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Infertility is a complex human condition and is known to be caused by numerous factors including genetic alterations and
abnormalities. Increasing evidence from studies has associated perturbed epigenetic mechanisms with spermatogenesis and
infertility. However, there has been no consensus on whether one or a collective of these altered states is responsible for the onset
of infertility. Epigenetic alterations involve changes in factors that regulate gene expression without altering the physical sequence
of DNA. Understanding these altered epigenetic states at the genomic level along with higher order organisation of chromatin in
genes associated with infertility and pericentromeric regions of chromosomes, particularly 9 and Y, could further identify causes
of idiopathic infertility. Determining the association between DNA methylation, chromatin state, and noncoding RNAs with the
phenotype could further determine what possible mechanisms are involved. This paper reviews certain mechanisms of epigenetic
regulation with particular emphasis on their possible role in infertility.

1. Introduction

Identifying factors involved in the aetiology and physiology
of complex disorders and conditions such as infertility
is necessary in order to understand potential regulatory
mechanisms involved in disease pathogenesis. Infertility has
previously been defined as the inability to conceive after a
passage of twelve months of unprotected intercourse by a
couple [1, 2]. The condition has been estimated to have an
effect on 10% of the population within the reproductive
age group in the United States [2] and on 9% of the
world’s population [3]. The infertility phenotype affects
both men and women and has been shown to have an
impact on one’s mental state and lifestyle and has also
been implicated with being the cause or effect of certain
medical conditions [1, 4]. The occurrence of such a high
population incidence rate could be attributed to the afflicted
individual’s age, environment, and lifestyle. Studying the
association of these factors in the part they play with
genetic factors and altered epigenetic mechanisms regulating

gene expression could facilitate a better understanding of
this chronic condition [5, 6]. A deeper insight into the
molecular genetics of complex disorders was revealed with
the initial sequencing analysis of the human genome, which
gave a wealth of information pertaining to the physical
sequence of DNA but also provided significant details about
the vast majority of the human genome that is non-
protein coding [7–10]. Although it has been established
that the whole human genome is transcribed at some
point during the cell cycle [11, 12]; deciphering the role
of the different molecular mechanisms involved in selective
expression of protein coding and noncoding regions of the
human genome at different time points of the cell cycle,
in a tissue-specific manner during one’s development, [13–
15] in normal and diseased tissue, will further promote the
understanding of complex human conditions and diseases,
such as infertility. Several studies have previously identified
gene deletions and polymorphisms associated with male
factor infertility. Deletions in the Azoospermia Factor C
(AZFc, OMIM #415000) region of the long arm of the Y
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chromosome proximal to the large heterochromatic block,
including polymorphisms and deletions in the Ubiquitin-
specific peptidase 9 and Y-linked (USP9Y, OMIM #400005)
gene [16], have been identified as the most common cause
of male factor infertility, particularly spermatogenic failure
[17]. Mechanisms involved in the proper regulation of
genomic and chromosomal variants [18, 19] associated with
infertility in individuals having bad obstetric history (BOH)
or repeated spontaneous abortions (RSA) and idiopathic
cases of infertility remain largely unknown, although an
understanding of the possible causes is beginning to emerge
[20]. Understanding the complex role of one’s genotype,
environment, and age with changes in one’s epigenotype
could further categorise the unknown causes of the disease
in addition to understanding the regulatory mechanisms
involved in the control of expression and/or repression of
genes affecting the infertility phenotype.

2. Regulatory Epigenetic Mechanisms

Waddington (1953) first described mechanisms associated
with the alteration of gene expression in a cell during
development as epigenetic [21]. An epigenetic change is
defined as a heritable change that can alter the expression
of a gene without actually changing the physical sequence
of DNA [22]. Epigenetic mechanisms may control the
expression of a gene via transient or permanent changes in
its activity and are postulated to include three main processes
[23]. These include reversible covalent modifications of
histone core proteins, long and short noncoding RNA
(ncRNA) related silencing of gene expression, and reversible
methylation of DNA [24–26]. Each of these mechanisms
has been associated with the initiation of the other [27]
although the direction of control and regulation in different
regions of the compartmentalised genome is under constant
review [27–30]. Understanding the way these epigenetic
marks regulate each other or induce recruitment of factors
involved in the silencing or activation of gene expression in
a locus-specific manner, in different regions of the genome,
has yet to be determined.

