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Glutamate is the main excitatory neurotransmitter in the mammalian brain. Appropriate transmission of nerve impulses

through glutamatergic synapses is required throughout the brain and forms the basis of many processes including learning

and memory. However, abnormally high levels of extracellular brain glutamate can lead to neuroaxonal cell death. We have

previously reported elevated glutamate levels in the brains of patients suffering from multiple sclerosis. Here two complemen-

tary analyses to assess the extent of genomic control over glutamate levels were used. First, a genome-wide association analysis

in 382 patients with multiple sclerosis using brain glutamate concentration as a quantitative trait was conducted. In a second

approach, a protein interaction network was used to find associated genes within the same pathway. The top associated marker

was rs794185 (P56.44� 10�7), a non-coding single nucleotide polymorphism within the gene sulphatase modifying factor 1.

Our pathway approach identified a module composed of 70 genes with high relevance to glutamate biology. Individuals carrying

a higher number of associated alleles from genes in this module showed the highest levels of glutamate. These individuals also

showed greater decreases in N-acetylaspartate and in brain volume over 1 year of follow-up. Patients were then stratified by the

amount of annual brain volume loss and the same approach was performed in the ‘high’ (n = 250) and ‘low’ (n = 132) neuro-

degeneration groups. The association with rs794185 was highly significant in the group with high neurodegeneration. Further,

results from the network-based pathway analysis remained largely unchanged even after stratification. Results from these

analyses indicated that variance in the activity of neurochemical pathways implicated in neurodegeneration is explained, at

least in part, by the inheritance of common genetic polymorphisms. Spectroscopy-based imaging provides a novel quantitative

endophenotype for genetic association studies directed towards identifying new factors that contribute to the heterogeneity of

clinical expression of multiple sclerosis.
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Introduction
L-Glutamate is the major excitatory neurotransmitter in the

mammalian central nervous system (CNS), acting through

both ligand-gated ion channels and G-protein-coupled receptors.

Activation of these receptors is responsible for basal excitatory

synaptic transmission and many forms of synaptic plasticity,

such as long-term potentiation and long-term depression,

which underlie the processes of learning and memory. Excess

glutamate in the synaptic space triggers a toxic cascade that

results in neuroaxonal injury and death in a broad range of

disorders (Pitt et al., 2000; Ouardouz et al., 2009). Glutamate

toxicity is also a contributing aetiological factor in multiple sclerosis

(OMIM #126200) (Stys, 2005; Dong et al., 2009), a common

neuroinflammatory disease affecting young adults. Glutamate

concentrations are elevated both in acute lesions and in

normal-appearing white matter of patients with multiple sclerosis

(Srinivasan et al., 2005) consistent with a potential role in the

neurodegeneration underlying disease progression (De Stefano

et al., 2007). Using magnetic resonance spectroscopic imaging,

it is now possible to measure in vivo glutamate levels in the

brain with precision (Srinivasan et al., 2006). The aim of this

study was to test for associations between common variants in

the human genome and differences in glutamate concentrations

in normal-appearing brain matter of patients with multiple

sclerosis.

In the last few years, nearly a dozen non-human leucocyte

antigen genes have been associated with this disease including

IL7R (CD127), IL2RA (CD25), CD58 and CLEC16A

(Hafler et al., 2007; ANZgene, 2009; Baranzini et al., 2009b).

However, the small effect of most associations demands very

large studies to reach adequate statistical power (Sawcer, 2008).

An additional challenging aspect in the effort to identify new

genetic associations in diseases like multiple sclerosis has been

the lack of disease-specific quantitative traits that can be related

to DNA variants in a given individual. Such an approach has

been successfully used in conditions like hypertension [variation

in blood pressure (Cowley, 2006)], erythrocyte phenotypes

(Ganesh et al., 2009) and circulating fibrinogen levels (Dehghan

et al., 2009). Recent studies relating N-acetylaspartate (NAA)

(a marker of neuroaxonal damage) and HLA-DRB1*1501 allele

status, and quantitative measures of grey matter density, volume

and cortical thickness with genome-wide DNA variants, highlight

the potential benefits of integrating genetic and imaging data to

illuminate new aspects in the pathogenesis of neurological diseases

(Okuda et al., 2009; Shen et al.). We hypothesized that variation

in brain glutamate concentrations measured by in vivo magnetic

resonance spectroscopy could be used as a quantitative trait and

combined with available high-density genotyping data to identify

genetic contributions to glutamate-mediated toxicity in multiple

sclerosis.

