
Understanding resistance to EGFR inhibitors—impact on future
treatment strategies

Deric L. Wheeler,
Department of Human Oncology, University of Wisconsin Comprehensive Cancer Center, 1111
Highland Avenue Madison, WI 53705, USA

Emily F. Dunn, and
Department of Human Oncology, University of Wisconsin Comprehensive Cancer Center, 1111
Highland Avenue Madison, WI 53705, USA

Paul M. Harari
Department of Human Oncology, University of Wisconsin Comprehensive Cancer Center, 600
Highland Avenue, Madison, WI 53792, USA

Abstract
EGFR is a tyrosine kinase that participates in the regulation of cellular homeostasis. Following ligand
binding, EGFR stimulates downstream cell signaling cascades that influence cell proliferation,
apoptosis, migration, survival and complex processes, including angiogenesis and tumorigenesis.
EGFR has been strongly implicated in the biology of human epithelial malignancies, with therapeutic
applications in cancers of the colon, head and neck, lung, and pancreas. Accordingly, targeting EGFR
has been intensely pursued, with the development of a series of promising molecular inhibitors for
use in clinical oncology. As is common in cancer therapy, challenges with respect to treatment
resistance emerge over time. This situation is certainly true of EGFR inhibitor therapies, where
intrinsic and acquired resistance is now well recognized. In this Review, we provide a brief overview
regarding the biology of EGFR biology, preclinical and clinical development of EGFR inhibitors,
and molecular mechanisms that underlie the development of treatment resistance. A greater
understanding of the mechanisms that lead to EGFR resistance may provide valuable insights to help
design new strategies that will enhance the impact of this promising class of inhibitors for the
treatment of cancer.

Introduction
In 1962, Stanley Cohen isolated and characterized a salivary gland protein that induced eye-
lid opening and tooth eruption in newborn mice.1 Further experimentation showed that this
protein could stimulate the proliferation of epithelial cells and was thus named epidermal
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growth factor (EGF).2 It was not until a decade later, when Graham Carpenter performed
experiments using 125iodine-labeled EGF, that the presence of specific binding receptors for
EGF on target cells were identified.3 Subsequently, Carpenter and coworkers identified the
epidermal growth factor receptor (EGFR) as a 170 kilodalton membrane protein that increased
the incorporation of 32phosphorus into EGFR in response to EGF treatment of A431
epidermoid carcinoma cells.4 A group of collaborators isolated, cloned and characterized the
sequence of human EGFR from normal placental cells and A431 tumor cells in 1984.5 Over
the same time period, it was discovered that modification of proteins by phosphorylation on
tyrosine residues might be a critical step in tumorigenesis.6,7 Shortly after these discoveries,
EGFR was recognized as a receptor tyrosine kinase (RTK). This effort over two decades led
to the identification of the prototypical RTK and its ligand. The identification of EGFR as an
RTK contributed to pivotal studies that advanced our understanding of RTK activation and
phosphorylation, and resulted in the elucidation of EGFR regulation of downstream signaling
via PLC/PKC and RAS/RAF/MEK/ERK pathways.8,9

During the 1980s, several reports described the overexpression of EGFR in a variety of
epithelial tumors, which supported the hypothesis that dysregulated EGFR expression and
signaling may have a critical role in the etiology of human cancers.5,10–14 These findings led
to investigations to target the receptor with an antibody directed against the extracellular
domain of EGFR.15 Mendelsohn and colleagues developed a series of anti-EGFR monoclonal
antibodies, including mAb225 (C225) and mAb528. The mAb225 showed promising
antitumor activity in culture and in mouse xenograft models, which subsequently led to its
development as a clinical agent.15,16 FDA approval was given in 2004 for its use in colorectal
cancer. In parallel, the rational design of anti-EGFR small-molecule tyrosine kinase inhibitors
(TKIs) came to the fore. The development of these agents was further supported by findings
that mutations in the EGFR tyrosine kinase domain led to decreased tyrosine function and
downstream signaling.17–19 The inhibitory action of quinazolines was reported in 1994,20,
21 which was soon followed by the development of gefitinib, the first small-molecule inhibitor
targeting EGFR.22 Gefitinib was approved by the FDA in 2003 for use in non-small-cell lung
cancer (NSCLC). EGFR inhibitors have shown highly promising activity in the clinic,23–30
which has led to EGFR being one of the most studied molecular targets in clinical oncology.
Coincident with this interest in targeting EGFR was the identification of intrinsic and acquired
resistance to EGFR inhibitors. Indeed, the first report calling for a uniform clinical definition
of acquired resistance to EGFR inhibitors was published in January 2010.31 In this Review,
we focus on what is known about resistance to EGFR inhibitors in the preclinical and clinical
setting. We also discuss potential methods to overcome resistance to EGFR inhibitors and
future strategies to optimize successful integration of EGFR-targeting therapies in oncology.

EGFR biology
Aberrant expression or activity of EGFR has been identified as an important factor in many
human epithelial cancers, including head and neck squamous-cell carcinoma (HNSCC),
NSCLC, colorectal cancer (CRC), breast cancer, pancreatic cancer and brain cancer. EGFR is
a member of the EGFR tyrosine kinase family, which consists of EGFR (ErbB1/HER1), HER2/
neu (ErbB2), HER3 (ErbB3) and HER4 (ErbB4). All family members contain an extracellular
ligand-binding domain (domains I, II, III, IV), a single membrane-spanning region, a
juxtamembrane nuclear localization signal, and a cytoplasmic tyrosine kinase domain. HER
receptors are ubiquitously expressed in various cell types, but primarily in those of epithelial,
mesenchymal and neuronal origin. Under homeostatic conditions, receptor activation is tightly
regulated by the availability of ligands, which collectively form the EGF family.8 This family
is divided into three distinct groups. The first includes EGF, transforming growth factor alpha
(TGF-α) and amphiregulin, which all bind specifically to EGFR. The second group includes
betacellulin, heparin-binding EGF and epiregulin, which bind to both EGFR and HER4. The
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third group is composed of the neuregulins (NRG1–4), which is further subdivided based on
their ability to bind HER3 and HER4 (NRG1 and NRG2), or only to HER4 (NRG3 and NRG4).
32 HER2 has no known ligand.33 Ligand binding to domains I and III of the RTK induces
major conformational changes that lead to the dimerization loop in domain II of the receptor
being exposed.34 This exposure of the dimerization loop allows receptor homodimerization
or heterodimerization at the plasma membrane. This interaction activates the RTK, which
causes autophosphorylation of the cytoplasmic tails of each dimer pair. HER3 is the only family
member that lacks intrinsic kinase activity;35 however, downstream signaling is readily
achieved through heterodimerization.36 Phosphorylated cytoplasmic tails serve as docking
sites for numerous proteins that contain Src homology and phosphotyrosine binding domains.

EGFR activation stimulates many complex intracellular signaling pathways that are tightly
regulated by the presence and identity of the ligand, heterodimer composition, and the
availability of phosphotyrosine-binding proteins. The two primary signaling pathways
activated by EGFR include the RAS/RAF/MEK/ERK and the PI3K/AKT axes; however, Src
tyrosine kinases, PLCγ, PKC, and STAT activation and downstream signaling have also been
well documented (Figure 1).8.9 Tumor cell proliferation, survival, invasion and angiogenesis
can be promoted through activation of these pathways. In addition to traditional cytoplasmic
signaling, EGFR also acts as a membrane-bound chaperone protein for the sodium/glucose
cotransporter, SGLT1.37 These results point to a new kinase-independent role for EGFR in
promoting metabolic homeostasis in cancer cells.

