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Abstract
Most human tumors result from the accumulation of multiple genetic and epigenetic alterations in a
single cell. Mutations that confer a fitness advantage to the cell are known as driver mutations and
are causally related to tumorigenesis. Other mutations, however, do not change the phenotype of the
cell or even decrease cellular fitness. While much experimental effort is being devoted to the
identification of the functional effects of individual mutations, mathematical modeling of tumor
progression generally considers constant fitness increments as mutations are accumulated. In this
paper we study a mathematical model of tumor progression with random fitness increments. We
analyze a multi-type branching process in which cells accumulate mutations whose fitness effects
are chosen from a distribution. We determine the effect of the fitness distribution on the growth
kinetics of the tumor. This work contributes to a quantitative understanding of the accumulation of
mutations leading to cancer.
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1 Introduction
Tumors result from an evolutionary process occurring within a tissue (Nowell, 1976). From
an evolutionary point of view, tumors can be considered as collections of cells that accumulate
genetic and epigenetic alterations. The phenotypic changes that these alterations confer to cells
are subjected to the selection pressures within the tissue and lead to adaptations such as the
evolution of more aggressive cell types, the emergence of resistance, induction of angiogenesis,
evasion of the immune system, and colonization of distant organs with metastatic growth.
Advantageous heritable alterations can cause a rapid expansion of the cell clone harboring such
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changes, since these cells are capable of outcompeting cells that have not evolved similar
adaptations. The investigation of the dynamics of cell growth, the speed of accumulating
mutations, and the distribution of different cell types at various timepoints during
tumorigenesis is important for an understanding of the natural history of tumors. Further, such
knowledge aids in the prognosis of newly diagnosed tumors, since the presence of cell clones
with aggressive phenotypes lead to less optimistic predictions for tumor progression. Finally,
a knowledge of the composition of tumors allows for the choice of optimum therapeutic
interventions, as tumors harboring pre-existing resistant clones should be treated differently
than drug-sensitive cell populations.

Mathematical models have led to many important insights into the dynamics of tumor
progression and the evolution of resistance (Goldie and Coldman, 1983 and 1984; Bodmer and
Tomlinson, 1995; Coldman and Murray, 2000; Knudson, 2001; Maley and Forrest, 2001;
Michor et al., 2004; Iwasa et al., 2005; Komarova and Wodarz, 2005; Michor et al., 2006;
Michor and Iwasa, 2006; Frank 2007; Wodarz and Komarova, 2007; Schweinsberg, 2008;
Durrett, Schmidt, and Schweinsberg, 2009). These mathematical models generally fall into
one of two classes: (i) constant population size models, and (ii) models describing exponentially
growing populations. Many theoretical investigations of exponentially growing populations
employ multi-type branching process models (e.g., Iwasa et al., 2006; Haeno et al., 2007;
Durrett and Moseley, 2009), while others use population genetic models for homogeneously
mixing exponentially growing populations (e.g., Beerenwinkel et al., 2007; Durrett and
Mayberry, 2010). In this paper, we focus on branching process models. In these models, cells
with i ≥ 0 mutations are denoted as type-i cells, and Zi(t) specifies the number of type-i cells
at time t. Type-i cells die at rate bi, give birth to one new type-i cell at rate ai, and give birth
to one new type-(i + 1) cell at rate ui+1. Some authors (e.g., Haeno et al., 2007) consider an
alternate version of our model in which mutations occur with probability μi+1 during birth
events which occur at rate αi, but the two versions are equivalent provided ui+1 = αiμi+1 and
ai = αi (1 − μi+1). This relationship between the parameters must be kept in mind when
comparing results across papers.

