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Double-strand breaks (DSBs) are the most deleterious DNA lesions, which, if left unrepaired, may have severe consequences for
cell survival, as they lead to chromosome aberrations, genomic instability, or cell death. Various physical, chemical, and biological
factors are involved in DSB induction. Cells respond to DNA damage by activating the so-called DNA damage response (DDR), a
complex molecular mechanism developed to detect and repair DNA damage. The formation of DSBs triggers activation of many
factors, including phosphorylation of the histone variant H2AX, producing γH2AX. Phosphorylation of H2AX plays a key role in
DDR and is required for the assembly of DNA repair proteins at the sites containing damaged chromatin as well as for activation
of checkpoints proteins which arrest the cell cycle progression. In general, analysis of γH2AX expression can be used to detect the
genotoxic effect of different toxic substances. When applied to clinical samples from cancer patients, evaluation of γH2AX levels
may allow not only to monitor the efficiency of anticancer treatment but also to predict of tumor cell sensitivity to DNA damaging
anticancer agents and toxicity of anticancer treatment toward normal cells.

1. DNA Double-Strand Breaks

DNA double-strand break (DSB) is a type of DNA damage
in which two complementary strands of the double helix
of DNA are damaged simultaneously, in locations close
to each other. DSB is the most dangerous type of DNA
damage, because it is believed that a single unrepaired DSB
is sufficient for the induction of cell death process [1, 2].
Many different physical, chemical, and biological factors may
lead to DSB formation. DSBs also occur in cells, for example,
during differentiation of reproductive cells or lymphocytes
[3, 4]. The factors leading to the formation of DSB include
endogenous factors, that are associated with physiological
processes occurring in the cell, and the exogenous ones [5, 6].

In living cells, DNA is subject to a constant process of
oxidative damage by oxygen free radicals (reactive oxygen
species—ROS) that are produced inside the cell as a result
of metabolic processes [6, 7]. It is estimated that in a single
cell cycle at least 5000 single-stranded DNA breaks can

occur as a result of ROS production. Approximately 1% of
these DNA breaks is converted into DSBs, mainly during
DNA replication, while the remaining 99% is repaired.
Thus, during the cell cycle in a single nucleus, about 50
so-called “endogenous” DSBs are formed. Accumulation of
unrepaired DNA damage induced by ROS leads to cell aging
and may be responsible for the induction of neoplastic
transformation [6, 8].

One of the first exogenous factors involved in inducing
DSBs was ionizing radiation. Among the various types of
DNA damage caused by X-rays, formation of DSB seems
to be the most important mechanism of reproductive cell
damage or in changing genome integrity that leads to
malignancy [9]. Similar changes may be induced by UV
radiation [9, 10].

DNA damage is also induced by many anticancer drugs,
among them the most effective appear to be inhibitors
of topoisomerases. DNA topoisomerases are enzymes that
regulate DNA over- and underwinding and remove knots
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and tangles from the genetic material by creating transient
breaks in DNA double-helix [11, 12]. There are two classes
of topoisomerases: type I enzymes introduce single-strand
breaks in DNA and type II ones introduce double-strand
breaks [11–13]. Type I topoisomerases modulate DNA
under- and overwinding, but cannot remove knots and
tangles from duplex DNA, while type II topoisomerases
modulate DNA supercoiling and also remove DNA knots and
tangles [14]. Since a single unrepaired DSB has potentially
lethal consequences, type II topoisomerases, being necessary
for cell survival, also have the capacity to fragment the
genome [14]. When a nucleic acid tracking system, such as
a replication or transcription complex, attempts to traverse
the cleavable complex between topoisomerase and DNA, it
may convert this transient enzyme-DNA intermediate to a
permanent DSB in the genetic material, leading to DNA
aberrations [15].

Inhibitors of DNA topoisomerase I (camptothecin and
topotecan) and II (etoposide, doxorubicin, and mitox-
antrone) belong to the most effective antitumor drugs. Their
mode of action involves stabilization of cleavable complexes
between topoisomerase and DNA. It leads to collisions of
the progressing DNA replication forks or RNA polymerase
with the drug-stabilized topoisomerase-DNA complexes and
conversion them into DSBs, which trigger apoptosis [16, 17].