EGFR has been consistently detected in the nuclei of cancer cells from primary tumor
specimens and highly proliferative tissues.38–42 Increased nuclear EGFR localization
correlates with poor clinical outcome in patients with breast cancer,43 oropharyngeal HNSCC,
44 and ovarian cancer.45 Nuclear localization of EGFR is associated with increased expression
of cyclin D1,40 B-Myb,46 inducible nitric oxide synthase47 and COX-2,48 all of which increase
G1/S progression of the cell cycle and proliferation of cancer cells. A novel nuclear localization
sequence for EGFR and its family members has been reported.49 Furthermore, mechanisms of
transport of EGFR to the nucleus have been reported.50 These mechanisms involve interactions
with dynamin, importins, Sec1, and exportin-1.50,51 More importantly, reports have indicated
a mechanism of EGFR-mediated kinase-independent gene regulation in the nucleus, which
involves direct interaction with the transcription factors STAT3, STAT5 and E2F1.46,47,52 In
addition, nuclear EGFR functions as a tyrosine kinase in the nucleus, phosphorylating and
stabilizing proliferating cell nuclear antigen and thus enhancing the proliferative potential of
cancer cells.53 As data accrues implicating the functional impact of nuclear EGFR, it becomes
valuable to understand the extent to which this protein may contribute to cancer growth and
progression, but also to the therapeutic response to EGFR-targeted therapies.

EGFR inhibitors
Monoclonal antibodies

Cetuximab (C225, Erbitux® [Bristol-Myers Squibb, New York, NY]) is an immunoglobulin
G1 chimeric mouse–human monoclonal antibody that specifically targets the extracellular
domain of EGFR (Table 1). It has a mean half-life of approximately 112 hours in humans (63–
230 hours).15,16,54 Cetuximab functions by blocking endogenous ligand binding to the
extracellular domain of the EGFR and enhances receptor internalization and degradation.
Cetuximab can also induce antibody-dependent cell-mediated cytotoxicity (Table 2).55

Cetuximab has exhibited promising antitumor activity in clinical trials as monotherapy and
when used in combination with chemotherapy and/or radiation, particularly in the settings of
metastatic CRC27,56–59 and HNSCC.23,60,61 In 2004, the FDA approved cetuximab for use in
combination with irinotecan in the treatment of patients with EGFR-expressing metastatic CRC
refractory to irinotecan-based chemotherapy. In addition, cetuximab was approved for use as
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a single agent in metastatic CRC patients who cannot tolerate irinotecan-based therapies. In
2006, the FDA approved the use of cetuximab in combination with radiation for the treatment
of locoregionally advanced HNSCC. In addition, cetuximab was approved as a single agent
for the treatment of patients with recurrent or metastatic HNSCC for whom platinum-based
therapy had failed.

Panitumumab (ABX-EGF, Vectibix® [Amgen, Thousand Oaks, CA]) is a fully humanized
immunoglobulin G2 monoclonal antibody with high affinity for EGFR and a mean half-life of
approximately 7.5 days in humans (range 3.6–10.9 days; Table 1).62 Panitumumab functions
by blocking EGF and TGF-α binding to EGFR, and also leads to receptor internalization and
degradation (Table 2).63 Panitumumab has exhibited promising antitumor activity in several
clinical trials, and in 2006 gained FDA approval for the treatment of patients with EGFR-
expressing metastatic CRC with disease progression following chemotherapy regimens
containing fluoropyrimidine, oxaliplatin, and irinotecan.64–66

Tyrosine kinase inhibitors
TKIs under active clinical investigation are mostly derived from quinazoline, which are low
molecular weight synthetic molecules that block the magnesium-ATP-binding pocket of the
intracellular tyrosine kinase domain (Table 1). Several drugs, such as gefitinib and erlotinib,
are specific for EGFR, while others (lapatinib, vandetanib, AEE788 [Novartis, Basel,
Switzerland]) inhibit more than one receptor in addition to EGFR, such as HER2 and VEGFR2.
TKIs block ligand-induced receptor autophosphorylation by binding to the tyrosine kinase
domain and disrupting tyrosine-kinase activity, thereby abrogating intracellular downstream
signaling (Table 2). The FDA approved gefitinib through a new accelerated process in May
2003 as monotherapy for the treatment of patients with locally advanced or metastatic NSCLC
after failure of both platinum-based and docetaxel chemotherapies. As a condition of
accelerated approval, the FDA required demonstration of a survival benefit in a subsequent
clinical trial. After three large, prospective studies (INTACT 1, INTACT 2 and ISEL) showed
no improvement in overall survival, the original FDA approval was modified in 2005, limiting
the indication to cancer patients who, in the opinion of their treating physician, are currently
benefiting or have previously benefited from gefitinib treatment. Erlotinib was originally
approved in November 2004 as monotherapy for the treatment of NSCLC patients who did not
respond to at least one prior chemotherapy. In November 2005, erlotinib was approved in
combination with gemcitabine for advanced pancreatic cancer patients who have not received
previous chemotherapy.

EGFR inhibitors—from bench to clinic
EGFR has been linked to the growth of many human epithelial malignancies, including
NSCLC, metastatic CRC, HNSCC, and pancreatic cancer. Systematic laboratory and clinical
research have facilitated the translation of EGFR inhibitors into common use in clinical
oncology. Table 3 provides details of selected clinical trials that have promoted these efforts.
For each EGFR inhibitor, a complex series of preclinical and clinical milestones predate FDA
approval. A common theme in some examples of EGFR drug development is the beneficial
impact of information gained from basic, translational and clinical research studies over time.
In each anatomic area described, there have been key elements of the progress that were derived
from applying laboratory findings to the clinical arena, and clinical findings that have helped
advances in the laboratory setting. Indeed, this is the essence of translational cancer research,
and is beautifully reflected by the emerging story of EGFR drug development.

Gefitinib and erlotinib in clinical trials
Phase II trials showed a promising response and symptom improvement rate with gefitinib as
monotherapy in patients with advanced stage NSCLC, thereby contributing to FDA approval
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of this agent in 2003 as second-line or third-line treatment.67,68 However, subsequent phase
III trials, INTACT 1 and INTACT 2, which tested gefitinib in the first-line setting with
concurrent doublet chemotherapy, did not identify improvement in overall survival or time to
progression (TTP).24,69 The FDA recommended, therefore, to limit the indications for
gefitinib to patients currently or previously being treated or enrolled on approved clinical trials.
Erlotinib also faced challenges in clinical advancement for NSCLC with two major phase III
clinical trials, TALENT and TRIBUTE (similar design to the INTACT trials), which showed
no improvement in overall survival or TTP.70,71 It was not until the BR 21 trial, which
compared erlotinib with placebo in the second-line or third-line setting for advanced NSCLC
patients, that erlotinib established a survival benefit prompting FDA approval.72 The mixed
results of these clinical trials initiated further investigations aimed at identifying population
subsets that may be more likely to benefit from EGFR TKIs. Analyses of biospecimens from
clinical trials identified a unique subpopulation of patients (Asian, female, never-smokers,
adenocarcinoma histology) who were most likely to respond to EGFR TKIs.25,72,73 The
landmark identification of a subset of lung cancers harboring mutations in the EGFR tyrosine
kinase domain stimulated tremendous research activity and improved understanding of
methods to enrich the selection of patients for lung cancer trials who are most likely to derive
benefit from EGFR TKI therapy approaches.74–76 This work also stimulated the discovery of
an EGFR resistance mutation (T790M) in lung cancer patients receiving chronic gefitinib
treatment.77–79

A series of clinical trials have specifically selected patients with documented EGFR mutations
to enrich the population of subjects who are most likely to benefit from first-line treatment
with EGFR TKI therapy.80–86 These studies have uniformly demonstrated impressive
response rates in the range of 50–70% with excellent progression-free survival (PFS) and
overall survival rates. These trials also exhibit notably improved treatment tolerance compared
with conventional platinum-based doublet chemotherapy regimens, despite the inclusion in
some studies of elderly patients with poor performance status. Indeed, gefitinib gained approval
in Europe in 2009 for adults with locally advanced or metastatic NSCLC with EGFR mutations
in all lines of therapy.