Material and methods

Study participants and genetic data
This study was approved by the institutional review board at

the University of California San Francisco (UCSF). After signing

appropriate informed consents, all participants were recruited at the

UCSF Multiple Sclerosis Centre using established inclusion criteria

(Baranzini et al., 2009b). Baseline clinical characteristics of this patient

data set are listed in Table 1. Genotypes were extracted from a

recently completed and reported genome-wide association study

(GWAS) using the Sentrix� HumanHap550 BeadChip (Baranzini

et al., 2009b).

MRI data acquisition and
brain volume measurement
A high-resolution inversion recovery spoiled gradient-echo

T1-weighted isotropic volumetric sequence [3D inversion re-covery

spoiled gradient recalled acquisition in steady-state (IRSPGR),

1 x 1 x 1 mm3, 180 slices] was acquired for brain volume measure-

ments (echo time/repetition time/interval time = 2/7/400 ms, flip

angle = 15�, 256� 256� 180 matrix, 240�240� 180 mm3

field of view, number of excitations =). Annual per cent whole

brain volume change was calculated by structural image evalu-

ation using normalization of atrophy, a fully automated method

of longitudinal (temporal) brain change analysis (Smith et al.,

2002).

Table 1 Cohort characteristics

Variable Value

Number of cases 382

Gender ratio (M:F) 1:2

Age (years) 44.2�9.9

Disease subtype

Clinically isolated syndrome 58

Relapse–remitting 279

Secondary progressive 32

Primary progressive 12

Progressive relapsing 1

Clinical

EDSS 1.96�1.62

MSSS 2.98�2.43

Age of onset (years) 33.8�9.5

Imaging

T1 lesion load (cm3) 4.2�7.4

T2 lesion load (cm3) 7.4�13.2

EDSS = expanded disability status scale; MSSS = Multiple sclerosis severity score.
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Spectroscopic data acquisition
and quantification
Glutamate and NAA concentrations were measured in 382 patients

at study entry using two-dimensional echo time-averaged proton

spectroscopic imaging. Technical details of this imaging pulse se-

quence have been reported elsewhere (Srinivasan et al., 2006).

The spectroscopic data were acquired on a 3T GE Excite scanner

(GE Healthcare Technologies, Waukesha, WI, USA) using an

8-channel phased coil immediately following the acquisition of

the anatomical images and prior to the administration of the con-

trast agent. The resulting coil combination data were echo

time-averaged and the metabolic concentration of glutamate

and NAA were obtained using the LCmodel quantification algo-

rithm and corrected for T1 (glutamate, NAA) and T2 (NAA) relax-

ation times using similar methods described elsewhere (Ratiney

et al., 2007). Concentration estimations of ‘pure’ grey and white

matter metabolites were derived from segmented high-resolution

T1-weighted images using a hidden Markov random field model

with expectation maximization. By modelling the glutamate and

NAA concentrations and magnetic resonance relaxation param-

eters as a linear function of percentage of white matter content,

‘pure’ grey matter and white matter glutamate and NAA concen-

trations were extrapolated from the end points of the linear fit.

Association analysis
An association analysis was performed using the linear regression

option in PLINK (Purcell et al., 2007). Disease duration, age of

onset and HLA-DRB1*1501 status were used as covariates. We

only report association P-values corresponding to additive effects

of allele dosage.

