Skip to main content
. Author manuscript; available in PMC: 2010 Aug 30.
Published in final edited form as: J Stat Softw. 2010;33(1):1–22.

Table 3.

Timings (seconds) for logistic model with lasso penalty and sparse features (95% zero). Total time for ten-fold cross-validation over a grid of 100 λ values.

Logistic Regression — Sparse Features
Correlation
0 0.1 0.2 0.5 0.9 0.95

N = 1000, p = 100

glmnet 0.77 0.74 0.72 0.73 0.84 0.88
l1lognet 5.19 5.21 5.14 5.40 6.14 6.26
BBR 2.01 1.95 1.98 2.06 2.73 2.88

N = 100, p = 1000

glmnet 1.81 1.73 1.55 1.70 1.63 1.55
l1lognet 7.67 7.72 7.64 9.04 9.81 9.40
BBR 4.66 4.58 4.68 5.15 5.78 5.53

N = 10, 000, p = 100

glmnet 3.21 3.02 2.95 3.25 4.58 5.08
l1lognet 45.87 46.63 44.33 43.99 45.60 43.16
BBR 11.80 11.64 11.58 13.30 12.46 11.83

N = 100, p = 10, 000

glmnet 10.18 10.35 9.93 10.04 9.02 8.91
l1lognet 130.27 124.88 124.18 129.84 137.21 159.54
BBR 45.72 47.50 47.46 48.49 56.29 60.21