Cetuximab in clinical trials
Cetuximab has also undergone active clinical evaluation in advanced NSCLC. A series of phase
II trials suggested activity of cetuximab in combination with platinum doublets in the first-line
treatment setting.87–91 Two phase III trials have been reported, including the FLEX and
BMS099 trials.92,93 The FLEX trial demonstrated an improvement in overall survival with
the addition of cetuximab to first-line cisplatin and vinorelbine. The BMS099 trial evaluated
the addition of cetuximab to carboplatin/taxane in the first-line setting and identified an
improvement of overall response rate, but not a statistically significant improvement in PFS
(the primary end point of the study).

A phase I trial of HNSCC in 1997–1998 enrolled 16 patients with locoregionally advanced
tumors and provided the first clinical signal that adding cetuximab to radiation may improve
tumor response and disease control.94 Despite the absence of true phase II data, a phase III
trial that enrolled 424 patients was carried out between 1999–2002 that confirmed a 10% overall
survival advantage for patients receiving cetuximab in combination with curative radiation for
advanced HNSCC compared with radiotherapy alone.23 The influence of radiation and EGFR
inhibition on proliferation, apoptosis, cell repopulation, angiogenesis, and DNA damage repair
needs to be clarified. Interestingly, this result was in contrast to the trials in NSCLC where
concurrent administration of EGFR inhibitors with cytotoxic chemotherapy did not prove
advantageous. This finding may reflect the different tumor types (HNSCC versus NSCLC),
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different classes of EGFR inhibitors (monoclonal antibodies versus TKIs), or the distinction
between radiation and chemotherapy as the cytotoxic treatment modality.

EGFR inhibitors in CRC
The advancement of EGFR inhibitors in CRC also reveals a complex story with continuing
stepwise improvements in our understanding of tumor biology and patient selection. The
emergence of KRAS mutation status as a valuable predictor of response to cetuximab therapy
for patients with metastatic CRC is a reminder that examination of molecular signatures for
each individual tumor can provide powerful information to guide optimal therapy selection.
56,95–102 Panitumumab affords another valuable approach for metastatic CRC patients with
chemorefractory disease.66 Despite promising preclinical and early clinical data that suggested
the potential value of combining EGFR inhibitors with VEGF inhibitors in CRC, clinical trial
data did not demonstrate improved efficacy and showed increased toxicity in this setting.103

Resistance to EGFR antibodies
EGFR expression as a predictor of response

In light of the high specificity of anti-EGFR monoclonal antibodies for the extracellular domain
of the EGFR, the initial assumption was that these agents would be most effective in tumors
with robust overexpression of EGFR. Indeed, it was anticipated that expression levels of EGFR
would serve as a predictive biomarker for the likelihood of response to cetuximab therapy,
which would parallel the clinical paradigm in breast cancer, where women with breast cancer
who have high HER2 receptor expression are more likely to respond to trastuzumab anti-HER2
therapy. However, early clinical studies did not confirm a correlation between EGFR
expression level by immunohistochemistry and likelihood of response to EGFR inhibitor
therapy.104 In fact, Chung et al.104 confirmed that several CRC patients who received
cetuximab exhibited a major objective response despite the absence of measureable EGFR.
Collectively, these studies suggest that immunohistochemistry-based assays measuring EGFR
expression does not serve as a robust predictor for response to cetuximab therapy.

EGFR copy number as a predictor of response
Studies analyzing EGFR copy number have suggested that it may provide some predictive and
prognostic value in CRC. Lièvre et al.96 reported that increased EGFR copy number assessed
by chromogenic in situ hybridization, was significantly associated with objective tumor
response to cetuximab therapy (P = 0.04). When EGFR copy number was assessed by PCR,
it was found that increased EGFR copy number was significantly associated with prolonged
survival, indicating a potential prognostic value of EGFR copy number (P = 0.03).105 Moroni
et al.106 analyzed EGFR copy number by fluorescence in situ hybridization (FISH) and found
a significant association between high EGFR copy number and response to both cetuximab
and panitumumab (P = 0.01).107

KRAS mutation as a predictor of response
KRAS mutation status in CRC has emerged as an important predictive biomarker that enables
improved identification of patients more likely to respond to EGFR inhibitors. Lievre et al.
96 reported in 2006 that KRAS with mutations at codon 12 or 13 might be predictive of resistance
to cetuximab therapy. In this report, they analyzed 30 patients with metastatic CRC treated
with cetuximab for KRAS, BRAF and PIK3CA mutations. KRAS mutations were found in 43%
of tumors (13 tumors), and was significantly associated with resistance to cetuximab therapy
(P = 0.002).96 To confirm these findings, Di Fiore et al.97 studied 59 patients with
chemorefractory metastatic CRC treated with cetuximab plus chemotherapy. Direct
sequencing SNaPshot® (Applied Biosystems, Foster City, CA, USA) and PCR-ligase assays
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determined KRAS mutations. KRAS mutations were highly predictive of resistance to
cetuximab plus chemotherapy.97 A larger study was performed to measure the KRAS mutation
status in 113 patients with irinotecan-refractory metastatic CRC treated with cetuximab. The
authors reported that KRAS wildtype is a strong predictor of significant increase in overall
survival (P <0.001) in this cohort of patients.98

In a seminal clinical report investigating KRAS mutational status, Van Cutsem et al.58

investigated the efficacy of cetuximab plus irinotecan, fluorouracil, and leucovorin (FOLFIRI)
as first-line treatment for metastatic CRC and sought associations between the mutation status
of KRAS and clinical response to cetuximab. In this study, 599 patients received cetuximab
plus FOLFIRI, and 599 received FOLFIRI alone. First-line treatment with cetuximab plus
FOLFIRI reduced the risk of disease progression compared with FOLFIRI alone, and the
benefit of cetuximab was limited to patients with KRAS wildtype tumors.56 Since the
publication of these studies, several additional clinical trials have further strengthened these
findings.99–102,108 This collective body of work has led to a Provisional Clinical Opinion from
ASCO in 2009 stating that all patients with metastatic CRC who are candidates for anti-EGFR
antibody therapy should have their tumor tested for KRAS mutations in a CLIA (clinical
laboratory improvement amendments)-accredited laboratory. If codons 12 or 13 of KRAS are
mutated, patients with metastatic CRC should not receive anti-EGFR antibody therapy as part
of their treatment.109

In patients with metastatic CRC and wildtype KRAS, the expression of EGFR ligands has also
shown promise as a predictor of response to cetuximab therapy. The first report showed that
patients with increased expression of epiregulin and amphiregulin exhibited disease control.
110 Jacobs et al.111 extended these findings and found that expression profiling of epiregulin
and amphiregulin may predict both PFS and overall survival in those with KRAS wildtype
metastatic CRC who are treated with cetuximab and irinotecan.

Mechanisms of EGFR antibody resistance
EGFR mutations

In 2004, a series of landmark papers identified EGFR mutations in the tyrosine kinase domain
in NSCLC patients that predicted response to the TKIs erlotinib and gefitinib.74–76 These
mutations included in-frame deletion of amino acids 746–750 in exon 19, and a point mutation
in exon 21 (L858R). More importantly, these mutations led to gain-of-function and conferred
dependence of the tumor cell on the mutated kinase. These mutations in EGFR rendered tumors
dramatically more sensitive to the effects of erlotinib and gefitinib than tumors without these
mutations. This important finding has stimulated a prolific body of preclinical and clinical
research that has substantially advanced our understanding of EGFR mutations and their role
in governing response to small-molecule TKIs directed against EGFR. However, no mutations
in EGFR have been identified to date that are reliably predictive for response to antibody-based
EGFR therapies.112 This finding suggests that other molecular mechanisms may exist that
modulate intrinsic (primary) or acquired (secondary) resistance to EGFR antibody-based
therapies (Figure 2).