In eukaryotic cells, the efficient repair of DSB is essential
for survival. Two major pathways have evolved to deal with
these lesions, homologous recombination (HR), and non
homologous end-joining (NHEJ). The mechanism of HR is
based on using the genetic information from a corresponding
undamaged region present on the second DNA molecule or
homologous chromosomes and therefore is active mainly
during S and G2 phases of cell cycle. NHEJ is based on a
direct ligation of the two ends of damaged DNA molecules
and repairs DSBs mainly in G1 phase [2].

2. H2AX Phosphorylation

It was reported several years ago, that in mammalian cells
the phosphorylation of the subtype of histone H2A, called
H2AX, in the position of Ser139 occurs in response to
DSB formation. The phosphorylated form of H2AX is called
γH2AX [18, 19]. Since then, many researchers focused on the
explanation of mechanisms which induce phosphorylation
of H2AX and its role in DNA damage signaling and repair.

Histone H2AX is a substrate of several phosphoinositide
3-kinase-related protein kinases (PIKKs), such as ATM
(ataxia teleangiectasia mutated), ATR (ATM and Rad3-
related), or DNA-dependent protein kinase (DNA-PK). ATM
kinase is considered as a major physiological mediator
of H2AX phosphorylation in response to DSB formation
[20, 21]. ATM is activated by its autophosphorylation at
Ser1981 position, which leads to dissociation of the inactive
ATM dimers into single protein molecules with increased
kinase activity [18–21]. A tri-protein complex called MRN
complex (MRE11-RAD50-NBS1) recognizes DNA damage,
recruits ATM to the site of damage and also functions in
targeting ATM to initiate phosphorylation of the respective

substrates [22–24]. It is also reported that ATM activation
requires prior ATM acetylation, mediated by Tip60 histone
acetyltransferase [24, 25]. Apart from H2AX, the target
substrates phosphorylated by ATM are BRCA1, 53BP1, and
MDC1 as well as checkpoint proteins, Chk1 and Chk2. These
processes are aimed to stop the progression of the cell cycle
and to activate proteins responsible for DNA repair, as is
described in details below.

H2AX can also be phosphorylated by ATR and DNA-
dependent protein kinases. ATR phosphorylates H2AX in
response to single-stranded DNA breaks and during replica-
tion stress, such as replication fork arrest [26, 27]. DNA-PK
mediates phosphorylation of H2AX in cells under hypertonic
conditions and during apoptotic DNA fragmentation [28,
29]. However, DNA damage caused by ionizing radiation
leads to phosphorylation of H2AX that is mediated by all
PIKK kinases, ATM, ATR, and DNA-PK [30].

Recently, it was reported that some other events occur
before H2AX phosphorylation in mammalian cells. Ayoub et
al. [31] observed that DNA breaks mobilize heterochromatin
protein 1β (HP1-β), a chromatin factor bound to histone
H3 methylated on lysine 9 (H3K9me). In response to DNA
damage, HP1-β was rapidly phosphorylated at threonine
51 (Thr51) by casein kinase 2 (CK2). This phosphorylation
leads to releasing HP1-β from chromatin by disrupting hy-
drogen bonds that fold its chromodomain around H3K9me,
resulting in its transient mobilization from chromatin.
Although it is still not known what signals CK2 to phospho-
rylate HP1, the phosphorylation and mobilization of HP1
seems to be important for H2AX phosphorylation [31].

Based on the results of Ayoub et al. [31] and Goodarzi
et al. [32, 33], it is expected that the loss of HP1 is beneficial
to repair in heterochromatin. However, another recent study
by Luijsterburg et al. [34], that also addressed the role
of HP1 proteins in DNA damage response, suggested an
apparently active and positive role for HP1 in DNA repair.
These authors demonstrate that HP1 proteins accumulate
de novo at sites of DNA damage, and this recruitment was
independent of binding to H3K9me. It cannot be excluded
that there is a partial HP1 dissociation from H3K9me at
damaged sites, however the accumulation of HP1 reflects
H3K9me-independent binding to damage sites rather than
the rebinding of HP1 to H3K9me sites [34, 35]. Despite
these controversies, the findings presented above illustrate
the important role of HP1 proteins in DNA damage and open
up a new direction of research to characterize the role of HP1
in H2AX phosphorylation and DNA damage response.

