Table 3.
Timings (seconds) for logistic model with lasso penalty and sparse features (95% zero). Total time for ten-fold cross-validation over a grid of 100 λ values.
Logistic Regression — Sparse Features |
||||||
---|---|---|---|---|---|---|
Correlation | ||||||
0 | 0.1 | 0.2 | 0.5 | 0.9 | 0.95 | |
N = 1000, p = 100 | ||||||
glmnet | 0.77 | 0.74 | 0.72 | 0.73 | 0.84 | 0.88 |
l1lognet | 5.19 | 5.21 | 5.14 | 5.40 | 6.14 | 6.26 |
BBR | 2.01 | 1.95 | 1.98 | 2.06 | 2.73 | 2.88 |
N = 100, p = 1000 | ||||||
glmnet | 1.81 | 1.73 | 1.55 | 1.70 | 1.63 | 1.55 |
l1lognet | 7.67 | 7.72 | 7.64 | 9.04 | 9.81 | 9.40 |
BBR | 4.66 | 4.58 | 4.68 | 5.15 | 5.78 | 5.53 |
N = 10, 000, p = 100 | ||||||
glmnet | 3.21 | 3.02 | 2.95 | 3.25 | 4.58 | 5.08 |
l1lognet | 45.87 | 46.63 | 44.33 | 43.99 | 45.60 | 43.16 |
BBR | 11.80 | 11.64 | 11.58 | 13.30 | 12.46 | 11.83 |
N = 100, p = 10, 000 | ||||||
glmnet | 10.18 | 10.35 | 9.93 | 10.04 | 9.02 | 8.91 |
l1lognet | 130.27 | 124.88 | 124.18 | 129.84 | 137.21 | 159.54 |
BBR | 45.72 | 47.50 | 47.46 | 48.49 | 56.29 | 60.21 |