Altered VEGF/VEGFR expression
EGFR signaling can contribute to the production of several proangiogenic factors in tumors,
including VEGF and basic fibroblast growth factor.113,114 To investigate whether altered
angiogenesis could serve as a potential mechanism of resistance to cetuximab therapy, Viloria-
Petit et al.115 examined the high EGFR-expressing A431 cell line in mouse xenografts. Tumor
xenografts were treated with three different EGFR-blocking antibodies (mR3, hR3 or
cetuximab). Tumors treated with these three anti-EGFR antibodies led to prompt regression of
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the tumor followed by a long latency period. Once the tumors reappeared, they were refractory
to a second round of antibody therapy. Several established cell lines from hR3 and mR3-treated
tumors (cells from cetuximab-treated tumors could not be obtained) retained their sensitivity
to these antibodies, whereas some variants exhibited accelerated growth rate and attenuated
response to hR3 and mR3 in subsequent testing.115 Owing to the reported suppressive effects
of EGFR inhibitors on VEGF production, the researchers hypothesized that these anti-EGFR
antibodies inhibited EGFR-mediated VEGF production, thereby decreasing angiogenesis and
leading to decreased tumor growth. They further postulated that escaping this angiogenic
inhibition might have contributed to anti-EGFR antibody resistance. Indeed, five of six resistant
variants exhibited increased VEGF expression. Furthermore, A431 parental cells transfected
with VEGF resulted in resistance to anti-EGFR antibodies in vivo. This report indicated that
resistance could emerge in tumors that increase their VEGF production.

In 2004, Ciardiello et al.116 reported that ZD6474, a dual EGFR/VEGFR2 TKI, could
overcome resistance to cetuximab. In this study, the investigators developed cetuximab-
resistant GEO CRC cell lines in vivo by prolonged exposure to cetuximab. This treatment led
to tumor control for 80–90 days followed by tumor growth, despite continuation of cetuximab
therapy. Discontinuation of cetuximab and treatment of these resistant tumors with ZD6474
resulted in efficient tumor growth inhibition for up to an additional 150 days. Cell lines derived
from this work showed a dramatic increase in phosphorylated MAPK, increased COX-2 and
VEGF protein expression compared with parental controls. The authors concluded that
inhibition of VEGFR signaling in cetuximab-resistant tumor cells offered a potential anticancer
strategy. In addition to cetuximab resistant clones, Ciardiello and colleagues also generated
gefitinib-resistant GEO colon cancer cells.116 Resistant clones resulting from these
experiments also exhibited an increase in protein expression of COX-2 and VEGF.
Collectively, these data suggest that challenge with both classes of EGFR inhibitors can alter
VEGF production, and highlights neoangiogenesis as a potential shared mechanism of EGFR
inhibitor escape. Although this work has indicated that ZD6474 may be a viable treatment for
tumors that manifest resistance to prolonged cetuximab therapy, ZD6474 itself demonstrates
anti-EGFR activity. Tumors with resistance to anti-EGFR antibody therapy may retain
sensitivity to EGFR-based TKI therapies. Similar findings have since been reported.117–119

Work from Bianco et al.120 has further implicated the VEGF and VEGFR system in resistance
to cetuximab. Here they reported that VEGFR1 was overexpressed in cells with resistance to
cetuximab. Experiments silencing VEGFR1 in cetuximab-resistant cells restored sensitivity to
cetuximab, whereas exogenous overexpression of VEGFR1 in cetuximab-sensitive cells
conferred resistance to cetuximab. A similar analysis of cells with resistance to gefitinib also
exhibited increased expression of VEGFR1.120

EGFRvIII
Although no point mutations are known to be associated with resistance to cetuximab or
panitumumab, preclinical models analyzing the EGFR variant III (EGFRvIII), which lacks the
ligand-binding domain, have provided new information.121 In a study analyzing HNSCC
tumors, 42% of tumors expressed EGFRvIII, and this correlated with increased proliferation
in vitro and increased tumor growth in vivo.121 To determine if this variant could contribute
to cetuximab resistance, HNSCC cells were engineered to overexpress EGFRvIII. These
tumors showed decreased proliferation in response to cetuximab treatment compared with
vector-only controls. These findings suggest that a percentage of HNSCC tumors may express
EGFRvIII and this protein contributes to cetuximab resistance.121

Ubiquitination of EGFR
Two papers have identified the potential role of EGFR ubiquitination as a mechanism of
acquired resistance to cetuximab.117,122 Wheeler et al.123 developed cells with acquired
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resistance to cetuximab in vitro by prolonging and escalating dose exposure to cetuximab.
Several resistant clones were derived from this work that had increased EGFR expression
compared with parental controls, which was associated with dysregulation of EGFR
internalization or degradation. This altered processing of EGFR led to sustained signaling from
EGFR, which led to activation of HER3. Lu et al.122 took a similar approach and found that
EGFR had an increased association with the ubiquitin ligase CBL, leading to increased
ubiquitination and downregulation of EGFR. Although lower levels of EGFR were expressed
in these cetuximab-resistant cells, EGFR retained strong activity that seemed to be associated
with cooperation with Src family kinases (SFKs). Similar to these findings, it was reported in
2008 that EGFR and SFKs cooperate in acquired resistance to cetuximab.123 In this work, cells
with acquired resistance to cetuximab exhibited robust expression of active SFKs, and this
activity enhanced EGFR activation of HER3 and the PI3K/AKT pathway, leading to enhanced
survival. Blockade of SFK activity using dasatinib could, therefore, resensitize tumors to
cetuximab therapy.

Cellular localization of EGFR
EGFR has been reported to function in the nucleus as a transcription factor as well as a tyrosine
kinase that enhances cell proliferation.53,124 Furthermore, nuclear EGFR is a prognostic factor
in human disease.43–45 Subcellular distribution of EGFR to the nucleus might have a role in
resistance to cetuximab therapy.125 Clones with acquired resistance to cetuximab expressed
nuclear EGFR, which regulated the expression of several genes involved in G1/S progression.
The authors reported that nuclear translocation of EGFR was mediated by SFKs and that
abrogation of SFK activity led to loss of nuclear EGFR, increased membrane EGFR, and
resensitization to cetuximab.125

Nevo et al.126 investigated the role of mammary-derived growth factor inhibitor (MDGI) in
conferring resistance to cetuximab. The authors reported that MDGI, a small cytosolic protein
involved in fatty-acid binding, leads to the intracellular accumulation of EGFR where it remains
active, and cannot be targeted by cetuximab therapy.126 These data suggest that the subcellular
distribution of EGFR may be an effective escape from cetuximab therapy.

Epithelial-mesenchymal transition
Epithelial-mesenchymal transition has also been implicated in the resistance to both cetuximab
and EGFR small-molecule inhibitors. Fuchs et al.127 reported that in a series of 12
hepatocellular carcinoma cells classified as epithelial or mesenchymal (based on E-cadherin
and vimentin expression), the cells exhibited variable sensitivity to EGFR inhibitors. Cells that
were identified as epithelial had increased sensitivity to erlotinib, gefitinib and cetuximab
compared with cells that were defined as mesenchymal. The authors further reported that
mesenchymal cells had increased AKT and STAT3 activation associated with elevated
expression of the integrin-linked kinase ILK, which led to resistance.127

Resistance to EGFR TKIs
Despite excellent clinical response to EGFR TKIs in NSCLC patients harboring mutations in
the catalytic domain, acquired resistance following initial response often manifests within 6–
12 months of therapy.31 Pao et al.77 reported that molecular analysis of EGFR in patients with
acquired resistance to gefitinib or erlotinib contain a secondary mutation in exon 20, which
leads to substitution of methionine for threonine at position 790 (T790M) in the kinase domain.
77,79 T790M of EGFR is considered to be the ‘gatekeeper’ residue, which is an important
determinant of inhibitor specificity in the ATP-binding pocket of EGFR. Substitution of this
residue in EGFR with a bulky methionine may cause resistance by steric interference with
binding of TKIs, including gefitinib and erlotinib.77–79 However, further research on this
mutation has shown that it may cause resistance to these agents by increasing the affinity for
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ATP.128 Since these reports were published, several studies have shown that the T790M
mutation is actually present before the patient commences initial therapy.129 This finding
suggests that this mutation may confer a survival advantage to the tumor and is probably
selected for while the patient is receiving anti-EGFR TKI treatment.129–133 The identification
of the EGFR T790M mutation has led to preclinical and clinical development of irreversible
EGFR TKIs to effectively target this mechanism of resistance.78

An activating mutation of KRAS is present in 15–30% of NSCLC.134,135 Unlike the somatic
mutations that arise in EGFR in non-smokers, KRAS mutations are highly prevalent in smoking-
associated tumors.136,137 These mutations in KRAS may be a marker of primary resistance to
both gefitinib and erlotinib.138

Mechanisms of resistance to EGFR TKIs
Several mechanisms of resistance to erlotinib and gefitinib have been described in laboratory-
based models (Figure 3).

