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Abstract

Addition of nitrosobenzene to pinacol allylboronates leads to oxidation of the organoboron with
concomitant rearrangement of the substrate alkene. This reaction appears to proceed by
allylboration of the nitroso group in analogy to carbonyl and imine allylation reactions.
Remarkably, the N-O bond is cleaved during the reaction such that simple alcohols are the final
reaction product.

Due to the utility of allylboron reagents in organic synthesis, their preparation has been
studied intensely.1 Along these lines, recent efforts from our laboratory have focused on the
development of the catalytic hydroboration of dienes2 and the catalytic diboration of both
allenes3 and dienes.4 These reactions convert simple hydrocarbon building blocks into
substituted pinacolato allylboronates. These types of allylmetal reagents participate in a
wide range of allylations with carbonyl and imine derivatives.5 However, the only other
reactions that have been developed for these species are a narrow range of oxidation,6 cross-
coupling,7 conjugate addition,8 and homologation reactions.9 To expand the utility of allyl
boronates in organic synthesis we have begun to study other reactions that might apply to
these reagents. Considering the isoelectronic relationship between the nitroso group and
carbonyl groups, we were prompted to study the reaction between nitrosobenzene and allyl
boronates. While a single example by Bubnov describes the reaction between
nitrosobenzene and highly reactive triallyborane, a number of critical issues remain
unaddressed.10 First, it is not clear whether the diminished electrophilicty of boronic esters
relative to boranes will impede the reaction. Second, with substituted allylic boronates, it is
not readily apparent whether the reaction with nitrosobenzene will occur with allylic
transposition as occurs with carbonyls, or whether it will occur by coordination and
subsequent 1,2 alkyl migration as occurs in the reaction between organoboranes and many
reagents.11 Lastly, while Bubnov has demonstrated that triallylborane and nitrosobenzene
react with relatively non-selective formation of both N-O and C-O bonds, the issue of N-
versus O-allylation with allylic boronates was uncertain.12

Two preliminary experiments revealed much about the reaction between allylboronates and
nitrosobenzene. In the first (eq 1, Scheme 1), 1,3-decadiene (1) was subjected to Ni-
catalyzed 1,4-hydroboration, a reaction that delivers cis allyl boronate 2.2a After diluting the
reaction mixture with THF it was treated with 1.05 equivalents of nitrosobenzene.
Subsequent oxidative treatment furnished allylic alcohols 3 and 4 in 44% and 23% vyield,
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respectively. In the second experiment (eq 2, Scheme 1), intermediate allyl boronate 2 was
treated with nitrosobenzene for 13 hours at —78 °C prior to work-up with brine and passage
through a short silica gel plug. This reaction did not provide any of the terminal alcohol 4,
but did produce internal allylic alcohol 3 and alkoxyamine 5. The observation that allylic
alcohol 4 is only produced when oxidative work-up is employed suggests that 4 arises from
unreacted 2. The observation that regioisomers 3 and 5, but not 4, are produced in the
absence of hydrogen peroxide suggests that the predominant reaction pathway for allylic
boronate 2 and nitrosobenzene occurs by addition of the allylboron to the oxygen atom and
with allylic rearrangement.13

Considering the robustness of the N-O bond, it is somewhat surprising that N-O bond-
cleaved compound 3 is produced in equation 2 (Scheme 1). A clue to its formation can be
found in the fact that compound 5 is not isolated from equation 1 and that mass spectral
analysis of the unpurified reaction mixture from equation 2 revealed the presence of a
compound with an m/z ratio corresponding to compound 6 (Scheme 1). 1H NMR analysis
also reveals the presence of 6. In line with these observations, it was surmised that a second
molecule of nitrosobenzene and the Brgnsted base might conspire to cleave the N-O bond of
the initial allylation product in a fashion such as that depicted in Scheme 2. This type of
reaction has been observed by Barbas and appears consistent with the reaction outcome.
1415

In view of the mechanism depicted in Scheme 2, it might be anticipated that additional
nitrosobenzene and alternate bases would provide an improved yield of allylation product 3.
As depicted in Table 1 (entry 1), addition of three equivalents of nitrosobenzene, as opposed
to one equivalent (Scheme 1), results in a significantly enhanced yield of the secondary
allylic alcohol 3 and, with oxidative work-up, none of the terminal allylic alcohol 4 could be
detected. According to the mechanism in Scheme 2, hydrogen peroxide is not required for
the reaction and the experiment in entry 2 (Table 1) bears this out. In the absence of base,
however, the reaction yield is significantly diminished (entry 3). With the requirement for
addition of H,O, apparently obviated, we examined work-up under basic, non-oxidative
conditions. As depicted in Table 1, a number of bases suffice for the nitrosobenzene-
mediated oxidation of allylboronates. In all cases reasonable yields of secondary allylic
alcohol 3 were isolated.

