT[CT]

with {0:61). As they are instances of the same motif, we expect

them to have the same sign i.e., to have the same effect on the

binding. In summary, for both STAT1 and RNA Polymerase II

datasets, the results of the linear least squares regression are

difficult to interpret biologically. This is a typical situation where

we would like to reduce the number of motifs used by the

regression model. Clearly, this is not possible with the linear least

squares regression approach.

Ridge regression. In Tables 6 and 7, we show the top ten

motifs identified by the ridge regression. In the case of STAT1

(Table 6), we can see that the ridge regression and the L1-norm log

linear regression identify very similar motifs. In both cases, the

classical GAS motif is clearly identified as the main binding motif.

Both regression methods also identify CA[TC]GTGACT[TG]C

as a strengthening motif and GGAGGGCG as a weakening motif.

In the case of RNA Polymerase II (Table 7), both methods are able

to identify the initiator site (T[CT][TA]T[TG][AC][AT) and the

downstream promoter element (A[GC][TAG]CA).

However, they differ greatly with respect to computational

complexity. In [8], the authors present an algorithm for computing

the L1-norm log linear regression solutions of many regularization

parameters for the same computational cost as that of a single least

Table 2. List of putative STAT1 binding motifs identified by
PeakRegressor.

STAT1 Normalized coef.

CA[TC]GTGACT[TG]C 1.

[TG]G[GTA][GC][AG]TTT[CA]C[AGC]
[GA]GAA[AC][TG]G[GA][GC]

0.96

TTC[CT][TG][GA]GAAAT[GC][CA]
[CA][CAT][AT][TCG][CG][CT]

0.72

[CT][TC]CA[GT]TTCCAGGAA[AT]T[CG][CAT]C[CT] 0.65

GGAGGGCG 20.57

GGACGCCG 20.56

A[CT]TTC[TC][TG]GGAA 0.56

TT[CA]C[TAG][GA]GAA[GA]T 0.55

A[TA]TTCC[CT][GA]GAA[AC]T[CG][AC] 0.48

TT[CA][TC][GA]GGAA[AG] 0.47

The classical GAS motifs are shown in boldface.
doi:10.1371/journal.pone.0011881.t002

Table 3. List of putative RNA Polymerase II binding motifs
identified by PeakRegressor.

Pol II Normalized coef.

T[AG]A[GC][TAG]CA[GCT]A[AC]AA 1.

A[GA]AA[AC][CA]AA[AC]AAA 0.78

C[ACT][GT][CG][CT][TA]CC[AGT]CC[TA] 0.76

C[CT][CG][AT]GGCTGG[AG]G 0.68

TTTCTGC[CT][CT]TT[GT] 0.67

T[TA]T[TC][CA]CAGACT[AT] 0.63

GGAGGGAGGC[AG]G 0.62

AC[AC][CA][AC][AT][AG]AGAAA 0.61

TTTGT[CT][TA]T[TG][AC][AT]T 0.54

AAA[AT][GC]AAA[AT]A[GA]A 0.54

The known Downstream Promoter Element and Initiator site motifs are shown
in boldface.
doi:10.1371/journal.pone.0011881.t003

Table 4. List of putative STAT1 binding motifs identified by
linear least squares regression.

STAT1
Normalized
coef.

CCCCTCCC 21.0

CCCCTCCC 0.94

CCCCACCC 0.34

CCCCACCC 20.34

CA[TC]GTGACT[TG]C 0.02

[TG]G[GTA][GC][AG]TTT[CA]C[AGC]
[GA]GAA[AC][TG]G[GA][GC]

0.02

[CT][TC]CA[GT]TTCCAGGAA[AT]T[CG][CAT]C[CT] 0.01

GGAGGGCG 20.01

TTC[CT][TG][GA]GAAAT[GC][CA][CA]
[CAT][AT][TCG][CG][CT]

0.01

A[CT]TTC[TC][TG]GGAA 0.01

The classical GAS motifs are shown in boldface.
doi:10.1371/journal.pone.0011881.t004

Table 5. List of putative RNA Polymerase II binding motifs
identified by linear least squares regression.

