
Exploring species-based strategies for gene normalization

Karin Verspoor, Christophe Roeder, Helen L. Johnson, K. Bretonnel Cohen, William A.
Baumgartner Jr., and Lawrence E. Hunter
All authors are with the Center for Computational Pharmacology at the University of Colorado
Denver, PO Box 6511, MS 8303, Aurora, CO 80045

Abstract
We introduce a system developed for the BioCreativeII.5 community evaluation of information
extraction of proteins and protein interactions. The paper focuses primarily on the gene
normalization task of recognizing protein mentions in text and mapping them to the appropriate
database identifiers based on contextual clues. We outline a “fuzzy” dictionary lookup approach to
protein mention detection that matches regularized text to similarly-regularized dictionary entries.
We describe several different strategies for gene normalization that focus on species or organism
mentions in the text, both globally throughout the document and locally in the immediate vicinity of
a protein mention, and present the results of experimentation with a series of system variations that
explore the effectiveness of the various normalization strategies, as well as the role of external
knowledge sources. While our system was neither the best nor the worst performing system in the
evaluation, the gene normalization strategies show promise and the system affords the opportunity
to explore some of the variables affecting performance on the BCII.5 tasks.
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1 INTRODUCTION
BioCreative II.5 (BCII.5) addressed three text mining tasks in the molecular biology domain,
evaluating systems performing article classification, interactor normalization, and interaction
pair extraction. The evaluation thus pursued the same classes of tasks as BioCreative II [1],
but increased the complexity of each task in various ways, in particular adding a focus on
proteins that are specifically identified as participating in an experimentally validated
interaction supported by the publication. This narrowing of the set of relevant entities while
simultaneously increasing the ambiguity in the task through the use of (a) full text for all tasks,
and (b) not providing the target species for gene normalization, resulted in a significantly more
challenging evaluation than the previous incarnation of the tasks.

The Center for Computational Pharmacology approach to information extraction for the
BioCreative II.5 challenge takes advantage of our open-source tools for Biomedical Natural
Language processing1 (BioNLP), specifically the OpenDMAP system [2] and the BioNLP-
UIMA framework [3], built on the Apache Unstructured Information Management
Architecture2 [4]. We submitted responses to the gene normalization task (INT) and the
interaction pair task (IPT).
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In this paper, we describe our system and introduce several different strategies for approaching
gene normalization based on organism mentions in the text. We will explore the implications
of various extensions to the original system. The architecture of our system can be seen in
Figure 1; each component will be described in more detail below.

2 GENE NORMALIZATION
The participants of BCII.5 tackled what has been called “inter-species” gene normalization,
referring to the lack of a priori specification of the relevant target species for proteins of interest.
In contrast, the gene normalization task in BioCreative II (BCII) [5] was a significantly easier
task than the BCII.5 task in that the BCII normalization task was constrained to human genes
and that it considered abstracts rather than full text publications. The best results on this harder
task (by the Hakenberg et al. system; Raw F score of 0.429; mapped and filtered F score of
0.551) therefore are lower than the best results from the gene normalization task in the previous
evaluation (F score of 0.81), even with the corrections used to generate the adjusted scores (see
Section 4).

Our approach to gene normalization consists of a two-step process of (1) dictionary lookup of
gene names using the Swiss-Prot subset of the UniProt database and (2) ambiguity resolution
of competing candidates utilizing various document-internal clues including, most
prominently, the species references identified in the document. This two-step process allows
us to identify a set of candidates for the gene mentions in the text using simple string matching
techniques, and then use other information to filter that set and ultimately select a small number
(in most cases just one) of likely possibilities from among the candidates. The two steps are
described in more detail below.

2.1 Dictionary-based Protein Name Matching
Our approach to recognizing gene mentions in text is dictionary based. We directly search the
text for all matches to any name associated with a UniProt entry, without a separate gene
mention detection step (see Section 6.1).

To incorporate the requirement for relaxed dictionary matching, since exact string matching
has been shown to perform worse than “fuzzy” matching [6], we regularize both the name (or
synonym) terms in the UniProt database and each sentence in the input text. We make the string
lowercase, eliminate punctuation such as apostrophes, hyphens, and parentheses, convert
Greek letters and Roman numerals to a standard form, and finally remove spaces, following
previous regularization strategies. We load all UniProt names and synonyms into a trie data
structure, and then attempt to match substrings of the normalized sentence to the strings stored
in the trie. To reduce false positives, we begin matches into the trie only at token boundaries.
We further require the matches to end on a token boundary, unless there is a plural in which
case the right token boundary constraint is relaxed slightly.