To study the generality of the nitrosobenzene-mediated allylboronate oxidation, a number of
substrates were explored in the tandem hydroboration/oxidation sequence and both
nitrosobenzene/NH4OH (method A) and NaOH/H,0, (method B) oxidation procedures
were examined. As depicted in Table 2, a number of different terminally-substituted
butadienes participate in the reaction and deliver moderate yields of the secondary allylic
alcohol from method A. While protected oxygen functional groups (entries 3, 5-7) and steric
encumbrance (entries 2 and 5) at the diene terminus are tolerated, substitution at the 2
position of the diene leads to substantially diminished reactivity (entry 8). As noted in Table
2, oxidation with H,O,/NaOH consistently delivers the terminal allylic alcohol 4. The fact
that method B is efficient with all substrates in Table 2 suggests that the diminished
reactivity observed with method A in entry 8 arises due to inefficient reaction of the
intermediate allylic boronate with nitrosobenzene. Surprisingly, substitution at the 3 position
is tolerated in the nitrosobenzene reaction and the derived tertiary alcohol was isolated in
good yield (entry 9).

With achiral allylboronates such as 2 the nitrosobenzene oxidation products 3 are racemic.
However, stereogenicity in the allylic boronate may impact the oxidation if the reacting
alkene is prochiral. To study the capacity for diastereoinduction in the nitrosobenzene-
mediated oxidation reaction, the chiral 1,4-diboryl-2-alkene 7 (Scheme 3) was generated by
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Ni-catalyzed diene diboration and subjected to the nitrosobenzene allylation reaction.
Whereas reaction with nitrosobenzene at room temperature delivered diol 8 in 2.6:1
diastereoselection (data not shown), when nitrosobenzene was added to diboronate 7 at —78
°C and followed by oxidative work-up, diol 8 was isolated in 10:1 anti:syn stereoselection
and in moderate yield (eq 3, Scheme 3). For comparison, the direct oxidation with hydrogen
peroxide furnishes regioisomeric 1,4-diol 9 in 85% yield (eq 4).

The fact that the allylation of nitrosobenzene proceeds with allylic rearrangement suggests
that a cyclic transition structure operates. This hypothesis was further supported by
subjecting octylIB(pin) to nitrosobenzene and NH4OH; less than 5% of 1-octanol could be
detected. With these observations in mind, the stereochemical outcome of the reaction
depicted in equation 3 may be rationalized by considering transition structure 10 as the
predominating reaction pathway. Presumably, the enhanced basicity of nitrogen relative to
oxygen results in N-B bonded complex 10 wherein nitrosobenzene has coordinated to the
least hindered boronate. The stereogenic carbon atom in transition structure 10 is oriented in
a manner where the electron rich C-B bond is aligned with the -system of the reacting
alkene in a manner that should enhance x nucleophilicity. If the small hydrogen is placed
inside with respect to the alkene to minimize A[1,3] strain, the model correctly predicts the
stereochemical outcome of the reaction. Similar features account for the stereochemistry of
hydroboration of allylic silanes and boranes.16

In conclusion, treatment of simple allylboronates with nitrosobenzene and base can be
considered a reliable strategy for oxidation with allylic rearrangement. Future studies will
expand upon this reactivity pattern and will be reported in due course.
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Scheme 1.
Reaction of Nitrosobenzene with Allylboronate 2
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Scheme 2.
Proposed Mechanism for N-O Bond Cleavage
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Scheme 3.
Diastereoinduction in the Oxidation of Chiral Allylboronate 6
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Table 1

Tandem Diene Hydroboration/Nitrosobenzene Oxidation.

2.5% Ni(cod),  PRNO (3 equiv) HO
2.5% PCys THF, 1h
AN\ — o e \
hexyl HBpin then base hexyl
toluene THF
14t
; 3h 1 3
Entry base % yield®@
1 NaOH/H,0, 69
2 NaOH 61
3 none 37
4 CsOH 55
5 LiOH 62
6 KOH 59
7 NH,OH 67

(a)lsolated yield of purified product.
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