RNA Polymerase II Normalized coef.

T[AG]A[GC][TAG]CA[GCT]A[AC]AA 1.0

A[GA]AA[AC][CA]AA[AC]AAA 0.86

C[ACT][GT][CG][CT][TA]CC[AGT]CC[TA] 0.81

C[CT][CG][AT]GGCTGG[AG]G 0.74

TTTCTGC[CT][CT]TT[GT] 0.74

GGAGGGAGGC[AG]G 0.69

AC[AC][CA][AC][AT][AG]AGAAA 0.64

T[TA]T[TC][CA]CAGACT[AT] 0.62

TTTGT[CT][TA]T[TG][AC][AT]T 0.62

TT[TAC]TTT[CT]TT[TC]TT 20.61

The known Downstream Promoter Element and Initiator site motifs are shown
in boldface.
doi:10.1371/journal.pone.0011881.t005

Motif Prediction from ChIP-Seq
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squares fit. As a consequence, using the same STAT1 dataset, a

30-fold cross-validation takes approximately 60 hours with the

ridge regression, while it takes only 2:5 hours with the L1-norm log

linear regression (i.e., 24 times faster). In summary, although both

methods show very similar results with respect to binding motif

identification, the ridge regression is slower and more difficult to

use with large ChIP-Seq datasets than the L1-norm log linear

regression.

Partial least squares regression and principal component

regression. In Tables 8 and 9, we show the top ten motifs for

STAT1 identified by the partial least squares regression and the

principal component regression. We can see that both methods are

able to identify the classical GAS motif. In Table 8, the partial least

squares regression shows very similar results to the L1-norm log

linear regression as both methods identify CA[TC]GTGACT-

[TG]C as a strengthening motif and GGAGGGCG as a weakening

motif. In Table 9, the principal component regression identifies only

the GAS motif and fails to identify any other motifs involved in the

binding. In the case of RNA Polymerase II, both partial least

squares regression (Table 10) and principal component regression

(Table 11) are able to identify the initiator site and the downstream

promoter element.

However, the results of the partial least squares regression and

the principal component regression are difficult to interpret. In the

former (Table 10), different instances of the downstream promoter

element have positive or negative coefficients (T[TG]AACA-

CAGTT[TA] with 1:0, [CT][CG]AGA[GA]TCCA[GA][CG]

with {0:90, and A[AG][GA][AG]GGA[GCA]GA[GA]A with

0:87). As they are instances of the same motif, we expect them to

have the same sign, i.e., to have the same effect on the binding. In

the latter (Table 11), all the instances of the initiator site and the

downstream promoter element have negative coefficients. How-

ever, these motifs should strengthen the binding and therefore, we

expect their coefficients to be positive.

Table 6. List of putative STAT1 binding motifs identified by
ridge regression.

STAT1
Normalized
coef.

CA[TC]GTGACT[TG]C 1.

[TG]G[GTA][GC][AG]TTT[CA]C[AGC]
[GA]GAA[AC][TG]G[GA][GC]

0.89

GGAGGGCG 20.69

[CT][TC]CA[GT]TTCCAGGAA[AT]T[CG][CAT]C[CT] 0.69

A[CT]TTC[TC][TG]GGAA 0.68

TTC[CT][TG][GA]GAAAT[GC][CA][CA]
[CAT][AT][TCG][CG][CT]

0.65

TT[CA]C[TAG][GA]GAA[GA]T 0.59

TT[CA][TC][GA]GGAA[AG] 0.58

GGACGCCG 20.57

G[TGC][CGT][AT][TG]TTCC[TCA][GA][GT]AA[AG] 0.53

The classical GAS motifs are shown in boldface.
doi:10.1371/journal.pone.0011881.t006

Table 7. List of putative RNA Polymerase II binding motifs
identified by ridge regression.

RNA Polymerase II Normalized coef.