As an example, the sentence Affixin/beta-parvin is an integrin-linked kinase
(ILK)-binding focal adhesion protein highly expressed in skeletal

muscle and heart. is regularized to affixinbparvinisanintegrinlinkedkinase
ilkbindingfocaladhesionproteinhighly

expressedinskeletalmuscleandheart and then the substring Affixin is matched to
the dictionary entry affixin (Uniprot:Q9HBI1), beta-parvin is matched to bparvin
(Uniprot:Q9HBI1), and ILK is matched to the dictionary entry ilk (Uniprot:P57044), inter
alia. Other substring matches are prevented due to the boundary constraints. The effect of the
regularization is to enable dictionary matching that is tolerant to variations in case, punctuation,
and spacing. Thus, beta-parvin, �-parvin, B parvin  and similar variants will all
match bparvin (Uniprot:Q9HBI1).
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The dictionary that we utilize for the BCII.5 evaluation is comprised of names and synonyms
extracted from the UniProt database files specified by the challenge organizers, specifically
UniProt release 14.8 from February 10, 20093. We restrict our dictionary to only the Swiss-
Prot subset of that release, due to memory issues in loading the dictionary when including the
TrEMBL subset. We extract all names associated with each database entry: full names or short
names, recommended names or alternative names, allergen names or the name as used in a
biotechnological context, etc. We also extract and associate the organism, represented as an
NCBI Taxonomy database identifier, for each UniProt ID.

The dictionary loading utilizes a stop word list to prevent the loading of (complete) terms in
the dictionary that were found to contribute to false positive matches. These were derived from
manual inspection of a list of frequency-sorted false positive matches over the training data.
A biologist reviewed all false positive results that were matched more than once (a list of about
300 terms) and determined whether the term referred to a protein, didn’t refer to a protein, or
was indeterminable. Terms that did not refer to proteins were added to the stop list. Terms that
did refer to proteins or that were indeterminable were excluded from the stop word list, as well
as any term with a frequency of one; this decision was made to promote recall rather than
precision. Examples of terms that were added to the stop word list include general terms for
molecules such as ”protein”, ”DNA”, and ”terminus”, variations of DNA sequences such as
”GGT”, short and highly polysemous acronyms such as ”ER”, ”B”, and ”E2”, and other non-
protein terms, such as ”impact”, ”real time” and ”similar”.

Due to protein name ambiguity, after the protein name matching step it is common for there
to exist multiple UniProt IDs associated with a single span of text. Each group of IDs
corresponding to the same span of text is organized into a single set of protein candidates, or
an ambiguity set, for downstream processing.

2.2 Dictionary-based Species Name Matching
The dictionary lookup of species names is done using a component from the UIMA framework
repository sandbox [4] called the ConceptMapper4. The dictionary is derived from the NCBI
Taxonomy OBO file5, as downloaded on October 27, 2008. The OBO file was mapped to the
ConceptMapper dictionary format, with names and IDs preserved for all levels of the
taxonomy. This module uses exact dictionary matching. We generalize from organisms at the
sub-species level to the appropriate organism at the species level for subsequent species
analysis, using the hierarchical structure of the taxonomy.

The dictionary was edited slightly to remove the taxonomy category names (“family”, “genus”,
etc.). A few entries that led to numerous false positives were also removed, specifically
NCBITaxon:37965 ”hybrid”, NCBITaxon:169495 ”This”, NCBITaxon:28384 ”other
sequences”, NCBITaxon:32644 ”unidentified”, NCBITaxon:32630 ”synthetic construct”, and
NCBITaxon:45202 ”unidentified plasmid”.

We observe that somewhat more sophisticated techniques for species name detection have been
explored, and in future work we will consider integrating such methods. For instance, [7] start
with a simple dictionary look-up for species mentions involving minimal string regularization
(e.g. removing hyphens) but then augment it with statistical analysis based on analysis of a
background data set. However, [8] argue that since the ambiguity of species words is low, a
simple dictionary look-up method is adequate. That work includes additional species
terminology resources; in the case of [7] they include cell line information, and [8] add species

3The Swiss-Prot database is available at http://www.uniprot.org/downloads.
4http://incubator.apache.org/uima/sandbox.html#concept.mapper.annotator
5http://www.obofoundry.org/cgi-bin/detail.cgi?id=ncbi_taxonomy
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terms from UniProt. Unlike that work, we do include the full NCBI Taxonomy hierarchy,
though the utility of matches to terms above the genus level is a question for future work.