Module (sub-network) analysis
Systematic module searches on a highly curated protein interaction

network were conducted as described (Supplementary Fig. 1)

(Baranzini et al., 2009a). Briefly, each gene product in the network

was assigned a number corresponding to the P-value of the most

strongly associated single-nucleotide polymorphism (SNP) for that

gene with the trait (only P-values50.05 were considered). Next,

the Cytoscape (www.cytoscape.org) plugin jActive modules

(Ideker et al., 2002) was used to identify groups of interacting

gene products that were also associated with in vivo glutamate.

jActive modules converts P-values into z-scores and uses a greedy

algorithm to grow a sub-network (or module) from a random seed

node by sequentially incorporating its neighbours in the protein

interaction network (PIN). The algorithm then returns the smallest

possible module that includes gene products with the most signifi-

cant associations. A significance (z) score is assigned to each re-

ported sub-network after evaluation of 10 000 random networks

of similar size. Only modules with a score43 and of size45 were

considered.

To evaluate whether the significant modules obtained were bio-

logically meaningful, we employed a text-mining strategy by per-

forming automated PubMed searches with each gene product

in the module and the terms ‘glutamate’ OR ‘glutamic acid’.

An aggregate value, named the domain knowledge score (DKS)

was then computed by adding up the number of articles retrieved

for all gene products in a given module and dividing it by the

number of gene products in the module. To avoid introducing

bias due to a single well-characterized molecule, we set a limit

of 10 articles per gene.

Computation of genetic scores
The risk allele for each associated SNP was defined as the allele

showing the highest frequency among patients with high baseline

in vivo glutamate levels. For a module of N genes, each patient

was assigned a genetic score (from 0 to 2*N) corresponding to the

total number of risk alleles carried at the N loci. Scores were

normalized between 0 and 1 to allow comparison of networks

of different sizes. This genetic score was correlated with other

magnetic resonance spectroscopic metrics such as NAA concentra-

tion change over time and brain atrophy (per cent whole brain

volume change values from structural image evaluation using nor-

malization of atrophy).

Computation of expected correlations
by simulation
Given three random variables x, y and z, with the following

non-zero correlations:

rxy ¼ corrðx, yÞ
�
�

�
� and ry,z ¼ corrðy, zÞ

�
�

�
�,

we expect the correlation between x and z to be distributed nor-

mally with mean

rxzj j ¼ rxz � ryz

To assign significance to an observed rxz given rxy and ryz, we

performed a simulation. One thousand random sets of vectors x,

y and z were constructed such that rxy and ryz matched the

observed correlations in our data set. rxz was calculated in these

random sets and a normal distribution was created. The observed

rxz was compared with this normal distribution to assign

significance.

Results
Glutamate levels were measured in vivo in both the

normal-appearing white and grey matter of 382 patients with

multiple sclerosis using 1H magnetic resonance spectroscopy ima-

ging. Although at the time of the study most patients had a diag-

nosis of relapse–remitting multiple sclerosis (n = 279) or clinically

isolated syndrome (n = 58), all types of the disease were repre-

sented in this analysis. Table 1 lists the demographic details of

the cohort alongside other radiological and clinical parameters.

Approximately 500 000 genotypes were available for each study

participant (Baranzini et al., 2009b) and were used to perform a

genome-wide association analysis using brain glutamate concen-

trations as an endophenotypic continuous trait (Fig. 1). The top

associated marker was rs794185 (P56.44� 10�7), a SNP in

chromosome 3p26.2 that maps to intron 6 of the gene coding

Genetic variation affects brain glutamate Brain 2010: 133; 2603–2611 | 2605



for sulphatase modifying factor 1 (SUMF1). Mutations in SUMF1

lead to multiple sulphatase deficiency (MIM 272200), a lysosomal

storage disorder. DNA variants in this gene may indirectly regulate

extracellular glutamate by altering the activity of steroid sulpha-

tases (Shirakawa et al., 2005; Gibbs et al., 2006; Valenzuela et al.,

2008). A region spanning �4 Mb in chromosome 7 and containing

11 SNPs in HDAC9, 5 SNPs in CDCA7L and 6 SNPs in DRCTNNB

was found to be modestly associated (P-values between 10�4 and

10�5). The top 20 associated SNPs are listed in Supplementary

Table 1.