3. γH2AX and Its Role in DNA
Damage Response

3.1. Accumulation of DNA Damage Signaling and Repair Pro-
teins at DSBs. Unrepaired DSBs induce genome instability
and promote tumorigenesis. Thus, cells have mechanisms
responsible for recognition of DNA damage and activation of
cell cycle checkpoints leading to DNA repair. The generation
of DSBs triggers the relocalization of many DNA damage
response (DDR) proteins such as MRE11/NBS1/RAD50,
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MDC1, 53BP1, and BRCA1 to nuclear foci where these pro-
teins colocalize and interact with γH2AX [36–46]. Presum-
ably, γH2AX foci specifically attract repair factors, leading
to higher concentration of repair proteins surrounding a
DSB site [47, 48]. Specific recognition of γH2AX by these
repair factors requires the presence of protein domains,
which bind to the phosphorylated carboxy terminus of
γH2AX. So far, two domains, which are frequently found
in proteins involved in DDR, have been described to specif-
ically recognize phosphorylated amino acid residues. The
forkhead-associated (FHA) domain recognizes phosphory-
lated threonine residues in a specific aminoacid sequence
context [49]. In addition, two consecutive BRCT domains
(BRCA1 C-terminal domain) can create a structural element
with phospho–peptide binding capacity [50–63]. It was
shown that the BRCT repeats of mediator of DNA dam-
age checkpoint protein 1 (MDC1) build the predominant
recognition module of γH2AX [39, 43, 54, 55]. Interaction
between MDC1 and γH2AX can be recognized as the
first step in which the site of the DSB is prepared for
DNA damage signaling and repair. This is because there
is experimental evidence that MDC1 also directly interacts
in a highly dynamic manner with NBS1 [43, 56], which
together with other proteins of the MRN complex is required
for the activation of ATM [57, 58]. This interaction is
mediated through phosphorylation of MDC1 by CK2 that,
in turn, promotes phosphorylation-dependent interactions
with NBS1, through its closely opposed FHA domain and
two BRCA repeats [59]. In this way, a positive feed-back loop
is generated that extends H2AX phosphorylation to large
DNA regions (millions of base pairs).

Several lines of evidence suggest the critical role of H2AX
phosphorylation at DSB sites for nuclear foci formation and
induction of DSB repair.

(i) H2AX-knockout cells manifested impaired recruit-
ment of NBS1, 53BP1, and BRCA1 to irradiation-
induced foci [45].

(ii) Both H2AX+/− and H2AX−/− mouse thymocytes
show an increase in chromosomal aberrations [60–
62].

(iii) Mouse embryonic stem (ES) cells deficient in H2AX
phosphorylation have alterations in efficiency of
DNA repair by NHEJ or HR [60–64]. As a result of
these defects in DNA damage repair, such cells have
increased sensitivity to DNA damage [60–65].

(iv) H2AX knock-out mice show male-specific infertility
and reduced levels of secondary immunoglobulin
isotypes, suggesting defects in class switch recom-
bination (CSR) [45]. It was shown that efficient
resolution of DSBs induced during CSR in lympho-
cytes requires H2AX [61, 63], and its absence is
associated with chromosome abnormalities involving
the immunoglobulin locus [61].

All these facts suggest that γH2AX might serve as a
docking site for DNA damage/repair proteins and functions
to promote DSB repair and genome stability ([60–68] and
Figure 1).