2.3 Protein Ambiguity Resolution
Each set of protein candidates at a given span is processed to select a subset corresponding to
the most likely document-relevant proteins based on contextual clues. That is, given a string
such as ”Beta parvin” which has matched both UniProt:Q9HBI1, a human protein, and
UniProt:Q9ES46, a mouse protein, the algorithm must select which of the two matches is more
likely to be correct based on information in the document. The primary mechanism for
ambiguity resolution used in our system considers explicit mentions of species names in the
document, as detected by the dictionary-based species recognition introduced above.

Both global and local strategies for species detection are utilized, and a confidence score is
attributed to specific gene normalizations based on what combination of evidence supports the
normalization. By global, we refer to a strategy which selects a single relevant species for a
document, and uses that to remove any protein candidates in ambiguity sets which do not
correspond to that relevant species. A local strategy considers each protein mention in context
(i.e. in its immediate linguistic environment, such as within the same sentence or paragraph)
and determines the most relevant species for that individual mention. With a local strategy, it
is possible for different ambiguous protein mentions in the document to be resolved to proteins
associated with different organisms. With the global strategy, this can only occur if none of
the protein candidates in an ambiguity set is known to be associated with the global species
(as given by the database), in which case a “fallback” normalization strategy is used. This
fallback strategy prefers human proteins if available, and otherwise selects randomly (with an
appropriate confidence penalty).

Several existing works [9], [10], [11] perform local species disambiguation, assigning each
gene mention in the document a mention-specific species tag, while Kappeler et al. [7] focuses
on global species disambiguation for the document as a whole. In Wang and Matthews [11],
species detection is tackled with a maximum entropy machine learning model based on
document context features, such as the words (or more specifically the nouns or adjectives) to
the left or right of an entity mention, and species words and IDs identified in the document.
Interestingly, they show that adding filtering rules based on immediate local context increases
the accuracy of their system. Kappeler et al. consider counts of species mentions within a
document, combined with background species probabilities derived from the IntAct protein
interaction database6. The algorithm they propose combines the frequency of species mentions
within a document with the relative frequency of the species in the IntAct database to achieve
a final ranking of document-relevant species.

We experimented with 5 basic strategies that incorporate insights from the previous work. Our
global strategies explore different ways of counting species mentions in the document, and the
local strategies also consider species mention counts, but are restricted to the local context of
a protein mention. Where there are multiple possible protein mentions normalized to a given
UniProt identifier, the maximum confidence associated with that normalization anywhere in
the document is used in the final output.

• Abstract: a global strategy that determines the species most frequently mentioned in
the abstract of the article being processed. Protein candidates in ambiguity sets that
match the abstract species are retained and given a confidence of 1.0; competing
candidates are removed.

6http://www.ebi.ac.uk/intact/site/index.jsf
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• First: a global strategy that determines the first species mentioned in the article as a
whole. Protein candidates in ambiguity sets that match the first species are retained
and given a confidence of 1.0; competing candidates are removed.

• Majority: a global strategy that determines the species mentioned most frequently
overall in the article. Protein candidates in ambiguity sets that match the majority
species are retained and given a confidence of 1.0; competing candidates are removed.

• Recency: a local strategy that for each protein determines the most recent previous
species mention. Confidence is set based on the distance between the mention of the
protein and the mention of the species.

• Window: a local strategy that counts species mentions in a window of a given token
length prior to the protein mention and uses the most frequent species in that window.
Confidence for a mention is set based on the number of competing species in the
window.

After experimenting with these strategies using the provided training data, we implemented a
sixth Mixed global strategy, which was used in the official submission. This strategy essentially
integrates each of the various strategies in a prioritization scheme.