To maximize the probability of identifying true associated genes,

we used a PIN-based analysis as previously described (Baranzini

et al., 2009a). In this method, evidence of genetic association is

combined with evidence of physical interaction of the respective

gene products. Thirty-four modules were found to be significantly

associated with in vivo glutamate concentration. Due to the

nature of the searches, significant overlap in the composition of

modules is expected. In order to assess the relative importance of

these modules, several criteria were considered. First, a literature

search was performed to determine the relevance of each of the

component genes to glutamate biology. Next, their association

with related phenotypes such as NAA decline and brain atrophy

change were measured. Module 14 was the top scoring module

across all these criteria. This module was composed of 70 genes

and included three ionotropic glutamate receptors (GRID2, GRIK2

and GRIK5), 17 anchoring proteins required for glutamate recep-

tor and transporter organization (AKAP5, DLG2, DLG4, SHANK2,

PRKCA, LRRC7, PKP4, CTNND2, CDH2, CDH5, DSC3, ARVCF,

NLGN4X, DLGAP1, CASK, CASKIN, ACTN2), two axon guidance

molecules (DAB1, DAB2) and three key regulators of glutamater-

gic synaptic activity (ERBB4, PTK2B and PARK2) (Fig. 2). In add-

ition, seven members of the TGF-b signalling pathway (SMAD1,

SMAD2 SMAD3, SMAD6, SMURF1, ERBB2IP and ACVR1) were

also members of this network.

To assess the biological relevance of reported modules a

text-mining strategy was implemented by performing automated

PubMed searches with each of the component genes of all iden-

tified modules and the term ‘glutamate’ OR ‘glutamic acid’. The

aggregate number of articles found for all genes in a given module

was recorded as its DKS. The top associated genes (by P-value)

found in the PIN (whether they interact or not) had higher DKS

than the top associated genes not found in the PIN, perhaps

indicating that genes in the PIN are overall better annotated.

However, the DKS of Module 14 (and that of all other modules,

data not shown) was significantly higher than that of both the top

genes in the PIN and the overall top associated genes (Fig. 3).

Figure 1 Genome-wide scan for allele frequency differences related to in vivo glutamate concentration in multiple sclerosis brains.

(A) P-values from the linear regression with glutamate concentration, controlled by disease duration, age of onset and DRB1 status.

(B) Quantile–quantile plots of these test statistics.
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These results support our hypothesis that the network-based

approach identifies biologically related genes.

We then tested the association of each module with selected

relevant MRI-based metrics (Fig. 4). To this end, a module-specific

genetic score was computed for each patient. The score was

derived from the number of risk alleles carried at each gene rep-

resented in the module. We reasoned that if glutamate concen-

tration was affected by genomic variants, then individuals with the

highest glutamate levels would show the highest number of asso-

ciated alleles in the module. As predicted, patients with the highest

glutamate levels in grey matter were more likely to display the

highest genetic scores (for Module 14: R2= 42%) (Fig. 4A). While

this correlation was expected because genetic scores were derived

from the regression with the trait, the highly significant P-value

(2.58� 10�29) indicates that most, if not all, of the 70 genes in

the module contribute to the phenotype. Interestingly, we

observed a significant correlation between the rate of NAA decline

in grey matter over the first year after glutamate measurements

and the module-specific genetic score (R2= 6.3%, P510�4)

(Fig. 4B). Although a relationship between these two variables

was anticipated (expected R2= 4.4%) due to the existing correl-

ation between glutamate and NAA levels (R2 = 10.4%, P510�7),

the correlation between genetic scores and NAA decline is higher

than expected. Simulations with artificial data sets and conditional

regression analysis were conducted to assess the statistical signifi-

cance of these additional correlations but were not conclusive,

possibly reflecting lack of power due to a moderate sample size

and the relatively short follow-up time. Similar results were

obtained when NAA decline in white matter was considered

(R2= 3.2%, P50.007). Finally, we also observed a significant

Figure 2 Module 14. A graphical representation of the overall highest scoring module from the protein interaction network. Circles

represent proteins and lines represent interactions among them. Proteins are coloured according to their relationship to glutamate.