3.2. Signal Amplification and Induction of DNA Damage-
Sensitive Cell Cycle Checkpoints. One of most important
kinases-activating cell cycle checkpoints following DNA
damage is ATM. Mutations in the ATM gene results in
the genomic instability and cancer predisposition syndrome
Ataxia-Telangiectasia (AT) syndrome. In response to DSBs,
ATM phosphorylates many cell cycle checkpoint-related
factors such as p53, Chk2, SMC1 and NBS1 [69]. In the
absence of DNA damage, ATM forms inactive homodimers,
but chromatin remodeling following generation of DSBs
leads to autophosphorylation of ATM at serine 1981 and
dimer dissociation [18–21]. Next, phosphorylated ATM is
recruited to DSB sites by its interaction with NBS1 and
this recruitment is critical for phosphorylation of checkpoint
proteins by ATM [57]. Mutations in the NBS1 gene result
in Nijmegen breakage syndrome (NBS). Cells from both
NBS and AT patients show similar phenotypes such as
radio-resistant DNA synthesis, radiation hypersensitivity
and genome instability [38]. As it was previously described,
NBS1 forms a complex with hMRE11 and hRAD50. Since
such a complex is involved in DNA double-strand break
repair by homologous recombination (HR), one of the
reasons of the genomic instability in NBS patients may be the
defect in HR. Moreover, it was shown that this function of
NBS1 requires DNA damage-induced focus formation of the
NBS1/hMRE11/hRAD50 complex through direct interaction
of NBS1 with γH2AX at DNA damage sites [37, 70].

As mentioned above, the recruitment of ATM to DSBs is
dependent on NBS1 and NBS1 forms the complex with both
ATM and γH2AX. Thus, both γH2AX and NBS1 contribute
to the recruitment of ATM to DSB sites and its activation
of cell cycle checkpoints. Molecular mechanism involved in
ATM recruitment to DSBs was recently investigated in detail
by Kobayashi and colleagues [38]. These authors provide a
line of evidence that γH2AX plays an important role in the
recruitment of ATM to DSB sites and the subsequent acti-
vation of ATM-related cellular response. Moreover, H2AX is
a component of the complex containing ATM at DSBs and
is important for activation of the ATM kinase. Importantly,
H2AX-knockout cells displayed a defect in DSB-induced
cell cycle checkpoint response. These results provide strong
evidence that H2AX is one of essential components of the
active ATM complex and participates in the activation of
ATM-dependent cell cycle checkpoints. Moreover, Kobayashi
and colleagues showed that ATM forms a complex with
γH2AX via NBS1 or MDC1 and this might be crucial for
the recruitment of ATM to DSB sites and induction of ATM-
dependent checkpoints [38].

3.3. γ-H2AX and Chromatin Remodeling to Prevent Dissoci-
ation of Break Ends and Enhance DSB Processing and Repair
Efficiency. During last few years several groups suggested
that γH2AX has an important function as a docking site
for protein complexes that bind to broken DNA ends and
promote chromatin remodeling to keep broken chromo-
somal DNA ends together [60, 63, 71]. The critical role
of γH2AX in chromatin reorganization following DNA
damage and preventing the separation of DNA ends, thus
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Figure 1: H2AX phosphorylation and its role in DNA damage response upon phosphorylation H2AX became critical player in DNA damage
response. Activity of γH2AX could be summarized to following main points: accumulation of DNA damage signaling and repair proteins
at DSBs The generation of DSBs triggers the relocalization of many DNA damage response (DDR) proteins such as MRE11/NBS1/RAD50,
MDC1, 53BP1and BRCA1 to nuclear foci where these proteins colocalize and interact with γH2AX. Signal amplification and induction of
DNA damage-sensitive cell cycle checkpoints γH2AX contribute to the recruitment of ATM to DSB sites and activation of ATM-dependent
cell cycle checkpoints. Chromatin remodeling to prevent dissociation of break ends and enhance DSB processing and repair efficiency The
γH2AX foci help keeping the broken DNA ends together and make successful and faithful repair more likely. Recruitment of cohesins to
the site of DNA damage to promote sister chromatid-dependent recombinational repair DNA cohesion induced by double-strand DNA
break and mediated by γH2AX has an important function during repair of double-strand breaks following DNA replication by holding the
damaged chromatid close to its undamaged sister template.

facilitating DNA end rejoining, can be important not only
in the repair of DSBs but also during V(D)J recombina-
tion. According to hypothesis put forward by Bassing and
colleagues, γH2AX behaves like an anchor that facilitates
the assembly of multiple DNA-protein interactions involving
53BP1, MDC1/NFBD1, and MRN complexes. Formation
of such complexes prevents dissociation of broken DNA
ends and subsequent error-prone repair of DSBs (reviewed
in [71]). Moreover, this specific “anchoring” function of
H2AX at sites containing DSBs, would inhibit the irreversible
disassociation of broken DNA ends and promote chromatin
compaction to facilitate error-free repair, thereby suppress-
ing inappropriate translocations of chromatin fragments. In
this way, γH2AX-mediated mechanisms prevent DNA ends
from drifting apart, inappropriate rejoining of chromatin
fragments, resulting in genetic translocations and other
abnormalities (Figure 1 and reviewed in [71]).