T[AG]A[GC][TAG]CA[GCT]A[AC]AA 1.0

A[GA]AA[AC][CA]AA[AC]AAA 0.86

C[ACT][GT][CG][CT][TA]CC[AGT]CC[TA] 0.81

C[CT][CG][AT]GGCTGG[AG]G 0.75

TTTCTGC[CT][CT]TT[GT] 0.74

GGAGGGAGGC[AG]G 0.70

AC[AC][CA][AC][AT][AG]AGAAA 0.65

T[TA]T[TC][CA]CAGACT[AT] 0.63

TTTGT[CT][TA]T[TG][AC][AT]T 0.62

TT[TAC]TTT[CT]TT[TC]TT 0.61

The known Downstream Promoter Element and Initiator site motifs are shown
in boldface.
doi:10.1371/journal.pone.0011881.t007

Table 8. List of putative STAT1 binding motifs identified by
partial least squares regression.

STAT1
Normalized
coef.

CA[TC]GTGACT[TG]C 1.0

[TG]G[GTA][GC][AG]TTT[CA]C[AGC]
[GA]GAA[AC][TG]G[GA][GC]

0.80

TTC[CT][TG][GA]GAAAT[GC][CA]
[CA][CAT][AT][TCG][CG][CT]

0.58

[CT][TC]CA[GT]TTCCAGGAA[AT]T[CG][CAT]C[CT] 0.56

[GA][AG]A[AG][AT][CTG][CA]A[GT][CG]T[GT][CG]
[CA]T[TG][CT][CGT]T

0.50

TCACA[TG]G[ACG] 0.42

GGAGGGCG 20.41

G[TGC][CGT][AT][TG]TTCC[TCA][GA][GT]AA[AG] 0.41

TT[CA]C[TAG][GA]GAA[GA]T 0.40

A[TA]TTCC[CT][GA]GAA[AC]T[CG][AC] 0.39

The classical GAS motifs are shown in boldface.
doi:10.1371/journal.pone.0011881.t008

Table 9. List of putative STAT1 binding motifs identified by
principal component regression.

STAT1
Normalized
coef.

[TAC]TTCC[CA][GA][GT]AA[AG][TA]C 1.0

TTTCC[CT][GA]GAAAA[CT]TC[AC]TGAA 0.94

TTTTC[CT][AG]GGAA[AG][GT]GG[CG][TCA][GA]GG 0.87

TTTC[TC][TG][GA][GAT]AA[GA] 0.86

[TC]TTCC[AC][AG]G[AC]A 0.85

[GA]GAACC[TC][TG]CAGTTC[CT][AG]GGAA 0.82

CC[CTA][CGT]TTTC[CT]T[GA]GAA[AG][ACT][CG] 0.82

TTC[CT][TG][GA]GAAAT[GC][CA][CA][CAT]-
[AT][TCG][CG][CT]

0.81

TTTC[CT][AGT]GGAAA[TG][GA][GA]G[TAC][GA]G 0.80

G[CT]TT[CA][CT][GAT][GA]GAA[AG][TG][AGC]-
[GA][GCA][TGA]A[CG]

0.78

The classical GAS motifs are shown in boldface.
doi:10.1371/journal.pone.0011881.t009
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The lack of interpretability of the partial least squares regression

and the principal component regression lies in the fact that the

regression is performed in a low-dimensional feature space. In the

original motif space, the vector representation of the peak

sequences has a meaning and each component of a vector

measures how similar a motif is to a peak sequence. However, in

the low-dimensional feature space computed by the partial least

squares regression and the principal component regression, the

vector components lose their biological meaning. From the

computational complexity perspective, we also mention that both

methods are very slow. Using the STAT1 dataset, a 30-fold cross-

validation of the partial least squares regression with 10

components takes approximately 240 hours. In summary, the

partial least squares regression and the principal component

regression are able to identify the classical GAS motif for STAT1

and the initiator site and the downstream promoter element for

RNA Polymerase II. However, the results are difficult to interpret

biologically and do not allow identification of strengthening or

weakening motifs. In addition, they are too slow to be used with

large ChIP-Seq datasets.