One biologically unrealistic aspect of this model as presented in the literature is that all type-
i cells are assumed to have the same birth and death rates. This assumption describes situations
during tumorigenesis in which the order of mutations is predetermined, i.e. the genetic changes
can only be accumulated in a particular sequence and all other combinations of mutations lead
to lethality. Furthermore, in this interpretation of the model, there cannot be any variability in
phenotype among cells with the same number of mutations. In many situations arising in
biology there is marked heterogeneity in phenotype even if genetically, the cells are identical
(Elowitz et al., 2002; Becskei et al., 2005; Kaern et al., 2005; Feinerman et al., 2008). This
variability may be driven by stochasticity in gene expression or in post-transcriptional or post-
translational modifications. In this paper, we modify the branching process model so that
mutations alter cell birth rates by a random amount.

An important consideration for this endeavor is the choice of the mutational fitness distribution.
The exponential distribution has become the preferred candidate in theoretical studies of the
genetics of adaptation. The first theoretical justification of this choice was given by Gillespie
(1983, 1984), who argued that if the number of possible alleles is large and the current allele
is close to the top of the rank ordering in fitness values, then extreme value theory should
provide insight into the distribution of the fitness values of mutations. For many distributions
including the normal, Gamma, and lognormal distributions, the maximum of n independent
draws, when properly scaled, converges to the Gumbel or double exponential distribution, Λ
(x) = exp(−e−x). In the biological literature, it is generally noted that this class of distributions
only excludes exotic distributions like the Cauchy distribution, which has no moments.
However, in reality, it eliminates all distributions with P(X > x) ~ Cx−α. For distributions in
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the domain of attraction of the Gumbel distribution, and if Y1 > Y2 ··· >Yk are the k largest
observations in a sample of size n, then there is a sequence of constants bn so that the spacings
Zi = i(Yi−Yi+1)/bn converge to independent exponentials with mean 1, see e.g., Weissman
(1978). Following up on Gillespie’s work, Orr (2003) added the observation that in this setting,
the distribution of the fitness increases due to beneficial mutations has the same distribution
as Z1 independent of the rank i of the wild type cell.

To infer the distribution of fitness effects of newly emerged beneficial mutations, several
experimental studies were performed; for examples, see Imhoff and Schlotterer (2001),
Sanjuan et al. (2004), and Kassen and Bataillon (2006). The data from these experiments is
generally consistent with an exponential distribution of fitness effects. However, there is an
experimental caveat that cannot be neglected (Rozen et al., 2002): if only those mutations are
considered that reach 100% frequency in the population, then the exponential distribution is
multiplied by the fixation probability. By this operation, a distribution with a mode at a positive
value develops. In a study of a quasi-empirical model of RNA evolution in which fitness was
based on secondary structures, Cowperthwaite et al. (2005) found that fitnesses of randomly
selected genotypes appeared to follow a Gumbel-type distribution. They also discovered that
the fitness distribution of beneficial mutations appeared exponential only when the vast
majority of small-effect mutations were ignored. Furthermore, it was determined that the
distribution of beneficial mutations depends on the fitness of the parental genotype
(Cowperthwaite et al., 2005; MacLean and Buckling, 2009). However, since the exceptions to
this conclusion arise when the fitness of the wild type cell is low, these findings do not
contradict the picture based on extreme value theory.

In contrast to the evidence above, recent work of Rokyta et al. (2008) has shown that in two
sets of beneficial mutations arising in the bacteriophage ID11 and in the phage φ6 – for which
the mutations were identified by sequencing – beneficial fitness effects are not exponential.
Using a statistical method developed by Biesal et al. (2007), they tested the null hypothesis
that the fitness distribution has an exponential tail. They found that the null hypothesis could
be rejected in favor of a distribution with a right truncated tail. Their data also violated the
common assumption that small-effect mutations greatly outnumber those of large effect, as
they were consistent with a uniform distribution of beneficial effects. A possible explanation
for the bounded fitness distribution may be found in the culture conditions utilized in the
experiments: they evolved ID11 on E. coli at an elevated temperature (37° C instead of 33°
C). There may be a limited number of mutations that will enable ID11 to survive in increased
temperatures. The latter situation may be similar to scenarios arising during tumorigenesis,
where, in order to develop resistance to a drug or to progress to a more aggressive stage, the
conformation of a particular protein must be changed or a certain regulatory network must be
disrupted. If there is a finite, but large, number of possible beneficial mutations, then it is
convenient to use a continuous distribution as an approximation.