EGFRvIII
One of these involves the mutant, constitutively active form of EGFR termed EGFRvIII, which
is commonly found in glioblastoma multiforme (GBM). GBM is a highly malignant primary
brain tumor that accounts for >50% of all brain cancers diagnosed. EGFR is amplified in 50%
of all GBM cases, and 40% of these cases express EGFRvIII. GBM cell lines expressing
EGFRvIII are resistant to gefitinib and, therefore, require higher drug doses and prolonged
exposure to decrease the activity of EGFRvIII.139 Studies analyzing the cell cycle in EGFR-
expressing lines versus EGFRvIII lines revealed that DNA synthesis in EGFR lines is inhibited
by gefitinib in a dose-dependent manner whereas it is unchanged in EGFRvIII lines. In addition,
cells expressing EGFRvIII have higher activation of AKT, which is not affected by gefitinib
treatment.

Role of oncogenic shift
One of the prevalent biological themes underlying intrinsic or acquired resistance involves
‘oncogenic shift’, which occurs when other membrane-bound RTK signaling pathways are
involved in resistance. For example, HER2 and HER3 have been linked to gefitinib resistance.
Erjala et al.140 investigated molecular predictors of gefitinib response in HNSCC and measured
key proteins in the EGFR signaling pathway. They reported an association between EGFR
copy number and gefitinib sensitivity. Gefitinib-resistant cells had increased expression levels
of HER2 and total HER3 protein. To determine if this increased activity of HER2 could
contribute to gefitinib resistance, gefitinib was combined with pertuzumab, an antibody that
targets HER2 heterodimerization.140 This study resulted in an additive growth-inhibitory effect
over gefitinib alone in gefitinib-resistant HNSCC cell lines. The authors concluded that
EGFR amplification may predict sensitivity to gefitinib and that HER2 and HER3 may
contribute to gefitinib resistance. Other studies of acquired resistance to gefitinib or erlotinib
have suggested that ADAM17 (disintegrin and metalloproteinase domain-containing protein
17) can mediate the release of heregulin, leading to autocrine loop activation of HER2 and
HER3 and thus provide a mechanism of escape from gefitinib.141 HER2 and HER3 may serve
as potential predictive markers and as therapeutic targets for combination therapy in the
treatment of HNSCC with gefitinib.140

Activation of the AKT/mTOR pathway
Another established finding in EGFR inhibitor resistance is the activation of the AKT/mTOR
pathway leading to enhanced cell survival. PI3K phosphorylates phosphatidylinositol (4,5)-
disphosphate (PIP2) to phosphatidylinositol (3,4,5)-trisphosphate (PIP3), which serves as a
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docking site for AKT where it is activated by PDK1 and PDK2. Phosphatase and tensin
homolog (PTEN) dephosphorylates PIP3 back to PIP2. Mutations in or loss of PTEN
expression142,143 may serve as a marker of primary resistance to gefitinib and erlotinib.144,
145 However, in a cohort of gefitinib-treated NSCLC, no correlation between PTEN and
response to gefitinib treatment was observed, and researchers have questioned the role of these
proteins in mediating primary insensitivity to gefitinib.146 Engelman et al.147 observed that
gefitinib reduced AKT only in NSCLC cell lines where it inhibits growth. To better understand
this observation, immunoprecipitates of PI3K from gefitinib-resistant and sensitive lines were
analyzed. PI3K was exclusively associated with HER3 in gefitinib-sensitive cell lines, and
gefitinib could dissociate this activity. These results suggested that HER3 couples EGFR to
the PI3K/AKT pathway in gefitinib-sensitive NSCLC cell lines, but not gefitinib-resistant
lines.147 Further studies implicating HER3 have centered on gefitinib-resistant EGFR-mutant
lung cancer lines. These cells lines displayed amplification of MET, which prolonged activation
of the HER3/PI3K/AKT axis. Abrogation of MET activity restored sensitivity to gefitinib. To
assess the clinical relevance of MET as a mechanism of resistance, Engelman et al.148 also
examined whether MET amplification could be detected in NSCLCs with mutant EGFR that
had become resistant to gefitinib. MET amplification was detected in 4 out of 18 (22%)
gefitinib/erlotinib-resistant tumor specimens.148 This study was one of the first to suggest that
oncogenic shift, beyond the HER family, may contribute to resistance to EGFR-targeted
therapies.148 In addition to MET amplification, overexpression of hepatocyte growth factor
(HGF), which is a ligand of MET, has been implicated in the development of acquired
resistance to gefitinib. Yano et al.149 reported that lung adenocarcinoma patients harboring
EGFR-activating mutations, but no T790M mutation or MET amplification, showed a dramatic
increase in HGF and activation of MET. This finding suggests that increased production of
HGF represents a novel mechanism of gefitinib resistance in lung adenocarcinoma with
EGFR-activating mutations.149

Role of IGF-1R in resistance to EGFR inhibitors
The IGF-1 receptor (IGF-1R) is ubiquitously expressed in cancer cells. This membrane-bound
RTK has a role in tumor cell proliferation, differentiation, apoptosis, and metastasis.150 It has
also been strongly implicated in mediating resistance to the EGFR inhibitor AG1478 (A.G.
Scientific, San Diego, CA). Analyzing two primary GBM cell lines with equal EGFR protein
expression levels, but with distinct sensitivities to the TKI AG1478, indicated an upregulation
of IGF-1R that resulted in sustained signaling to PI3K/AKT and ribosomal protein S6 kinase.
151 In addition to IGF-1R being implicated in resistance to gefitinib, IGF-binding proteins
enhance acquired resistance to gefitinib. In these studies, A431 squamous-cell carcinoma lines
were used to develop acquired resistance to gefitinib. Gefitinib-resistant clones exhibited
hyperphosphorylation of IGF-1R and constitutive association of insulin-receptor substrate-1
with PI3K. Blockade of IGF-1R signaling disrupted this complex and restored gefitinib ability
to downregulate PI3K/AKT signaling and cell growth. Gene profiling of the gefitinib-resistant
clones indicated that resistant cells had markedly decreased expression of IGFBP3 and
IGFBP4. These proteins are crucial for modulating the levels of the IGF-1R ligands, IGF-1
and IGF-2. Loss of these two regulatory proteins led to an increased availability of IGF-1 and
IGF-2 and thus constitutive activation of IGF-1R. Experiments using recombinant IGFBP-3
restored sensitivity of resistant cells to gefitinib.152 Despite these reports in laboratory-based
models of the role of IGF-1R and its associated regulatory elements, clinical analysis of IGF-1R
expression in tumors from NSCLC patients indicated a lack of association with resistance to
gefitinib.146
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Future directions and conclusions
The advancement of EGFR inhibitors for cancer therapy has moved rapidly in the broad context
of oncology therapeutics. The fact that four new EGFR inhibitors (gefitinib, cetuximab,
erlotinib, panitumumab) received FDA approval for use in oncology over a period of less than
4 years is a remarkable testament to the functional role of EGFR as a molecular target that
regulates tumor cell behavior and response to treatment. Indeed, additional promising drugs
with multitarget activity (including anti-EGFR action) are in active development or have
received FDA approval in oncology, such as lapatinib. These new agents will enable the
systematic evaluation of multitarget inhibition strategies, which include EGFR blockade, to
affect tumor response in human cancers.