Advantages of L1-norm log linear regression over other

methods for TFBM identification. We considered the

following regression methods for TFBM identification: L1-norm log

linear regression, linear least squares regression, ridge regression,

partial least squares regression, and principal component regression.

In Table 12, we summarize the correlation coefficients averaged on

the test sets. As we can see, all regression methods demonstrate similar

performance and are able to identify the classical GAS motif for

STAT1 and the initiator site and the downstream promoter element

for RNA Polymerase II.

However, they exhibit marked differences with respect to

biological interpretability and computational efficiency. The results

of the linear least squares regression, the partial least squares

regression, and the principal component regression do not allow

identification of strengthening or weakening motifs. Therefore, they

are difficult to use for binding motif identification. Both L1-norm

log linear regression and ridge regression solve this problem by

means of regularization. However, the ridge regression is very slow

compared to the L1-norm log linear regression. Therefore, the ridge

regression is difficult to use with large-scale ChIP-Seq datasets. In

summary, the L1-norm log linear regression is the only method that

can achieve all the desired goals for our task; it identifies the

transcription factor binding motifs, the regression coefficients are

easy to interpret biologically, and its implementation with the

LASSO algorithm is fast and efficient. This justifies our choice of the

L1-norm log linear regression in PeakRegressor.

Parameter setting
The performance of PeakRegressor depends on the choice of

parameters that have to be set empirically. In this section, we

explain how we choose two important parameters: the length of

peak sequences and the number of motif candidates.

Length of peak sequences. In the dataset provided by [9],

all the peaks correspond to various DNA sequences. These

sequences have different lengths, ranging from 1 bp to several

thousand bp. To conduct our analysis, we modify the peak

sequences in the following way:

N We shorten long peak sequences for two reasons. First, when

using long DNA sequences, the computations of the motif

finding algorithm MEME take too much time. Second, finding

good quality motifs with MEME is easier with short DNA

sequences than with long ones.

N We widen short peak sequences. Due to the noisy nature of ChIP-

Seq data, the motifs we are looking for may not be exactly on the

provided peak sequence, but in the surrounding DNA neighbor-

hood. Therefore, we decide to choose a uniform length for all the

peak sequences. The choice of 200 bp is empirical; we try several

values (100 bp, 200 bp, 400 bp, and 800 bp) and consider the one

Table 10. List of putative RNA Polymerase II binding motifs
identified by partial least squares regression.

RNA Polymerase II Normalized coef.

T[TG]AACACAGTT[TA] 1.0

C[CT][CG][AT]GGCTGG[AG]G 0.99

G[AG]GG[CG]CCAGAGA 20.97

[CT][CG]AGA[GA]TCCA[GA][CG] 20.90

CTGG[AC]GCTG[TG][TC][ACG] 20.89

A[AG][GA][AG]GGA[GCA]GA[GA]A 0.87

[CG][AT][CT]T[GC]C[AT][CG]TCC[AC] 0.86

GGAGGGAGGC[AG]G 0.86

A[GA]AA[AC][CA]AA[AC]AAA 0.85

[GT]GCCCAGG[CG][TG][GA]G 20.81

The known Downstream Promoter Element and Initiator site motifs are shown
in boldface.
doi:10.1371/journal.pone.0011881.t010

Table 11. List of putative RNA Polymerase II binding motifs
identified by principal component regression.

RNA Polymerase II Normalized coef.

GCTGG[GT][AC][CT][CT]ACA 21.0

[CG]GCGGCGGCGGC 0.97

GCCCAGGCTG[CG][TA] 20.96

CA[AC]AG[TG][GC]CTG[GA]G 20.94

CTGG[TC][CT]TCAAA[GC] 20.90

CTGG[AG]G[TG]GC[AT]G[TG] 20.89

CTGGA[GA]T[GT]CA[GA][TG] 20.87

[TC]CCA[CA]AG[CAT][AG]CTG 20.86

[TA]C[AC]T[GA][CG]CCTGT[GT] 20.84

[CA]TG[AT]CCACAGA[AT] 20.83

The known Downstream Promoter Element and Initiator site motifs are shown
in boldface.
doi:10.1371/journal.pone.0011881.t011

Table 12. Different regression methods and their correlation
coefficients averaged on the test sets.