In this paper, we consider both bounded distributions and unbounded distributions for the
fitness advance and derive asymptotic results for the number of type-k individuals at time t.
We determine the effects of the fitness distribution on the growth kinetics of the population,
and investigate the rates of expansion for both bounded and unbounded fitness distributions.
This model provides a framework to investigate the accumulation of mutations with random
fitness effects.

The remainder of this section is dedicated to statements and discussion of our main results.
Proofs of these results can be found in Sections 2–5.
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1.1 Bounded distributions
The model we consider is a multi-type branching process in which type-i cells have
accumulated i ≥ 0 advantageous mutations. All cells in the population die at rate b0. The initial
population consists entirely of type-0 cells that give birth at rate a0 > b0 to new type-0 cells
and produce type-1 cells at rate u1. We assume that the population of type-0 cells starts at a
sufficiently large population V0 so that we can approximate its size by Z0(t) = V0eλ0t, where
λ0 = a0 − b0. When a type-0 cell produces a type-1 cell, the new cell gives birth to type-1 cells
at rate a0 + x, where x ≥ 0 is drawn according to a probability distribution ν and produces type-2
cells at rate u2. In general, a type-k cell with birth rate a produces a new type-(k + 1) cell at
rate uk and the new type-(k + 1) cell assumes an increased birth rate a + x where x ≥ 0 is drawn
according to ν. We let Zk(t) denote the total number of type-k cells in the population at time
t. When we refer to the kth generation of mutants, we mean the set of all type-k cells.

We begin by considering situations in which the distribution of the increase in the birth rate is
concentrated on [0, b]. In particular, suppose that ν has density g with support in [0, b] and
assume that g satisfies:

(*)

Our first result describes the mean number of first generation mutants at time t, EZ1(t).

Theorem 1—If (*) holds, then

where a(t) ~ b(t) means a(t)/b(t) → 1.

The next result shows that the actual growth rate of type-1 cells is slower than the mean. Here,
and in what follows, we use ⇒ to indicate convergence in distribution.

Theorem 2—If (*) holds and p = b/λ0, then for θ ≥ 0,

(1.1)

where c1(λ0, b) is a constant whose value will be given in (3.8). In particular, we have

where V1 has Laplace transform given by the righthand side of (1.1).

Theorem 2 is similar to Theorem 3 in Durrett and Moseley (2009) which assumes a
deterministic fitness distribution so that all type-1 cells have growth rate λ1 = λ0 + b. There,
the asymptotic growth rate of the first generation is exp(λ1t). In contrast, the continuous fitness
distribution we consider here has the effect of slowing down the growth rate of the first
generation by the polynomial factor t1+p. To explain this difference, we note that the calculation
of the mean given in Section 3 shows that the dominant contribution to Z1(t) comes from growth
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rates x = b − O(1/t). However, mutations with this growth rate are unlikely until the number
of type-0 cells is O(t), i.e., roughly at time r1 = (1/λ0) log t. Thus at time t, the number of type-1
cells will be roughly exp((λ0+b)(t − r1)) = exp((λ0 +b)t)/t1+p.

To prove Theorem 2, we look at mutations as a point process in [0, t] × [0, b]: there is a point
at (s, x) if there was a mutant with birth rate a0 + x at time s. This allows us to derive the
following explicit expression for the Laplace transform of Z1(t):

where  and  is a continuous-time branching process with birth rate a0+x, death

rate b0, and initial population . In Figure 1, we compare the exact Laplace transform of
t1+p exp(−(λ0+b)t)Z1(t) with the results of simulations and the limiting Laplace transform from
Theorem 2, illustrating the convergence as t → ∞.