Epigenetic alterations or epimutations, particularly in
the pattern of genomic DNA methylation including the 5′

promoter regions of genes, have been associated with various
human conditions and disorders [23]. These include certain
cancers [31], neurological disorders [26], abnormal sperm
profiles in infertile men [20], the Rett syndrome [32] (RTT,
OMIM# 312750), the Fragile X syndrome [33, 34] (FRAXA,
OMIM# 309550), the ICF syndrome (facial anomalies)
syndrome [35] (ICF, OMIM# 242860), Dihydropyrimidine
dehydrogenase deficiency [36] (DPYD, OMIM# 274270),
Prader-Willi syndrome (PWS, OMIM# 176270), and Angel-
man syndrome [37] (AS, OMIM# 105830). Methylation
of CpG dinucleotides in the promoter regions of genes
[38] and DNA methyltransferases (DNMTs) involved in
the catalysis of DNA methylation [39–44], including 5-
hydroxymethylcytosine [38, 45, 46] and altered covalent
modifications of core histone proteins [47–49], have gener-
ated a great deal of interest in recent years. Tissue-specific

patterns of DNA methylation in genes and various mech-
anisms of epigenetic control such as histone modifications
and chromatin rearrangements have been associated with the
regulation of genes and their expression or repression [13,
44, 50, 51]. Chromatin is not uniform in gene density and
transcriptional activity. Selective expression of certain genes
serving functionally important purposes at different stages of
development is required in an organism to maintain tissue
specificity [14, 52]. This process is done by compartmen-
talisation, which involves the packaging of certain parts of
the genome into either actively transcribed euchromatin or
transcriptionally silent/inert heterochromatin. Mechanisms
involved in the maintenance of both silent heterochromatin
and active euchromatin at different stages of the cell cycle
in relation to nuclear organisation are beginning to be
understood [51, 53].

The derepression of otherwise repressed genes has pre-
viously been reported and includes the activation/expression
of the sperm genome in the embryo [54], viral oncogenesis,
and activation of Y chromosome genes during the foetal
development of a male child [55]. The multistep process of X
chromosome inactivation (XCI) induced by the coordinated
active transcription of the long noncoding RNA Xist and
Tsix [56] involves the random transcriptional inactivation
of either one of the X chromosomes in female mammals
[57] in response to certain cellular stimuli. This coordinated
upregulation of the Xist transcript compared to the downreg-
ulation of Tsix on the inactive X chromosome (Xi) of future
daughter cells equalizes the expression of X linked genes in
female (XX) and male (XY) embryos [56, 58], a process
known as dosage compensation [59]. Higher order structures
such as euchromatin and heterochromatin represent the
degree of packaging of genomic DNA thereby rendering it
either accessible or inaccessible to transcription machinery.
Particular modifications of core histones H2A, H2B, H3, and
H4 that form the nucleosome and their variants including
H2A.Z, H3.1, H3.2, and H3.3 are seen to be conserved
in certain organisms [57, 60]. Mechanisms involved in
covalently altering these histone modification marks partic-
ularly on histone tails, include phosphorylation, acetylation,
ubiquitination, and methylation [48]. Histone tails have
previously been linked with playing an essential role in
conformational changes associated with histone folding and
higher order chromatin packaging [61]. Unlike the globular
core histone domains, histone tails do not have fixed struc-
tures and can be modified by posttranslational mechanisms
[62]. Covalent modifications of histone tails altering their
conformation and charge allow for potential activation of
transcription (hyperacetylated histone tails, histone 3 lysine
4 trimethylated) or repression (hypoacetylated histone tails
histone 3 lysine 27 trimethylated) of the packaged DNA by
the recruitment of certain protein complexes [63] at different
stages of cell cycle progression. Differential chromatin modi-
fication marks have been recently associated with pericentric
heterochromatin and the inactive X chromosome [28, 64]. A
study carried out by Maison et al. attributes the formation of
higher order pericentromeric heterochromatin to a specific
RNA component and distinct covalent histone modification
marks that are unique to this region compared to the inactive
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X chromosome [28]. This study implicated the presence
of an RNA component with the initiation, formation, and
maintenance of pericentromeric heterochromatin, identified
by the presence of heterochromatin protein 1 (HP1) and
histone 3 lysine 9 (H3K9) marks [28]. Another study carried
out by Chen et al. (2008) looked at the dynamic nature
of centromeric heterochromatin in the model organism
Schizosaccharomyces pombe and implicated it with being
actively transcribed by RNA Pol II, albeit during a brief
period of the cell cycle. They examined this brief period of
the cell cycle during the S-phase and found that RNA Pol
II is involved in transcribing centromeric repeats [65]. They
implicated the maintenance of heterochromatin with that of
RNA Pol II mediated transcription of repeat rich regions and
silencing of the same region with the involvement of factors
recruited by the histone 3 lysine 9 (H3K9) modification mark
[65]. This negative feedback loop associated in both studies
could possibly be associated with the proper maintenance
of heterochromatin including centromeric heterochromatin
through subsequent cell divisions allowing for proper mitotic
cell division, mechanistically similar to X chromosome
inactivation, albeit involving different factors. Variations and
differences in higher order structural organisation of this
late replicating region of certain chromosomes particularly
heterochromatic blocks on chromosomes 9 and Y have
previously been associated with infertility [19, 66, 67].
Although experimentally challenging, understanding the
molecular epigenetic and regulatory landscapes of these
repeat rich regions in normal individuals compared to
those with infertility and deciphering their altered epigenetic
signature, if any, would result in a broader comprehension of
depicting reproductive outcome.