3.4. Recruitment of Cohesins to the Site of DNA Damage to Pro-
mote Sister Chromatid-Dependent Recombinational Repair.
γH2AX might be important for processes occurring further

away from the break that are required for efficient repair. One
of such processes can be sister chromatid cohesion, that in
addition to its essential role in chromosome segregation, is
important for efficient postreplicative double-strand DNA
break repair [72]. Sister chromatid cohesion is established
during S phase by cohesins. In the absence of cohesin
complex, chromosomes cannot segregate properly. It was
also shown that cohesins play an important role in DNA
repair and recombination. Cells with mutated cohesins are
oversensitive to irradiation and deficient in postreplicative
DNA repair [72, 73]. Moreover, cohesins have been shown
to accumulate at laser-induced DNA damage during S and
G2 phases in a Mre11/Rad50- dependent manner [74]. In
parallel, it was shown that DNA cohesion induced by double-
strand DNA breaks and mediated by γH2AX is not only
important to maintain sister chromatids. It is also likely to
function during repair of double-strand breaks following
DNA replication by holding the damaged chromatid close
to its undamaged sister template [64]. The use of genetic
information present in an undamaged sister chromatid to
mediate error-free recombination repair of a DSB would
prevent gross chromosomal alterations, which are frequently
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observed, for example, in cancer cells. Thus, this form
of homology-directed DNA repair of double-strand breaks
helps to maintain a high level of genome stability, even
though immediate cell survival may be only minimally
affected in its absence, because of other repair mechanisms
(Figure 1 and reviewed in [75]).

4. Methods of γH2AX Detection

The quantitative assessment of DSBs was initially based on
methods, such as pulse-field gel electrophoresis (PFGE),
DNA elution tests, or the so-called “comet assay” (single
cell gel electrophoresis—SCGE). Among these methods, the
comet assay is a versatile, sensitive, and widely used one. In
this method individual cells with damaged DNA embedded
in agarose gels are subjected to an electric field and generate
a characteristic pattern of DNA distribution forming a tail
that, after staining with fluorescence dye, can be analyzed
by fluorescence microscopy. The extent and length of the
comet’s tail correlates with the severity of DNA damage [76].
The sensitivity of the comet assay, however, depends on
proper calibration and its specificity is not absolute [77, 78].

Development of an antibody, that is specific to γH2AX,
made it possible to detect H2AX phosphorylation and thus
detection of DNA damage and repair in situ in individual
cells. The presence of γH2AX in chromatin can be detected
shortly after induction of DSBs in the form of discrete
nuclear foci. Since each focus represents a single DSB, their
frequency reports the incidence of DSBs (reviewed in [79]).
Compared with alternative methods of DNA damage assess-
ment mentioned above, the immunocytochemical approach
is less cumbersome and offers much greater sensitivity [79,
80]. The presence of γH2AX-containing nuclear foci can
be measured by microscopy, flow cytometry, and possibly
Western blotting of cell/tissue lysates, with normalization for
the total H2AX levels. Measurement of γH2AX with the use
of multiparameter flow or laser scanning cytometry seems
to be particular advantageous as H2AX phosphorylation
can be determined in individual cells with high sensitivity
and accuracy and γH2AX expression in cell populations can
be correlated with DNA content or induction of apoptosis
[79, 80].