The Mixed strategy sets the confidence of a given normalization in an ambiguity set differently
depending on whether the species associated with that normalization has support in the
document. Specifically, if a candidate normalization is associated with a species that matches
the first species in the document (First strategy), that normalization is assigned a confidence
of 1.0. If the candidate is associated with a species that matches the most recent species mention
(Recency strategy), that normalization is assigned a confidence of 0.9. If the candidate
normalization does not correspond to either the first or the most recent species mention, the
strategy defaults to the Majority strategy.

In addition to species mentions, our algorithm also considers abbreviations explicitly identified
from the text using the abbreviation detection system of Schwartz and Hearst [12], attempting
to relate “short forms” of proteins to longer forms mentioned in the document that can be
mapped to a specific UniProt identifier with higher certainty. For instance, if the symbol
”THG-1” has been directly associated with the longer form ”TSC-22 homologous
gene-1” (Uniprot:Q9Y3Q8) in the document, as is done in PMID 18325344, then the competing
mappings of ”THG-1” to ”tRNA(His) guanylyltransferase” (Uniprot:P53215, inter alia) can
be ruled out.

3 PROTEIN INTERACTION EXTRACTION
For the interaction pair task, we employ the concept recognition mechanisms of our
OpenDMAP [2] system to search for phrases in the input documents that match pre-defined
patterns of expression for various interaction types. OpenDMAP is an ontology-driven concept
analysis system that uses a context free pattern language combining text literals, syntactic
consituents, and semantically-defined classes of entities. A pattern defines a class – in the case
of BioCreative that class is ”protein-protein interaction” – and consists of pattern elements that
define both the slots of the class – here, the interacting proteins – and the words that connect
those slots in text. OpenDMAP searches for phrases in the input text that match the pre-defined
patterns of expression for the defined classes. This pattern-based approach has been shown to
result in high-precision extraction of interaction events [13].
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We used the patterns from our BioCreative II submission7 [6], with only minor modifications.
The pattern set was created manually by inspecting protein-protein interaction instances from
the BioCreative II training set, and incorporating corpus frequency information for the
interaction trigger words. Patterns consisted of text literals that defined the interaction trigger
words (e.g. ”activate”, ”activated”, ”activation”), semantically-defined entities for the
interacting protein slots (e.g. the slot ”interactor” was required to be a protein by the ontology),
and basal syntactic patterns that characterized the linguistic interstitial material between the
protein interactor mentions (e.g. determiners, auxiliary verbs and prepositions). There were
about 70 patterns that described the ”protein-protein interaction” class.

We additionally took advantage of a coordination module that we utilized in our BioNLP09
system [13] to support handling of coordinated lists of interactors.

Confidence for the interaction pairs was derived by multiplying the confidence of the two
component normalized proteins.

4 OFFICIAL RESULTS
Our system was run on the data selected by the evaluation organizers, the BioCreativeII.5
Elsevier corpus8. This corpus consists of 1190 articles from the journal FEBS Letters that were
annotated with structured digital abstracts including formal protein interaction statements
[14]. The corpus was split in two halves, for training and testing. The test data was unknown
to our system until the official runs were executed. The training data was used to assess the
effectiveness of our various gene normalization strategies during development.

Results for both the normalization and interaction pair tasks were evaluated according to the
standard information extraction metrics of precision (P), recall (R), and F-score (F). In addition,
the organizers calculated a value known as the AUC (area under the curve) of interpolated
Precision/Recall curves (iP/R). See
http://www.biocreative.org/tasks/biocreative-ii5/biocreative-ii5-evaluation for a detailed
description of this measure. It measures the highest possible precision at each achievable recall
given a ranked set of results, and therefore provides the opportunity to assess confidence
rankings provided in the submitted results. Each of these measures was calculated twice for
each result set: first, using ”micro” (”m-”) averaging, which calculates the scores across all
documents and then divides by the number of documents, which essentially treats the entire
corpus as one large document, and second, using ”macro” (”M-”) averaging, which is the
arithmetic mean of the individual document scores. It is also important to explain that scores
are calculated only over documents for which some prediction was generated, a maximum of
61 articles for the INT and IPT tasks. If no result was generated by the system for a given
document, that document was ignored during scoring. This effectively inflates precision and
recall for systems which generate results for less than the full set of articles. The ”Docs” column
of each data table indicates how many articles were considered in scoring results.