Green = glutamate receptor and transporter organization; red = TGF-b signalling; pink = regulators of glutamatergic synaptic activity;

yellow = glutamate receptors; blue = axon guidance; grey = unclassified.
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correlation between brain atrophy over the first year and

the module-specific genetic score (observed: R2 = 1.2% P50.05;

expected R2= 0.14%) (Fig. 4C). Correlations between

glutamate-based genetic score and the multiple sclerosis severity

score (computed over 2 and 3 years) did not reach significance.

As described in Table 1, the data set included patients of all

disease subtypes and presumably with variable degrees of neuro-

degeneration. It is conceivable that the DNA variants associated

with glutamate concentration will have a stronger effect in

patients with more neurodegeneration, as evidenced by MRI. To

evaluate this hypothesis, we stratified patients based on brain

atrophy (i.e. a surrogate of neurodegeneration) and repeated the

entire analysis in each group. Patients showing at least 0.2% de-

cline (�0.2% percent whole brain volume change) in structural

image evaluation using normalization of atrophy at two or more

times during a 3-year follow-up period were considered as the

group with ‘high’ neurodegeneration (n = 250), while the remain-

ing 132 individuals were defined as the group with ‘low’ neuro-

degeneration. A decline of 0.2% or more was observed in normal

ageing from 48 healthy controls scanned annually using the same

3T scanner (D. Pelletier, unpublished data). The top 20 associated

variants in the high neurodegeneration group are shown in

Supplementary Table 2. It is noteworthy that the top hit

from the original GWAS performed in all patients (rs794185 in

SUMF1, P56.44�10�7) was the second-most significant marker

in the new analysis (P59.92� 10�6). In comparison, the same

SNP ranked 329 987 in the GWAS with the low neurodegenera-

tion group (the top 20 variants are shown in Supplementary

Table 3), suggesting that most of the statistical significance of

the SUMF1 association in the full data set derives from the

group of patients with high neurodegeneration.

We then performed the network-based analysis to search for

modules enriched in modestly associated variants within function-

ally related genes. Like in the original GWAS, several networks

(i.e. 23) with different degrees of overlapping were significantly

enriched in genes associated with glutamate concentrations. Of

these, eight networks were also functionally related to glutamate

in the group with high neurodegeneration as determined by their

DKS. Whereas a similar number of significant modules were found

for the group with low neurodegeneration (i.e. 30), only one of

them was functionally related to glutamate.

The top associated module in the group with high neurodegen-

eration was composed of 55 genes (Supplementary Fig. 2) signifi-

cantly enriched in glutamate biology (Supplementary Fig. 3).

Although computing the overlap between any two networks is

currently a subject of much debate in graphic theory (nets could

be compared on the basis of shared nodes, edges or half a dozen

network parameters such as connectivity distribution, clustering

Figure 4 Correlation between glutamate genetic score and relevant variables. (A) Correlation of glutamate genetic scores with grey

matter glutamate concentration. (B) Correlation of genetic scores with NAA change over 1 year. Genetic scores explain more variance in

NAA decline than expected given the a priori correlation between glutamate level and NAA decline. (C) Similarly, correlation between

genetic scores and brain atrophy was significant and higher than that expected from a priori correlation between glutamate level and brain

atrophy.

Figure 3 Domain knowledge scores. Mean DKSs were calcu-

lated for genes in Module 14 (black bar), and for the top asso-

ciated genes from the same protein network (whether they

interact or not) (grey bar). Also, the mean DKS of the top

associated genes from the original GWAS is shown. The mean

DKS of genes in Module 14 is significantly higher than those of

the other two lists of associated genes (Welch’s t-test, bars

represent SEM).
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coefficient, etc.), a rough measure is to count the number of

nodes in common. When compared to the network obtained

with data from the original GWAS, we identified 13 genes in

common, a remarkable overlap considering that the expected

number of shared genes between two random networks of com-

parable sizes is virtually 0.