Regression method
STAT1 correlation
coef.

Pol II correlation
coef.

L1-norm log linear regression 0.65 0.66

Linear least squares regression 0.64 0.64

Ridge regression 0.64 0.64

Partial least squares regression 0.64 0.65

Principal component regression 0.63 0.52

doi:10.1371/journal.pone.0011881.t012

Motif Prediction from ChIP-Seq
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that achieves the best performance, i.e., the highest correlation

coefficients (results not shown for other peak lengths).

Number of motif candidates. In the first step of PeakRegre-

ssor, we use MEME to find over-represented DNA motifs in the peak

sequences. This step results in 800 motif candidates for STAT1 and

880 for RNA Polymerase II. Given the large number of motif

candidates, we empirically observe the presence of similar motifs in the

set of motif candidates. We may wonder if this redundancy could

affect the prediction performance of PeakRegressor. However, we

show that this is not the case.

PeakRegressor uses a regression method called L1-norm log linear

regression. In contrast with other regression methods, L1-norm log

linear regression achieves its best prediction performance by removing

redundant or uninformative motifs from the regression model.

Therefore, the removal of redundant motifs is automatically

performed when using L1-norm log linear regression. Table 2 shows

the set of motifs that achieve the best correlation coefficient for

STAT1. We can see that some motifs are similar. For example, the

motifs A[CT]TTC[TC][TG]GGAA, TT[CA]C[TAG][GA]GAA
[GA]T, A[TA]TTCC[CT][GA]GAA[AC]T[CG][AC], and TT-
[CA][TC][GA]GGAA[AG] are short, similar motifs containing the

STAT1 binding motif. In other experiments, we find that the

prediction performance worsens when similar motifs are removed

(results not shown). Hence, although the motifs appear similar and

redundant, they actually contain complementary information for the

prediction performance.

Moreover, the motif weights computed by PeakRegressor are all

different (resp. 0:56, 0:55, 0:48, and 0:47). Hence, while other

approaches, such as motif clustering, would consider all these motifs

to be equally important, PeakRegressor is able to detect the relative

importance of each motif and compute the corresponding weight.

This is explained by the noisy nature of the DNA motifs found by

MEME in step 1. For a given binding motif, PeakRegressor needs to

use all the noisy PSSM approximations to achieve the best prediction

performance. This is an important property of PeakRegressor,

especially when the number of noisy motifs is very large.

Candidate motifs and their potential rSNPs
Single or composite motifs found in the PeakRegressor system

may reflect actual transcription factor binding sites. If a single

nucleotide polymorphism (SNP) occurs within the sites, regulatory

control of neighboring gene transcription will be perturbed, thus

leading to genetic diseases in some cases [10]. Therefore, true

binding sites may have SNPs less frequently than the non-binding

sites. As an important verification, we check the number of known

SNPs to be found within the STAT1 positions presented by

PeakRegressor by using dbSNP database (http://www.ncbi.nlm.

nih.gov/SNP/). We find that 0.36% (147 for 40,395 bp) of

mapped positions with 10 STAT1 motifs in Table 2 on the peak

sequences contains SNPs, while as much as 0.53% (17,852 for

3,344,439 bp) of all positions contains SNPs on the peak

sequences. The statistical difference between the above two ratios

is highly significant such as pv3:7{7 according to the hypergeo-

metric distribution. These sites are possible candidates of rSNPs

because the slight change within the motif may affect the change of

gene expression level and might cause diseases.

Materials and Methods

PeakRegressor
PeakRegressor is a system to find TFBMs that are statistically

important for transcription factor binding signals, by taking

ChIP-Seq data as input, and outputs a list of TFBM candidates.

In contrast with previous approaches, PeakRegressor uses the

peak scores (provided by [9]) as a surrogate for the binding

affinities. We argue that the peak scores provide more accurate

approximations of the binding affinities than the methods based

on transcription factor occupancy [4,5]. Therefore, using the

peak scores lead to better identification of functional TFBMs.