Despite rapid advances in EGFR oncology therapeutics over the past decade, substantial room
for progress remains. Most cancer patients do not respond to EGFR inhibitor therapy, which
implies intrinsic resistance. Even in those patients who do achieve a clear tumor response to
EGFR inhibitors, the majority will eventually manifest disease progression, which implies
acquired resistance. Improving our ability to identify the tumors that rely on EGFR signaling
for their growth is critical to the optimal selection of patients for therapy. This concept is
beautifully borne out by the EGFR mutation studies first reported in 2004 that identified
activating mutations in EGFR that confer a high likelihood of response to the anti-EGFR TKIs.
74–76

Alternative RTK pathways that are activated following EGFR inhibition is another area for
investigation. These alternative pathways may bypass or evade inhibition of EGFR signaling,
thereby enabling combinations of agents to simultaneously attack multiple molecular targets
for cancer growth inhibition. Finally, the capacity of cancer cells to adapt to treatment suggests
that additional mechanisms of resistance to EGFR inhibitors may have a key role in regulating
tumor response, such as the induction of tumor/stromal interactions (angiogenesis),
translocation of surface receptors to the nucleus, altered DNA damage response, and as yet
undiscovered mutations. Advancing our knowledge of specific cellular and molecular
mechanisms of resistance to EGFR inhibitor therapies will illuminate new strategies to improve
this promising class of agents.

Key points

EGFR has been the most comprehensively studied molecular target in oncology therapeutics
over the past decade

Four primary EGFR inhibitors—gefitinib, cetuximab, erlotinib, and panitumumab—
received FDA approval in oncology over a period of less than 4 years (2003–2006)

Current FDA-approved indications for primary EGFR inhibitors include selected patients
with colorectal cancer, head and neck cancer, lung cancer and pancreatic cancer

EGFR mutations in a cohort of lung cancer patients and KRAS mutations in a cohort of
colorectal cancer patients are powerful predictors of response to specific EGFR inhibitors

Intrinsic and acquired resistance to EGFR inhibitors is increasingly well recognized

A greater understanding of molecular mechanisms of resistance to EGFR inhibitors is
stimulating new treatment strategies to enhance the impact of these promising agents
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Figure 1.
EGFR biology. a | Ligand binding to EGFR causes receptor homodimerization or
heterodimerization, which leads to transphosphorylation of the cytoplasmic tail tyrosine
residues. Lysine 721 (K721) is the critical site for ATP-binding and kinase activity of EGFR
(shown in yellow). Mutation of this amino acid causes the receptor to become inactive.153,
154 Tyrosine phosphorylation in the C-terminus includes Y974, Y992, Y1045, Y1068, Y1086,
Y1148 and Y1173 (shown in orange), or SFKs can phosphorylate Y845 and Y1101 (shown in
purple). Reported biological effects of phosphorylation of each tyrosine are noted.155–158 b
| EGFR has been consistently detected in the nuclei of cancer cells, primary tumor specimens
and highly proliferative tissues.38–42 EGFR binds to STAT3 to increase expression of iNOS,
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47 E2F1 to increase expression of B-Myb,46 and with STAT5 to increase expression of Aurora
A.52 It also increases the expression of cyclin D1.40 EGFR has kinase-dependent activity within
the nucleus of proliferating cells, which includes the phosphorylation of PCNA leading to its
stability and enhancing cell proliferation,53 and translocation and activation of DNA-PK.159

Abbreviations: AP-2, transcription factor AP-2; B-Myb, Myb-related protein B; CBL, E3
ubiquitin-protein ligase CBL; DNA-PK, DNA-dependent protein kinase catalytic subunit;
E2F1, transcription factor E2F1; EGFR, epidermal growth factor receptor; GRB2, growth
factor receptor-bound protein 2; iNOS, inducible nitric oxide synthase; MAPK, mitogen-
activated protein kinase; P, phosphorylation; PCNA, proliferating cell nuclear antigen; PI3K,
phosphatidylinositol 3-kinase; PKC, protein kinase C; PLCγ, 1-phosphatidylinositol-4,5-
bisphosphate phosphodiesterase gamma-1; SFK, Src family kinase; SGLT1, sodium/glucose
cotransporter 1; SHP1, tyrosine-protein phosphatase non-receptor type 6; SRC, proto-
oncogene tyrosine-protein kinase Src; STAT, signal transducer and activator of transcription.
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Figure 2.
Mechanisms of resistance to EGFR antibodies. a | One mechanism of resistance to cetuximab
is overexpression of the EGFR ligand TGFα.160 b | Overexpression of EGFR has also been
implicated in the development of acquired resistance.117 c | Ubiquitylation is important for
mechanisms of escape to cetuximab therapy.117,122 d | Modulation of EGFR by SFKs, and
increased activity of SFKs in cetuximab-resistant lines have been reported.122,123 e | The
binding and activation of EGFR or HER2 to HER3 has been reported, which allows prolonged
signals to the PI3K/AKT pathway.117,123 f | Translocation of EGFR to the nucleus has a role
in resistance to cetuximab.125 g | Increased VEGF production leads to altered angiogenesis and
enhanced escape from cetuximab therapy.115,116 h | VEGFR1 also contributes to resistance to
cetuximab.120 i–j | Mutations in both PTEN and Ras have been implicated in impaired response
to cetuximab therapy.96 k | Mutations in KRAS keep it in a constant GTP-bound, active state,
allowing it to send signals downstream independently from RTK activation. l | EGFRvIII a
truncated form of EGFR that is constitutively phosphorylated in a ligand-independent manner.
121,161 m | MDGI alters trafficking of EGFR, leading to resistance to cetuximab therapy.126

Abbreviations: B-Myb, Myb-related protein B; CBL, E3 ubiquitin-protein ligase CBL; E2F1,
transcription factor E2F1; EGFR, epidermal growth factor receptor; ERK, mitogen-activated
protein kinase 3; MDGI, mammary derived growth inhibitor; P, phosphorylation; PCNA,
proliferating cell nuclear antigen; PI3K, phosphatidylinositol 3-kinase; PIP3,
phosphatidylinositol 3,4,5-trisphosphate PTEN, phosphatase and tensin homolog; RTK,
receptor tyrosine kinase; SFK, Src family kinase; STAT3, signal transducer and activator of
transcription 3; TGFα, transforming growth factor alpha; Ub, ubiquitylation; VEGF, vascular
endothelial growth factor; VEGFR1, vascular endothelial growth factor receptor 1.
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Figure 3.
Mechanisms of resistance to EGFR TKIs. a | A mutant form of EGFR termed EGFRvIII has
an in-frame deletion mutation that produces a truncated 150 kDa protein, which is constitutively
phosphorylated in a ligand-independent manner.161 b | EGFR-dependent tumors that are
initially sensitive to EGFR TKIs acquire a mutation at threonine 790. Substitution of this
residue in EGFR with a bulky methionine may cause resistance by steric interference with
binding of TKIs, including gefitinib and erlotinib.77–79 c | Tumors can become resistant when
individual tumor cells undergo an oncogenic shift, which has been noted with several other
RTKs, including HGF receptor,148 AXL and IGF1R. d | In addition to IGF1R as a mechanism
of escape, downregulation of the IGF- binding proteins IGFBP3 and IGFBP4, have been
implicated in resistance to TKIs. These proteins are crucial for regulating the levels of IGF1R
ligands, and loss leads to overactivation of the receptor.152 e–f | Mutations in both PTEN and
Ras have been implicated in impaired response to TKI therapy.134,135 g | Cells that developed
acquired resistance to gefitinib in vivo were shown to have increased VEGF production leading
to altered angiogenesis and enhanced escape from cetuximab therapy.116 h | VEGFR1 has also
been implicated in the contribution to resistance to EGFR TKIs.120 Abbreviations: AXL,
tyrosine-protein kinase receptor UFO (AXL oncogene); EGFR, epidermal growth factor
receptor; HGF, hepatocyte growth factor; IGF1R, insulin-like growth factor 1 receptor; IGFBP,
insulin-like growth factor-binding protein; kDa, kilodalton; PTEN, phosphatase and tensin
homolog; RTK, receptor tyrosine kinase; TKI, tyrosine kinase inhibitor, VEGF, vascular
endothelial growth factor; VEGFR1, vascular endothelial growth factor receptor 1.
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Table 1