3. Factors Associated with the
Infertility Phenotype

Several studies have identified different genetic and epige-
netic factors as being involved with the onset and progression
of the infertility phenotype [17, 19, 68]. However, possible
perturbed mechanisms involved in regulating gene expres-
sion in the disease state are rather poorly understood. The
classic “nature versus nurture” argument on whether one’s
environment rather than genetic makeup could influence the
onset of infertility and other complex disorders has been
reviewed by various studies [69, 70].

4. Environment and the Infertility Phenotype

Kohler et al. (1999) studied the presence of the infertility
phenotype in a cohort of Danish twins to be able to
answer two fundamental questions in relation to infertility,
whether there was a significant effect on an individual being
infertile due to his/her genetic predisposition or his/her
environment. While the study concluded that genetic factors
do play a part in infertility, it also raised the possibility of
a connection between infertility and one’s socioeconomic
status and particularly the environment [70]. Another study
carried out by Cloonan et al. (2007) examined the existence

of male factor infertility in a Vietnamese male twin cohort
[69]. The authors concluded that the environment or genetic
makeup of individual twins did not have a significant effect
on any one twin having infertility, but that conditions and
factors unique to individual twins could be associated with
the disorder, although it did not rule out an indirect effect
of one’s environment on these factor [69]. This further
established a link between epigenetic mechanisms unique to
each individual and the onset of infertility. Both these studies
agreed on factors unique to each individual twin as being
associated with the disease phenotype. These epigenetic
factors including DNA methylation and chromatin state,
unique to each monozygotic twin could be attributed in part
to their infertile state.

5. Epigenetic Factors Influencing the
Infertility Phenotype

Several histone de/acetylases and demethylases have recently
been identified and attributed with regulation of chromatin
state. However, their functional role and association with
diseased states is only just beginning to be understood,
particularly those factors affecting male and female infertility
[71, 72]. Post translational modifications of histone tails by
factors including histone chaperones and methyltransferases
are involved in the proper regulation of gene expression
[73, 74]. Due its dynamic nature and plasticity, the landscape
of chromatin can be altered, rendering a region of the
genome active or inactive [74–76]. This altered state of
packaging renders certain regions of the genome more
accessible to transcription machinery (euchromatin) and are
marked by DNA hypomethylation, RNA Pol II, and cova-
lent histone modifications such as histone 3 trimethylated
at lysine 4 (H3K4me3) and the histone variant H2A.Z.
Inactive/repressed regions are known to be associated with
DNA hypermethylation, histone 3 trimethylated at lysine
27 (H3K27me3), and SUZ12 (part of the polycomb group
complex, PcG) [48].