In addition, PeakRegressor identifies not only primary TFBM

candidates but also secondary motifs that may often synergisti-

cally strengthen or weaken the binding. The workflow is

summarized in Figure 2.
Step 1. First, we define the peak sequences as the 200-bp

genomic regions centered around the peaks. Then, we sort the

peak sequences according to their ascending scores. We group the

peak sequences into clusters such that each cluster contains 200

peaks of consecutive scores. Then, we apply MEME (http://

meme.sdsc.edu/) to each peak sequence cluster. For each

sequence cluster, MEME is parameterized in ZOOPS mode to

find 10 motifs of lengths 8{20.

This strategy has two advantages. First, it allows us to identify

motifs that may be associated with a given binding affinity level. If

a cluster contains only low (resp. high) binding affinity peaks, the

corresponding sequences may contain weak (resp. strong) binding

motifs, i.e., motifs that are specific to low (resp. high) binding

affinity. Second, it reduces computational time by parallelizing

MEME computations.
Step 2. In order to predict the binding affinity of the peaks,

we need to represent each peak as a vector in the motif space. Let

seqi be the DNA sequence of peak i. Let seqi
j,‘ be the ‘-length sub-

sequence of seqi, starting from position j. Let Sd be the PSSM of

motif d . Let ‘i be the length of seqi and ‘d be the length of motif d.

We represent peak i as vector xi [ RD, such that

xid~ max
j~1...‘i{‘d z1

f (seqi
j,‘d

, Sd ){max(Sd )

for d~1 . . . D. The quantity f (seqi
j,‘d

, Sd ) is a sum of log-odd

scores, representing how well motif d matches sub-sequence

seqi
j,‘d

. Hence, the first term of the sum, xid , corresponds to the

best match when we slide motif d along sequence seqi. The term

max(Sd ) is the maximum score achievable by any sequence

matching with the motif d. Therefore, we always have xidƒ0,

with xid~0 for the best possible match.

Next, we want all the xid to be positive for interpretability

purpose. So we simply shift their values by substracting the lowest

component: xid/xid{a, where a is the minimum value of the

original xid . Finally, we normalize each data vector by dividing it

with its euclidean norm: xi/xi=ExiE2.
Step 3. Quantities yi to be fitted are the log values of the peak

enrichment scores, as given by PeakSeq [9]. We can now solve the

regression problem defined by (xi,yi) pairs for i~1 . . . N. Linear

regression is a simple and popular approach, but is prone to

overfitting. Hence, we choose to regularize the model with L1-

norm, i.e., we want to minimize the sum of squared errors and the

L1-norm of the regression coefficient vector:

min
b[RD

bEbEz
XN

i~1

(bT xi{yi)
2 ð1Þ

where bw0 is a user-defined regularization coefficient. The L1-

norm log linear regression is able to remove redundant or

uninformative features, and to select a small number of features

that best explain the fitted quantity [11]. In our case, the features

correspond to DNA motifs and hence, the result of this step is a set
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of motifs that best explain the binding signal values from ChIP-Seq

dataset. We use Lasso, a popular algorithm for solving L1-norm

log linear regression. Lasso is available as part of the LARS

package for R (http://www-stat.stanford.edu/,hastie/Papers/

LARS/).

Other regression methods
In this section, we present alternatives to the L1-norm log linear

regression: linear least squares regression, ridge regression, partial

least squares regression, and principal component regression. All

these regression methods are used in the following way. Once a

regression model is fitted to the peak dataset, we rank the

regression coefficients with respect to their absolute values. Using

this ranking, the top motifs are the potential TFBMs.

Linear least squares regression. The linear least squares

regression is the simplest regression approach. It fits a linear model to

the dataset by minimizing the sum of squared errors
PN

i~1

(yi{bT xi). Its difference with the L1-norm log linear regression

(equation 1) is the absence of a regularization term. Therefore, the

linear least squares regression is more prone to overfitting when the

regression problem contains more dimensions than samples.