The organizers additionally introduced two corrections to the scores, homonym ortholog
mapping (”HO”) and organism filtering (”OF”). Homology ortholog mapping involves giving
credit to protein identifiers that are orthologs of the correct normalization, potentially
increasing true positive answers. Organism filtering takes advantage of provided information
about which species are relevant to each document and removes protein identifiers associated
with an organism that is not known to be relevant to the document, thereby decreasing false
positive answers. Both corrections can be applied simultaneously (”HOOF”).

7The BioCreative II pattern set is available at http://sourceforge.net/projects/opendmap in the ”Supplemental Files” module.
8The BCII.5 data is available at http://www.biocreative.org/resources/corpora/elsevier-corpus/.
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The official results for our submission can be found in Tables 1–2. We were known as team
32. The “server” version of our system was run via web services through the BioCreative meta-
server [15], using the “Mixed” gene normalization strategy. The version of the system used
for the official submission employed a less fine-grained scheme for setting confidence than
described above, using 1.0 for an identifier selected through the primary normalization strategy
employed in the run and 0.5 for normalizations selected through the fallback strategy. The
“offline” system was nearly identical, but incorporated a slight modification to the confidence
values. We see that this change had a very modest impact on the scores; the INT results are
slightly better for the offline system and the IPT results are identical, apart from slightly lower
iP/R AUC scores for the offline system, reflecting small changes in the confidence ranking
that only affect the calculation of iP/R.

We note that in these results, the HO mapping correction had very little effect on our scores
(and for the IPT task, no effect, though this is likely due to the limited number of results overall),
suggesting that confusion between homologous proteins is not a large source of the false
positives for our system. The OF adjustment, in contrast, did have a big effect in reducing false
positives. Thus it is likely that most of the false positives recorded for our system derive from
spurious dictionary matches that identify completely irrelevant proteins.

The system precision on both tasks is very low; on the normalization task recall is substantially
higher but still not close to the performance of the best-performing systems. The top systems
are able to achieve micro-averaged P/R/F/AUC of 0.30/0.26/0.28/0.10 (team 14) and
0.008/.63/0.015/.245 (team 10), with similar macro-averaged numbers, on the INT task. For
the IPT task, the best system achieved macro-averaged performance of
0.128/0.146/0.116/0.128 (team 14), only surpassed by a team that made use of gold standard
information and was able to achieve scores of 0.547/0.560/0.502/0.533, and with most teams
far below team 14’s results. For the IPT task, our system shows a relatively large difference
between the micro-averaging and macro-averaging calculations (with macro-averaged scores
higher), indicating that there are likely several documents with a large number of results, on
which we are not performing well. Our overall IPT performance was low and reflects the lack
of specific development done for BCII.5. We note that organism filtering boosted the IPT
scores substantially.

5 EXPERIMENTATION
5.1 System improvements post-submission

After the final submission for the official evaluation, a few changes were implemented in the
system. First, the stop word list used by the dictionary matcher was expanded to include a
broader range of English words (such as prepositions and other function words). Second, a bug
in the initial Dictionary Matcher code that artificially capped the number of possible matches
into the dictionary was fixed. This bug could have filtered out some potential True Positive
gene candidates. Third, the algorithm for setting confidence of the gene normalizations was
adjusted to completely conform with what is described in Section 2.3.

The impact of these changes can be seen by comparing the offline INT-raw run of Table 1 with
the “Mixed” line in Table 3. We saw an important reduction in False Positives (1592 to 907),
with only a slight loss in True Positives (105 to 95) and a slight increase in False Negatives
(147 to 157). The net effect was an improvement in both the micro- and macro-averaged
Precision, F, and iP/R AUC scores, with only a small drop in Recall. The comparison of the
offline IPT-raw run results of Table 2 with the “Mixed” line in Table 4 also shows a substantial
across the board improvement, though there were fewer results overall.
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We also introduced an additional global gene normalization called ”Default Human” for
comparison purposes. This strategy always prefers normalizations corresponding to human
proteins in the case of ambiguity.

5.2 Impact of normalization strategy
To better understand the impact of the various normalization schemes, we ran the updated
system over the test data in turn with each normalization strategy. We see from the top sections
of Tables 3 and 4 that choice of the normalization strategy does affect the overall system
performance, with the Majority strategy and the Mixed strategy identical on the test data for
every score apart from the INT task iP/R AUC scores. This latter difference is due to the
differences in confidence ranking of these two strategies. The similar performance of these
two strategies was determined to be the result of a programming error which prevented filtering
in the Mixed prioritization scheme: when there was a match of first or recent species in the
ambiguity set, other candidates were not removed; only confidence values were affected. Thus
the filtering all happened via the Majority strategy.