Discussion
In this study, we performed a genome-wide association analysis

using in vivo CNS glutamate concentration in patients with mul-

tiple sclerosis as a quantitative trait. Despite the relatively small

data set, several SNPs appeared associated at significance levels

comparable to those reported in genome-wide analyses. For ex-

ample, the SNP rs794185 in SUMF1 reached P56.44�10�7 and

a peak of modestly associated markers in three other genes was

observed in chromosome 7. SUMF1 is a key activator of sulpha-

tases; it catalyses the hydrolysis of sulphate esters by oxidizing a

cysteine residue in the substrate sulphatase to an active site

3-oxoalanine residue, which is also known as C-a-formylglycine.

Dysregulation of SUMF1 might lead to reduced activity of other

sulphatases (Fraldi et al., 2007). Interestingly, deficiency of the

lysosomal arylsulphatase A causes metachromatic leucodystrophy,

a severe neurological disorder that affects myelin integrity.

Sulphated steroids are powerful endogenous modulators of the

balance between excitatory and inhibitory neurotransmission

(Gibbs et al., 2006). In particular, they have been shown to

regulate synaptic transmission by altering the function of

post-synaptic neurotransmitter receptors (Valenzuela et al.,

2008) and to attenuate a-amino-3-hydroxyl-5-methyl-4-

isoxazole-propionate cytotoxicity on cortical neurons (Shirakawa

et al., 2005). Pregnenolone sulphate has been shown to inhibit

a-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate/kainate as

well as a subset of N-methyl-D-aspartate receptors (GRIN2C and

GRIN2D) highly expressed in oligodendrocytes (Salter and Fern,

2005) and myelin (Micu et al., 2006). Reduced activity of preg-

nenolone sulphate might lead to an increased expression of these

receptors, thus accelerating degeneration of white matter elem-

ents. Intriguingly, pregnenolone sulphate is highly expressed

during pregnancy, a period where relapse rate is significantly

reduced (Vukusic et al., 2004).

The use of a protein interaction network to find groups of func-

tionally related genes has been shown to be an effective method

to identify genetic modules significantly associated with a trait

(Wang et al., 2007; Torkamani et al., 2008; Baranzini et al.,

2009a). Using data from a GWAS performed on glutamate in

382 patients, we identified and described a sub-network of the

global protein interaction ensemble (Module 14) composed pri-

marily of molecules related to glutamate biology. GRID2 is a com-

ponent of the N-methyl-D-aspartate receptor complex and GRIK2

and GRIK5 belong to the kainate-responsive family of glutamate

receptors. Variation in the sequence of these genes could lead to

an altered glutamate homoeostasis, contributing then to the pri-

mary susceptibility and progression underlying multiple sclerosis.

Glutamate receptors also associate with a number of accessory

proteins whose function is to recruit other members and to

stabilize the receptor complex. Five of these genes are also part

of Module 14 (AKAP5, DLG2, DLG4, SHANK2, PRKCA) along

with two others (DAB1 and DAB2) whose main function is to

interact with protein kinase pathways to regulate neuronal pos-

itioning in the developing brain. Neuregulin-1 signalling partici-

pates in numerous neurodevelopmental processes and variants in

this gene have been associated with schizophrenia (Stefansson

et al., 2002). More recently, the neuregulin-1 receptor ERBB4

(which is a member of Module 14) has been shown to control

synapse maturation and plasticity, thus contributing to the gluta-

matergic hypofunction characteristic in that disease (Li et al.,

2007). DLG4 encodes a member of the membrane-associated

guanylate kinase family. As shown in Fig. 2, it interacts with sev-

eral proteins including membrane-associated guanylate kinase

members DLG2 and CASK, and it is then recruited into

N-methyl-D-aspartate receptor and potassium channel clusters.

DLG2 and CASK interact at post-synaptic sites to form a multi-

meric scaffold for the clustering of receptors, ion channels and

associated signalling proteins. Interestingly, changes in DLG4 ex-

pression have also been associated with schizophrenia (Clinton and

Meador-Woodruff, 2004; Funk et al., 2009). Finally, the protein

tyrosine kinase 2 b (PTK2B) was also a component of Module 14.