5. Applications of γH2AX Detection

Assessment of H2AX phosphorylation as a reporter of DNA
damage can be clinically useful. The most important clinical
application of γH2AX measurements is to follow DSBs
levels induced by radio- and chemotherapy as a marker of
treatment efficacy [81, 82] and in dose/scheduling estimation
as well as to determine the efficiency of DNA repair to
predict possible tumor sensitivity or resistance to DNA
damaging anticancer agents. By assessing DSB levels induced
by anticancer treatment in normal cells, one may also predict
toxicity of anticancer treatment.

Exposure to endogenous or environmental mutagens
results in DNA damage which in turn activates the DDR
cascade [83, 84]. Once activated, the DDR machinery

functions as an “anticancer barrier” and delays or suppresses
tumor development by inducing cell death or replicative
senescence [83, 85]. However, prolonged activation of DDR
may sometimes lead to survival of malignant cells if only
these cells are able to bypass cell growth barrier imposed
by the DDR pathway [79]. Thus, activated components of
the DDR can be used as cancer biomarkers, with γH2AX
being the most sensitive one. In this way, γH2AX level
measurements may help to detect precancerous lesions or
cancer at its early stages [86–88]. In this case, increased
background levels of γH2AX or the presence of DSBs on
telomere ends may be indicative for replicative senescence,
including premature senescence induced by anticancer drugs
[89] or cancer progression. Finally, other possible practical
applications of γH2AX include screening for effects of
environmental pollutants (air- or food-borne etc.) or follow-
up of DNA lesions induced by mutagenic substances at
work places, including nurses distributing anticancer drugs
[90]. Similarly, γH2AX may help to evaluate effects of
chemopreventive agents.

Endogenous γH2AX levels may also reflect genomic
instability phenotype since optimal protection against cancer
requires full functionality of both alleles of H2AX gene
(H2AFX). Several different tumor types have been reported
to possess mutations, including single gene polymorphism,
amplification, or deletion in the region 11q23 that maps
for H2AFX [62, 91]. Other groups reported alterations in
H2AX gene copy number or changes in its promoter region
to be associated with the risk of sporadic breast cancer and
lymphomas [81, 92]. In this way, one may also relate H2AFX
mutations or deletions with the susceptibility of individuals
to tumors, such as lymphoma, acute myeloid leukemia, and
head and neck cell carcinomas for tumor risk assessment
studies [92–95].

6. Conclusions

As discussed above, determination of γH2AX levels is not
only important from the fundamental perspective as a sen-
sitive marker of the DNA damage response, including DNA
repair processes. It has also many potential practical appli-
cations in monitoring effects induced by anticancer therapy
and assessing tumor risk as well as in determination of
DNA lesions resulting from exposure of animals and humans
to environmental pollutants. However, it is important to
discuss not only advantages but also potential limitations and
problems of the application of γH2AX in clinical practice.
An obvious advantage of γH2AX compared to other DNA
damage markers is its extremely high sensitivity that enables
one to detect very small changes in genome integrity on a
single cell level. However, the lower limit of γH2AX detection
depends on many factors, including background levels of
nuclear foci observed in unstressed cells, which are associated
with DNA replication and progression through mitosis
[96, 97]. In addition, background γH2AX levels may differ
between various tumor cells and, more importantly, between
tumor and normal cells due to changed functionality of
H2AXF discussed above. This can make it more complicated
to predict the toxicity of anticancer treatment in patients
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based on the direct comparison of DSBs induced in tumor
versus normal cells.

Timing of γH2AX measurements after drug treatment
may also be critical for the appropriate data analysis and
interpretation. Induction of H2AX phosphorylation is, at
least for some agents, very rapid and this requires quick
methods of patient sample acquisition and analysis. In some
situations, the choice between of different sample material
may be crucial for the assay (PBMLs versus tumor cells—
leukemia, normal tissue, and tumor samples for solid tumors
etc.). Moreover, anticancer treatment may lead to increased
phosphorylation of H2AX due to death-associated DNA
fragmentation, especially after long time periods after drug
treatment or in case of agents which induce rapid apoptosis.
However, cell death-related H2AX phosphorylation can be
discriminated from that induced by anticancer treatment
based on focal and diffuse or soluble γH2AX signals [98].
This requires selection of appropriate diagnostic methods
and application of biparametric flow cytometry, scanning
cytometry, or fluorescence microscopy to estimate γH2AX
levels.
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