The local strategies, Recency and Window, performed worse on this data set with the current
confidence settings, though the differences for P/R/F-score are modest. These local strategies
had performed a bit better than the global strategies on the training data.

The Default Human strategy and the Abstract strategy showed identically poor performance
on both tasks, suggesting that there were few significant species mentions identified in the
paper abstracts, and that the system had to use the fallback strategy of preferring human
proteins. The poor performance of the Default Human strategy also indicates that the test corpus
is probably quite diverse in its coverage of organisms, and certainly is not biased to human
proteins.

To establish a baseline for comparison, we also performed a run which attempted no gene
normalization whatsoever – that is, it did no filtering of the ambiguous protein sets resulting
from the dictionary lookup stage and simply allowed all protein candidates to persist to the
output. This predictably resulted in a large increase in recall at the expensive of precision, with
the system producing over 15 times the number of false positives of any of the other
normalization strategies. These results appear as the “NoGN” run in the table. The fact that
the large increase in recall was not even larger, and in fact still well below the highest recall
produced by any submission in the evaluation (0.627 m-R and 0.683 M-R for
t10_INT_RUN_1_test as compared with our NoGN scores of 0.472 m-R and 0.530 M-R)
indicates that the dictionary matching was not successful in identifying a large quantity of
protein mentions, effectively imposing a ceiling on the performance of the normalization
algorithms.

Comparing the absolute numbers of true positives of the NoGN run with the basic
normalization strategies (119 vs. ~95) also shows that our best normalization strategies are
apparently only eliminating about 10% of the true positive mentions possible with our
dictionary matching methodology, while significantly reducing false positives (though clearly
there are many more to be removed).

It is interesting to observe that the performance of the run without gene normalization performs
similarly to the top-ranked normalization system in BCII.5, in terms of the scores other than
AUC. While we mentioned above that the NoGN run was still below the highest recall due to
dictionary limitations, the m-F score is identical to the t10_INT_RUN_1_test run in the official
results, and the NoGN M-F score is actually higher (0.024 vs. 0.031). Both systems exhibit
relatively high recall and extremely low precision. It would appear that the team 10 submission
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is doing little more than dictionary lookup augmented with an effective ranking scheme, and
it is not obvious that this is a desirable solution to the gene normalization problem in general.

5.3 Impact of additional knowledge modules
Having recognized that the dictionary matching was not recognizing sufficient protein
mentions, and observing that the high-performing submissions to the INT task all seemed to
augment the Swiss-Prot dictionary with EntrezGene9 terms, we augmented our initial
dictionary with names extracted from EntrezGene and associated with UniProt identifiers via
the UniProt idmapping file10. As shown in Table 3 for the run labeled “EntrezGene”, this
only resulted in 6 additional true positive normalizations beyond the comparable Mixed run
using the SwissProt only dictionary, while the number of false positives skyrocketed. Since
other systems did appear to have positive benefit from adding this data, this could reflect a
problematic interaction between the normalization strategy employed in our system and the
data in EntrezGene, but at the very least it indicates that simply adding more names to a
dictionary is not always beneficial.

Similarly, we noted that Kappeler et al. [7], as well as several other participants in the
evaluation, utilized the Cell Line Knowledge Base11 to provide additional species clues. We
therefore introduced a ConceptMapper-based module for recognizing cell line names to the
dictionary lookup portion of our pipeline, and mapped each recognized cell line mention to the
appropriate NCBI Taxonomy identifier for the organism that it is associated with. These
mentions were then treated as species mentions within the gene normalization algorithms. For
the reported experiments, we utilized the Mixed strategy.

As we were experimenting with the cell lines, we realized that many of them contained
important punctuation that was ignored by the simple tokenizer that we were using for both
dictionary and text processing, the basic OffsetTokenizer that comes with the ConceptMapper.
We therefore substituted the tokenizer with the Penn Bio Tokenizer12, which does preserve
punctuation, and ran again. The two results are runs “CellLine (OT)” for the OffsetTokenizer
and “CellLine (PBT)” for the Penn Bio Tokenizer in Tables 3 and 4. In both cases, the number
of true positive matches was reduced and the number of false negatives was increased. It seems
clear that this simple, unfiltered and uncurated, addition of cell lines had a negative impact on
system performance.