EGFR inhibitors

Inhibitor Manufacturer Class Specificity FDA indication and year of approval

Cetuximab
C225, Erbitux®

ImClone Systems Mouse-human
chimeric antibody

EGFR EGFR-expressing mCRC in patients
refractory to irinotecan-based
chemotherapy (2004)
Locally or regionally advanced
HNSCC in combination with
radiotherapy (2006)

Matuzumab
EMD72000

EMD Pharmaceuticals Mouse-human
chimeric antibody

EGFR Not yet approved

Nimotuzumab
h-R3, TheraCIM®

YM BioSciences Human antibody EGFR Not yet approved

Panitumumab
ABX-EGF,
Vectibix®

Amgen Human antibody EGFR EGFR-expressing mCRC with
progression on or following
chemotherapy regimens containing
fluoropyrimidine, oxaliplatin, and
irinotecan (2006)

Zalutumumab
HuMax-EGFr

Genmab Human antibody EGFR Not yet approved

Erlotinib
OSI-774, Tarceva®

Genentech Anilinoquinazoline-
based reversible
inhibitor

EGFR NSCLC as a monotherapy
after failure of at least one prior
chemotherapy (2004)
Advanced pancreatic cancer in
combination with gemcitabine
for patients who have not received
previous
chemotherapy (2005)

Gefitinib
ZD1839,
Iressa®

AstraZeneca Anilinoquinazoline-
based reversible
inhibitor

EGFR Locally advanced metastatic NSCLC
cancer after failure of both platinum-
based and docetaxel chemotherapies
(2003)

Vandetanib
ZD6474, Zactima®

AstraZeneca Anilinoquinazoline-
based inhibitor

EGFR
VEGFR2
RET-
tyrosine
kinase

NSCLC
Submitted for approval in June 2009,
but application withdrawn in October
2009 in NSCLC setting with
chemotherapy

Lapatinib
GW572016,
Tykerb®

GlaxoSmithKline Thiazolylquinazoline-
based reversible
inhibitor

EGFR
HER2

Metastatic breast cancer in
combination with capecitabine whose
tumors overexpress HER2 and have
received prior therapy, including an
anthracycline, a taxane, and
trastuzumab (2006)

Pelitinib
EKB-569

Wyeth Cyanoquinoline-based
irreversible inhibitor

EGFR
HER2

Not yet approved

Abbreviations: HNSCC, head and neck squamous cell carcinoma; mCRC, metastatic colorectal cancer; NSCLC, non-small cell lung cancer;
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Table 2

Proposed mechanisms of action for EGFR inhibitors

Molecular mechanism Mechanism of action

Inhibits ligand binding Prevents activation of the tyrosine kinase domain and further prevents
downstream activation of prosurvival pathways162,163

Inhibits cell cycle progression Cetuximab causes cell arrest in the G1 gap phase of the cell cycle via
an increase in the cell cycle inhibitor p27kip1 as well as an inhibition of
PCNA164

ADCC Cetuximab treatment to patients with lung cancer causes an enhanced
activity in ADCC by interleukin-2 through activation of natural killer
cells165,166

Enhances apoptosis Treatment with cetuximab or other similar anti-EGFR antibodies alters
the balance of Bcl-2 (antiapoptotic) and Bax (proapoptotic) proteins to
promote more apoptosis167,168

Suppresses DNA-PK activity Cetuximab induces radiosensitization in A549 cells and eliminates
DNA-PK repair activity (via increased H2AX)169

Enhances antitumor effects of radiation Tumors are more radiosensitive with treatment of cetuximab due to the
promotion to a more susceptible phase of the cell cycle. Radiation-
induced nuclear transport of EGFR is inhibited by treatment with
cetuximab169,170

Inhibition of tyrosine kinase domain Inhibits signal transduction of EGFR, preventing downstream signaling

Nonspecific HER family inhibition Gefitinib has been suggested to inhibit both HER2 and HER3
receptors. Treatment with gefitinib induces a conformational change in
EGFR that changes its ability to form dimers with other HER family
receptor
Erlotinib directly inhibits HER2 kinase activation and downstream
signaling events171–175

Decreased ligand binding Treatment with TKIs decreases the affinity of the EGFR to its ligand176

Abbreviations: ADCC, antibody dependent cellular cytotoxicity; DNA-PK, DNA-dependent protein kinase; EGFR, epidermal growth factor receptor;
PCNA, proliferating cell nuclear antigen; TKI, tyrosine kinase inhibitor.

Nat Rev Clin Oncol. Author manuscript; available in PMC 2010 November 1.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Wheeler et al. Page 28

Ta
bl

e 
3

Se
le

ct
ed

 c
lin

ic
al

 tr
ia

ls
 o

f E
G

FR
 in

hi
bi

to
rs

T
ri

al
D

ru
g

C
an

ce
r

C
lin

ic
al

 d
es

ig
n

M
ed

ia
n 

ov
er

al
l

su
rv

iv
al

(m
on

th
s)

R
es

po
ns

e 
ra

te
(%

)
M

ed
ia

n
pr

og
re

ss
io

n-
fr

ee
 su

rv
iv

al
(m

on
th

s)

C
un

ni
ng

ha
m

et
 a

l.5
9

B
O

N
D

C
et

ux
im

ab
m

C
R

C
C

et
ux

im
ab

8.
6

22
.9

4.
1

C
et

ux
im

ab
 +

iri
no

te
ca

n
6.

9
(P

=0
.4

8)
10

.8
(P

=0
.0

07
)

1.
5

V
an

 C
ut

se
m

et
 a

l.5
6

C
R

Y
ST

A
L

C
et

ux
im

ab
m

C
R

C
FO

LF
IR

I
18

.6
38

.7
8.

0

FO
LF

IR
I +

ce
tu

xi
m

ab
19

.9
(P

=0
.3

1)
46

.9
(P

=0
.0

04
)

8.
9

(P
=0

.0
48

)

B
ok

em
ey

er
et

 a
l.9

5
O

PU
S

C
et

ux
im

ab
m

C
R

C
FO

LF
O

X
N

R
36

7.
2

FO
LF

O
X

 +
ce

tu
xi

m
ab

N
R

46
7.

2

B
or

ne
r e

t a
l.2

6
SA

K
K

C
et

ux
im

ab
m

C
R

C
C

A
PO

X
16

.5
14

5.
8

C
A

PO
X

 +
ce

tu
xi

m
ab

20
.5

41
7.

2

So
br

er
o 

et
 a

l.2
7

EP
IC

C
et

ux
im

ab
m

C
R

C
Ir

in
ot

ec
an

10
0

4.
2

2.
6

Ir
in

ot
ec

an
 +

ce
tu

xi
m

ab
10

.7
(P

=0
.7

1)
16

.4
(P

<0
.0

00
1)

4.
0

(P
<0

.0
00

1)

Jo
nk

er
 e

t a
l.5

8
N

IC
I

C
et

ux
im

ab
m

C
R

C
Su

pp
or

tiv
e 

ca
re

4.
6

0
N

R

Su
pp

or
tiv

e 
ca

re
 +

ce
tu

xi
m

ab
6.

1
(P

=0
.3

2)
8.

0
(P

<0
.0

01
)

N
R

B
as

el
ga

 e
t a

l.1
17

C
et

ux
im

ab
H

N
SC

C
Pl

at
in

um
 C

T 
+

ce
tu

xi
m

ab
6.

1
11

N
R

H
er

bs
t e

t a
l.1

78
C

et
ux

im
ab

H
N

SC
C

C
is

pl
at

in
 +

ce
tu

xi
m

ab
 P

D
gr

ou
p 

1

6.
1

20
3.

0

C
is

pl
at

in
 +

ce
tu

xi
m

ab
 P

D
gr

ou
p 

2

4.
3

6
2.

0

C
is

pl
at

in
 +

ce
tu

xi
m

ab
 S

D
gr

ou
p

11
.7

18
4.