Ridge regression. The ridge regression [12] minimizes

EbE2z
PN

i~1 (yi{bT xi), where the regularization term is EbE2 ~PD
d~1b2

d , i.e., the Euclidean norm of b. It is quite similar to the

L1-norm log linear regression, and their main difference lies in the

regularization term. The ridge regression seeks a solution with a

low Euclidean norm. Although the Euclidean norm is a protection

against overfitting, it does not favor sparse solutions (i.e., solutions

with many motifs) as the L1-norm log linear regression does [11].

Partial least squares regression and principal component

regression. The partial least squares regression [13] and the

principal component regression are two approaches of the same

idea; they perform linear regression using the low-dimensional

data matrix Z instead of the initial data matrix X . This approach

avoids overfitting problems. Therefore, the partial least squares

regression and the principal component regression have been

widely used in problems containing several dimensions (i.e., motifs)

and few samples (i.e., peaks).

In the principal component regression, the low-dimensional

data matrix Z contains the most information about the initial data

matrix X (according to the singular value decomposition of X ). In

the partial least squares regression, the low-dimensional data

matrix Z is calculated using both the initial data matrix X and the

peak score vector y. In both cases, linear regression is performed

using Z instead of the initial data matrix X . Both partial least

squares regression and principal component regression are

available as part of the PLS package for R (http://mevik.net/

work/software/pls.html). Once the regression coefficients have

been computed in the low-dimensional space, they are mapped

back in the original motif space. Then, these coefficients can be

used to identify potential binding motifs.

Input ChIP-Seq datasets
The ChIP-Seq dataset we used is provided by [9] and is

publicly available (http://www.camda2009.org/). The dataset

provides various information about each peak, including the peak

score, the peak center (for STAT1), and the Q-value that reflects

the significance of the peak. The Q-values are derived from the

P-values. First, they compute the P-values that reflect the

significance of peak enrichment in the number of DNA tags,

compared to control samples. These P-values are computed using

the binomial distribution. Then, to account for multiple

hypothesis testing, the Q-values are derived from the P-values.

See [9] for more details.

Figure 2. Schematic view of the workflow of PeakRegressor. PeakRegressor takes ChIP-Seq data as input and outputs a list of TFBM
candidates and their weights that give the best regression accuracies.
doi:10.1371/journal.pone.0011881.g002
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For STAT1, we use 200-bp windows around the peak centers to

define the peak sequences. For RNA Polymerase II, the peak

centers are not available and thus, we use the peak start and peak

end coordinates to define the peaks. When the length of the

resulting sequence is less than 200 bp, we enlarge it in both

directions in order to reach 200 bp length. When the length is

more than 4000 bp, we trim it in both directions in order to reach

4000 bp length. As a result, all the RNA Polymerase II peak

sequence lengths lie between 200 and 4000 bp.

Evaluation of prediction performance
PeakRegressor predicts the peak scores and therefore, we have

two different values for each peak. The ‘‘true’’ peak score is the

score provided by [9], and is derived from the frequency of reads

of ChIP-Seq data. The predicted score is computed by

PeakRegressor using the peak sequence information. Ideally, the

predicted score should be equal to the true score. We use

correlation coefficients to evaluate the prediction quality of

PeakRegressor.

Experimental protocol
For L1-norm log linear regression and ridge regression, we have

to set the regularization parameter b. First, we define b~2i for

i [ ½{25, 25�. Then for each value of b, we perform a 30-fold

cross-validation. In each fold, we split the dataset into a training

set and a test set, with a 90%{10% ratio. The optimal value for b
is the one which corresponds to the lowest prediction error on the

test set. All the results of L1-norm log linear regression and ridge

regression are averaged over the 30-fold cross-validation.

For partial least squares regression and principal component

regression, the experiments were limited by the slowness of both

methods. First we have to set the number of components K used

for regression. We tried K~1:::10, and performed a 30-fold cross-

validation for each value of K . In each fold, we split the dataset

into 50% for training and 50% for testing. All the results of partial

least squares regression and principal component regression are

averaged over the 30-fold cross-validation.
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