5.4 Impact of coordination resolution
In previous work [13], we introduced a constituent parser and associated modules for
identification and handling of coordination structures in the text. For the BioNLP09 shared
task described in that paper, we found that this coordination handling had a positive impact on
performance, as it allowed us to produce distributed readings for interaction sentences
involving coordinated proteins. To measure the effect of coordination on this task, we created
a variant of the system removing coordination from the pipeline. This run is shown as
“NoCoord” in the Table 4 (it is left out of table 3 as coordination has no effect on
normalization). We see that in this particular case, removing the coordination handling module
actually leads to a better precision and recall than the standard IPT run. This is likely because
the patterns used by OpenDMAP for the BCII.5 IPT task were not written (originally for BCII)
with a separate coordination module in mind, and so several of the patterns already
accommodate coordinated structures. As an example, consider the pattern: c-interact :=

9Available from ftp://ftp.ncbi.nih.gov/gene/.
10ftp://ftp.ebi.ac.uk/pub/databases/uniprot/current_release/knowledgebase/idmapping/idmapping_selected.tab.gz
11http://clkb.ncibi.org/ and http://bioportal.bioontology.org/ontologies/40261
12available from http://u-compare.org/components/components-syntactic_tools.html.
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interact-noun preposition the? [interactor1] and the? [interactor2];

which would match a phrase such as the association of Protein-X and Protein-Y. The
coordination module would in these cases be mirroring the effect of those patterns, therefore
not providing positive benefit, with the added negative impact of errors in the coordination
handling propagating through to the output.

5.5 Impact of information extraction patterns
In reviewing our submitted system, we identified some missing or misspelled interaction verbs
in the original set of OpenDMAP patterns. We added these in and re-ran the system, with the
results shown as run “BasePatterns”. The results indicate that these additions only resulted in
false positives and false negatives, without any more true positive interaction pairs identified.

To compare our highly structured existing patterns with a looser, co-occurrence based
approach, we created a variant of our system which augmented the linguistically specific
patterns with a highly generic pattern that simply looks for two protein mentions with an
interaction verb in between them. This run is shown as “GenericPatterns” in the table. While
this run did find one additional true positive interaction pair, it also had quite a lot more false
positives and false negatives, and overall performance was worse. This supports our strategy
of more careful construction of patterns of expression.

The Hakenberg et al. system, which performed quite well on this task, utilizes a set of learned
OpenDMAP patterns under the hood. This suggests that the relatively low number of patterns
in our submission, rather than the general approach, is to blame for our low IPT performance.

6 DISCUSSION
6.1 The role of gene mention detection in gene normalization

We note that many systems approaching the gene normalization task in BCII.5, and the original
BCII task, utilize a strategy of (1) performing named entity recognition on the text to detect
gene/protein mentions, generally using a machine learning approach to recognize strings in the
text that are very likely to correspond to gene mentions and (2) mapping those mentions to a
UniProt identifier. In the context of the gene normalization task, where the system must
eventually map gene mentions to some database entry via its known names or synonyms in
any case, it does not superficially appear to provide much benefit to include a separate gene
mention step. It introduces an extra processing step which can slow response time. More
importantly, it limits the database search to the algorithmically identified gene mentions,
meaning that the identification of genes in the document is subject to the false negatives of the
gene mention system – any mention not picked out by the mention detection system will not
be recognized.

On the other hand, a separate gene mention step does give the possibility of doing “lossier”
mapping into the protein name space of the underlying database. That is, rather than doing only
simple surface regularization as we have done, the dictionary lookup can involve more
computationally complex algorithms, for instance utilizing a distance metric such as edit
distance or the dice coefficient [5] to attempt to identify a close dictionary term. While it is not
computationally feasible to do this for every substring of the document, if likely gene mentions
have previously been picked out, this is viable and may ultimately give higher recall, effectively
offsetting the loss of recall stemming from the false negatives inherent in the gene mention
system.