This gene encodes a cytoplasmic protein tyrosine kinase that is

involved in calcium-induced regulation of ion channels and activa-

tion of the map kinase signalling pathway. PTK2B represents an

important signalling intermediate between neurotransmitter recep-

tors that increase calcium flux and the downstream signals that

regulate neuronal activity. Of relevance, PTK2B has been found to

regulate glutamate release through the modification of actin dy-

namics (Ohnishi et al., 2001). Seven members of the TGF-b sig-

nalling pathway were also part of Module 14, strongly suggesting

the involvement of this pleiotropic cytokine in glutamate

metabolism. TGF-b signalling has been previously associated with

neuroprotection via regulation of Ca2+ homoeostasis by N-methyl-

D-aspartate receptors (Meucci and Miller, 1996), although a recent

report related this pathway to neuronal activation and

glutamate-mediated CNS injury (Luo et al., 2006). These obser-

vations underscore the complex regulatory relationship between

TGF-b and glutamate. Altogether, Module 14 is largely composed

of genes involved in glutamate biology, thus suggesting that the

network-based search for significant associations does select

biologically relevant genes.

We also performed two additional genome-wide association

studies, stratifying the study participants by high or low brain at-

rophy (neurodegeneration). These data revealed that SUMF1 is

highly associated with glutamate concentrations only in the

group with high neurodegeneration. This is noteworthy because

it suggests that DNA variants in this sulphatase-modifying enzyme

are more likely to influence the glutamate concentration in a

subset of patients while other mechanisms may be involved in

the regulation and maintenance of glutamate concentrations in

patients with less neurodegeneration. Indeed, while more evidence

for gene networks associated with glutamate concentrations was

found in the group with high neurodegeneration, at least one

significant network of genes related to glutamate was also

found in the group of patients with low neurodegeneration.
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In order to quantify the genetic load of a given individual, we

developed a genetic score that takes into account the number of

alleles associated with the trait (glutamate concentration). Thus,

individuals with higher genetic scores are more likely to show

higher glutamate levels and other related traits. The significant

correlation between genetic scores and NAA decline over the fol-

lowing year is slightly above what would be expected given the

relationship between glutamate and NAA levels. This suggests that

any effect these genes have on NAA is mediated by glutamate

levels. Similarly, we observed that variants in these genes also

explain a non-negligible amount of the variance in brain atrophy

measured over 1 year. As deduced from the slope of the graph in

Fig. 4C, 0.01% of brain volume loss can be attributed to carrying

a single additional risk allele from Module 14. Since patients at the

extremes of the distribution of genetic scores can differ in as many

as 30 units, we estimate that as much as 0.3% (one-third) of the

yearly main brain volume loss observed in patients with multiple

sclerosis (annual per cent whole brain volume change��1%)

can be attributed to the common variation found in these

genes. Correlations between the multiple sclerosis severity score

(computed over 2 and 3 years) and the genetic score did not

reach significance, possibly due to a lack of power as data from

fewer patients were available for these later time points. Another

possibility is that in order to observe a causal relationship between

glutamate and the multiple sclerosis severity score, a longer

follow-up period may be needed. While larger and independent

cohorts will be desirable to validate these findings, the exact

number of individuals to test for an approach like this is unclear

as traditional power calculations to estimate the sample size may

not be directly applicable. While increased glutamate can originate

from either a defect in transporters or by increased production by

activated inflammatory cells (Piani et al., 1991), the exact source

could not be determined since the method used here only quan-

tifies total glutamate. Finally, the text-mining approach used to

establish biological significance is subject to some limitations

including the introduction of false positives and enrichment in

well-annotated genes.

In summary, we have identified genetic variation in genes asso-

ciated with in vivo glutamate measured using 1H magnetic reson-

ance spectroscopic imaging in the grey matter of patients with

multiple sclerosis. We have also shown that common variations

in a limited group of functionally related genes contribute signifi-

cantly to NAA decay and brain volume in multiple sclerosis. These

results highlight the importance of glutamate in multiple sclerosis

biology and generate new hypotheses that link genetic variation

with disease progression. Studies of this nature represent the lo-

gical next step following the discovery of susceptibility genes and

are ideally suited to begin explaining the heterogeneity observed

in multiple sclerosis and other neurodegenerative disorders.
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