9

Nat Rev Clin Oncol. Author manuscript; available in PMC 2010 November 1.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Wheeler et al. Page 29

T
ri

al
D

ru
g

C
an

ce
r

C
lin

ic
al

 d
es

ig
n

M
ed

ia
n 

ov
er

al
l

su
rv

iv
al

(m
on

th
s)

R
es

po
ns

e 
ra

te
(%

)
M

ed
ia

n
pr

og
re

ss
io

n-
fr

ee
 su

rv
iv

al
(m

on
th

s)

V
er

m
or

ke
n

et
 a

l.6
0

C
et

ux
im

ab
H

N
SC

C
Pl

at
in

um
 C

T 
+ 

FU
7.

4
20

3.
3

Pl
at

in
um

 C
T 

+ 
FU

+ 
ce

tu
xi

m
ab

10
.1

(P
=0

.0
4)

36 (P
<0

.0
01

)
5.

6
(P

<0
.0

01
)

B
on

ne
r e

t a
l.2

3
C

et
ux

im
ab

H
N

SC
C

R
ad

io
th

er
ap

y
29

.3
64

12
.4

R
ad

io
th

er
ap

y 
+

ce
tu

xi
m

ab
49

.0
(P

=0
.0

3)
74 (P

=0
.0

2)
17

.1
(P

=0
.0

06
)

V
an

 C
ut

se
m

et
 a

l.6
6

Pa
ni

tu
m

um
ab

m
C

R
C

B
SC

N
R

0
1.

8

B
SC

 +
pa

ni
tu

m
um

ab
N

R
(P

=0
.8

1)
10 (P

<0
.0

01
)

2.
0

(P
<0

.0
00

1)

Sh
ep

he
rd

 e
t a

l.7
2

Er
lo

tin
ib

N
SC

LC
Pl

ac
eb

o
4.

7
<1

1.
8

Er
lo

tin
ib

6.
7

(P
<0

.0
01

)
8.

9
(P

<0
.0

01
))

2.
2

(P
<0

.0
01

)

H
er

bs
t e

t a
l.7

0
Tr

ib
ut

e
Er

lo
tin

ib
N

SC
LC

Pl
at

in
um

 C
T 

+
pa

cl
ita

xe
l +

pl
ac

eb
o

10
.5

19
.3

N
R

Pl
at

in
um

 C
T 

+
pa

cl
ita

xe
l +

er
lo

tin
ib

10
.6

(P
=0

.9
5)

21
.5

(P
=0

.3
6)

N
R

G
at

ze
m

ei
er

et
 a

l.7
1

Ta
le

nt

Er
lo

tin
ib

N
SC

LC
G

em
ci

ta
bi

ne
 +

pl
at

in
um

 C
T 

+
pl

ac
eb

o

10
.7

5
29

.9
N

R

G
em

ci
ta

bi
ne

 +
pl

at
in

um
 C

T 
+

er
lo

tin
ib

11
.0

2
(P

=0
.4

9)
31

.5
N

R

M
oo

re
 e

t a
l.2

8,
29

Er
lo

tin
ib

Pa
nc

re
at

ic
G

em
ci

ta
bi

ne
 +

pl
ac

eb
o

5.
91

8.
0

3.
55

G
em

ci
ta

bi
ne

 +
er

lo
tin

ib
6.

24
(P

=0
.0

38
)

8.
6

(P
=0

.0
7)

3.
75

(P
=0

.0
04

)

K
ris

 e
t a

l.6
7

ID
EA

L 
2

G
ef

iti
ni

b
N

SC
LC

25
0m

g 
ge

fit
in

ib
7

12
.0

(P
=0

.0
05

)
–

50
0m

g 
ge

fit
in

ib
6 (P

=0
.4

0)
9.

0
(P

=0
.0

6)
–

Nat Rev Clin Oncol. Author manuscript; available in PMC 2010 November 1.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Wheeler et al. Page 30

T
ri

al
D

ru
g

C
an

ce
r

C
lin

ic
al

 d
es

ig
n

M
ed

ia
n 

ov
er

al
l

su
rv

iv
al

(m
on

th
s)

R
es

po
ns

e 
ra

te
(%

)
M

ed
ia

n
pr

og
re

ss
io

n-
fr

ee
 su

rv
iv

al
(m

on
th

s)

Fu
ku

ok
a 

et
 a

l.6
8

ID
EA

L 
1

G
ef

iti
ni

b
N

SC
LC

25
0m

g 
ge

fit
in

ib
7.

6
18

.4
2.

7

50
0m

g 
ge

fit
in

ib
8.

0
19

.0
2.

8

G
ia

cc
on

e 
et

 a
l.6

9
IN

TA
C

T1
G

ef
iti

ni
b

N
SC

LC
C

T 
+ 

pl
ac

eb
o

10
.9

44
.8

N
R

C
T 

+ 
25

0m
g

ge
fit

in
ib

9.
9

50
.3

N
R

C
T 

+ 
50

0 
m

g
ge

fit
in

ib
9.

9
(P

=0
.4

56
0)

49
.7

N
R

H
er

bs
t e

t a
l.2

4
IN

TA
C

T2
G

ef
iti

ni
b

N
SC

LC
Pl

at
in

um
 C

T 
+

pl
ac

eb
o

8.
7

28
.7

N
R

Pl
at

in
um

 C
T 

+
25

0m
g 

ge
fit

in
ib

9.
8

30
.4

N
R

Pl
at

in
um

 C
T 

+
50

0m
g 

ge
fit

in
ib

9.
9

(P
=0

.6
38

5)
30

.0
N

R

Th
at

ch
er

 e
t a

l.2
5

IS
EL

G
ef

iti
ni

b
N

SC
LC

B
SC

 +
 p

la
ce

bo
5.

1
1.

3
N

R

B
SC

 +
 g

ef
iti

ni
b

5.
6

(P
=0

.0
87

)
8.

0
(P

 <
 0

.0
01

)
N

R

G
ey

er
 e

t a
l.1

79
La

pa
tin

ib
m

B
C

C
ap

ec
ita

bi
ne

8.
0

14
4.

1

C
ap

ec
ita

bi
ne

 +
la

pa
tin

ib
10

.4
22 (P

=0
.0

9)
8.

4
(P

<0
.0

01
)

D
i L

eo
 e

t a
l.3

0
La

pa
tin

ib
m

B
C

Pa
cl

ita
xe

l +
pl

ac
eb

o
21

.7
5

25
.3

5.
73

Pa
cl

ita
xe

l +
la

pa
tin

ib
24

.7
8

(P
=0

.2
16

)
35

.1
(P

<0
.0

08
)

7.
25

(P
=0

.1
42

)

A
bb

re
vi

at
io

ns
: B

SC
, b

es
t s

up
po

rti
ve

 c
ar

e;
 C

A
PO

X
, c

ap
ec

ita
bi

ne
, o

xa
lip

la
tin

; C
T,

 c
he

m
ot

he
ra

py
; F

O
LF

IR
I, 

fo
lin

ic
 a

ci
d 

(le
uc

ov
or

in
), 

flu
or

ou
ra

ci
l, 

iri
no

te
ca

n;
 F

O
LF

O
X

, f
ol

in
ic

 a
ci

d 
(le

uc
ov

or
in

), 
flu

or
ou

ra
ci

l,
ox

al
ip

la
tin

; F
U

, f
lu

or
ou

ra
ci

l; 
H

N
SC

C
, h

ea
d 

an
d 

ne
ck

 sq
ua

m
ou

s c
el

l c
ar

ci
no

m
a;

 m
B

C
, m

et
as

ta
tic

 b
re

as
t c

an
ce

r; 
m

C
R

C
, m

et
as

ta
tic

 co
lo

re
ct

al
 ca

nc
er

; N
SC

LC
, n

on
-s

m
al

l c
el

l l
un

g 
ca

nc
er

; P
D

, p
ro

gr
es

si
ve

 d
is

ea
se

;
SD

, s
ta

bl
e 

di
se

as
e.

Nat Rev Clin Oncol. Author manuscript; available in PMC 2010 November 1.