Baumgartner et al. [3] explored the interactions between gene mention and gene normalization
systems, and found that the performance of a gene normalization system is largely reflective
of the recall, and less on the precision, of the underlying gene mention system. They argue that
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this suggests that the gene normalization system is itself filtering out many false positive gene
mentions. This could be seen as an argument in favor of including a separate – high recall –
gene mention system, in that the important function it is serving is to identify candidate
substrings of the document to be mapped into the database. A thorough exploration of the
benefits of the lossier dictionary matching that the gene mention step allows, as compared with
the gain in positive matches resulting from avoiding missed mentions, is warranted to
understand this choice better. This is particularly true in light of the good performance of
systems such as ProMiner [16], which also does not utilize a separate gene mention step.

6.2 The importance of confidence ranking
The differences in performance among the variations of the system as measured by Precision,
Recall and F-score were relatively modest in most cases. Where we see larger variation is in
the iP/R AUC scores, and where two system variants may have identical performance on the
absolute measures, the AUC measure can show a large difference. In Table 3, we observe the
difference in the Mixed and Majority scores: micro AUCs of 0.062 and 0.132, respectively,
and macro AUCs of 0.207 and 0.297, respectively, with the Majority AUC scores higher than
any other system variant. In both cases, all other scores are identical and so the difference can
only be attributed to the confidence ranking.

The specific confidence values associated with the various strategies, and the prioritization
scheme developed for the Mixed strategy, were set through manual experimentation with the
training data. The values were essentially selected in an ad hoc manner. Given the sensitivity
of the scores to the confidence ranking, the obvious thing to attempt here would be to
incorporate machine learning into the framework so that a model combining and weighting the
various strategies can be constructed empirically from the data. This would also support
determining the optimal window size for local clues. Experimentation with machine learning
is planned for future work.

6.3 The role of knowledge resources
The performance of the experiments in which we supplied additional knowledge to the system
is strikingly poor. Expanding the dictionary to include EntrezGene names and the introduction
of extra species clues from the Cell Line Knowledge Base did not achieve the performance
improvements that they were intended to produce, but rather resulted in inferior performance.
While we have not yet performed separate analysis on these modules to understand why they
introduced errors, we can guess that there are terms in each of those two sources that cause
false positive matches. The stopword list used when processing the protein name dictionary
would likely need to be expanded to include additional terms that are problematic for Entrez
Gene. Similarly, there is likely a set of problematic terms in the cell line dictionary – either
cell line names that overlap with common English words, or names that are inappropriately
linked to particular organisms. This explanation is plausible given that other systems did benefit
from inclusion of these resources, albeit with some filtering or with the use of ”black lists”.

What can be learned from these experiments is that simple augmentation of system knowledge
resources without careful examination of those resources and assessment of their impact on
system performance is not advisable because this could have undesirable side effects.
Knowledge quality – and in particular the quality of the knowledge resources for the
application context – must be considered. Taking knowledge developed for one purpose (e.g.
database construction) and deploying it for another purpose (e.g. text mining) should not be
done blindly. We even see that modifying knowledge resources that we are more familiar with
can have unexpected consequences – as in the case of enlarging the list of interaction verbs for
the information extraction patterns (“Base Patterns” experiment), which actually led to a slight
performance decrease.
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6.4 Experimentally validated interactions
Our system did not directly address the requirement to identify proteins involved in
experimentally validated interactions as expressed in the document. It is likely that a number
of the system’s false positive mentions result from this limitation – that is, the system picked
up on valid gene mentions that are not involved in specific interactions. We considered limiting
the submitted gene normalizations to only those genes that had been identified in the IPT task
as interacting, but since our IPT system shows very low recall, and returns results for less than
a quarter of the relevant documents in the corpus, this approach would overly restrict recall of
the gene normalization system. Given improvements in the IPT system, however, this would
be one approach to consider to implement the requirement.

7 CONCLUSION
We have introduced and experimented with a set of strategies for gene normalization that take
advantage of document-internal clues for organisms relevant to mentioned proteins. The
performance of these algorithms suggest that there is value in exploiting species references for
the purpose of gene normalization, but that some references will be more significant than others.
In this work, we found that a document-wide, global influence on gene normalization was more
important than local clues, though we feel that experimentation with an empirically derived
model that weights different clues will likely lead to a more accurate system, in particular due
to the importance of confidence ranking for the primary iP/R AUC score. Finally, this work
provides some important evidence that simple inclusion of knowledge resources without
assessment of their quality in the context of use can be detrimental to overall system
performance.
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Fig 1.
The system architecture of our BioCreative II.5 submission.
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