Due to this, the main focus of recent epigenetic research
has focussed on discovering new factors involved in altering
chromatin state and further looking at its involvement in
diseased and normal tissue. Recent studies have identified a
critical role for the JHMD2A (Jumonji C domain-containing
histone demethylase 2A) histone demthylase in male infer-
tility, obesity [72], and spermatogenesis [77]. Using knock-
out mice as models, these studies identified a critical role
for JHMD2A in the regulation and expression of two
genes, protamine 1 (OMIM #182880, Prm1) and transition
nuclear protein 1 (OMIM #190231, Tnp1) involved in the
condensation and proper packaging of chromatin in the male
sperm [77]. A higher degree of sperm DNA compaction has
previously been attributed to the increased presence of highly
basic protamine proteins compared to histones in chromatin
[78], a deficiency of which has been associated with infertility
in mice [79, 80]. Identification of other regulatory mecha-
nisms involved in the recruitment of factors, in addition to
JHMD2A, involved in the deposition of histones along with
others affecting transcriptional activity of genes involved in
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infertility will increase our understanding of mechanisms
involved in both perturbed and normal states.

6. Epigenetic Modifications Affecting
Reproductive Outcome

Imprinted regions of the human genome marked by one
active and one inactive allele are known to be dependent
on their parent of origin [25, 81]. These monoallelically
expressed genes are known to be significantly associated with
fetal development, reproduction, and reproductive outcome
[82, 83]. Deregulation of imprinted regions associated with
the onset of Angelman syndrome has previously been
document in cases undergoing ICSI (intracytoplasmic sperm
injection) using assisted reproductive technologies (ART)
[84, 85]. Reprogramming of the epigenome and imprinted
loci during gametogenisis and the preimplantation embry-
onic stage is essential for maintaining the pattern of proper
inheritance, specifically at imprinted loci [82]. Deregulation
of imprinted loci has previously been associated with mal-
formed offspring including disruption of the Igf2 imprinted
region in mice. Disruption of this imprinted region in
mice results in their offspring being retarded [86] and loss
of imprinting (LOI) of this same region results in them
having Beckwith-Wiedemann syndrome (BWS) [87]. Long-
term cohort studies looking at the incidence of imprinting
disorders and the use of ART have failed to draw a significant
relation between the two [88, 89]. Identifying mechanisms
associated with the regulation of imprinted loci could
further help in understanding their role in proper parental
inheritance of expression pattern of imprinted genes and
their possible perturbed state associated with the infertility
phenotype.

7. Conclusions and Future Prospects

Studies facilitating the identification of factors involved in
the proper maintenance and organisation of repeat rich
pericentromeric heterochromatic regions could be impor-
tant in understanding their association with their higher
occurrence rate in certain infertile groups [19, 90]. Results
from corelated epidemiological studies [91, 92] along with
factors such as one’s environment, age, epigenotype, and
genotype could provide a greater understanding of how
different gene regulatory pathways are controlled and affect
each other [6] in human diseases like infertility [20].

Deciphering which epigenetic mechanism/s, if any, are
altered in certain infertile subjects with increased pericen-
tromeric blocks of heterochromatin on chromosomes 9 and
Y, both locally or globally would help further characterise
the disorder at both molecular genetic and epigenetic levels.
Identifying the degree to which an altered epigenetic state
can affect the development of infertility remains largely
unknown although studies using newer technologies are now
able to question and understand the potential mechanisms
involved. Although the study of epigenetic factors affecting
infertility is at its nascent stage, a clearer picture is beginning
to emerge that is helping in the identification of new factors

involved. The further development of methods to advance
our understanding of regulatory control mechanisms of
genes affecting human infertility and reproductive outcome
in addition to what has been done so far could assist in
improving rates of pregnancy using assisted reproductive
techniques and provide better treatment options for individ-
uals seeing treatment for infertility or subfertility.
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