Notice that the Laplace transform of V1 has the form exp(C θα) where α = λ0/(λ0 + b) which
implies that P(V1 > v) ~ v−α as v → ∞ (see, for example, the argument in Section 3 of Durrett
and Moseley (2009)). To gain some insight into how this limit comes about, we give a second
proof of the convergence that tells us the limit is the sum of points in a nonhomogeneous
Poisson process. Each point in the limiting process represents the contribution of a different
mutant lineage to Z1(t). More precisely, we define a three dimensional point process (t) on
[0, t] × [0, b] × (0, ∞) by the following rule: there is a point at (s, x, v) if there was a type-1
mutant with birth rate a0 + x at time s and the number of its type-1 descendants at time t,

, has  as t → ∞ with v > 0. We define F : [0, ∞)3 → [0, ∞) by

i.e. F maps a point in (t) onto its contribution to V1 = limt→∞ t1+pe−(λ0+b)tZ1(t).

Theorem 3—As t → ∞, F( (t)) ⇒ Λ where Λ is a Poisson process on (0, ∞) with mean
measure μ(z, ∞) = A1(λ0, b)u1V0z−λ0/(λ0+b) and A1(λ0, b) is a constant whose value is given
in (3.9). In particular, V1 = limt→∞ t1+pe−(λ0+b)tZ1(t) is the sum of the points in Λ.

A similar result can be obtained for deterministic fitness distributions, see the Corollary to
Theorem 3 in Durrett and Moseley (2009). However, the new result shows that the point process
limit is not an artifact of assuming that all first generation mutants have the same growth rate.
Even when the fitness advances are random, different mutant lines contribute to the limit. This
result is consistent with observations of Maley et al. (2006) and Shah et al. (2009) that tumors
contain cells with different mutational haplotypes. Theorem 3 also gives quantitative
predictions about the relative contribution of different mutations to the total population. These
implications will be explored further in a follow-up paper currently in progress.

With the behavior of the type-1 individuals analyzed, we are ready to proceed to the study of
type-k individuals. The computation of the mean is straightforward.

Theorem 4—If (*) holds, then
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As in the k = 1 case, the mean involves a polynomial correction to the exponential growth and
again, does not give the correct growth rate for the number of type-k cells. To state the correct
limit theorem describing the growth rate of Zk(t), we will define pk and u1,k by

for all k ≥ 1.

Theorem 5—If (*) holds, then for θ ≥ 0

(1.2)

where ck(λ0, b) is a constant whose value will be given in (4.9). In particular, we have

where Vk has Laplace transform given by the righthand side of (1.2).

If we let  be the number of type-k descendants at time t of the 1 mutant at (s, x, v) ∈ 
(t) where (t) is the three dimensional point process described in the paragraph preceding
Theorem 3, then  is the same as a process in which the initial type (here type-1 cells)
behaves like ve(λ0 + x)(t − s) instead of Z0(t) = V0eλ0t. Therefore, Theorem 5 can be proved by
induction. To explain the form of the result we consider the case k = 2. Breaking things down
according to the times and the sizes of the mutational changes, we have

As in the result for Z1(t) the dominant contribution comes from x1, x2 = b − O(1/t) and as in
the discussion preceding the statement of Theorem 2, the time of the first mutation to b − O(1/
t) is ≈ r1 = (log t)/λ0. The descendants of this mutation grow at exponential rate λ0 + b − O(1/
t), so the time of the first mutation to 2b − O(1/t) is ≈ r2 = r1 + (log t)/(λ0 + b). Noticing that

tells us what to guess for the polynomial term: t−(2+p2) where
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In Figure 2, we compare the asymptotic Laplace transform from Theorem 5 with the results of
simulations in the case k = 2. To explain the slow convergence to the limit, we note that if we
take account of the mutation rates u1, u2 in the heuristic from the previous paragraph (which
becomes important when u1, u2 are small), then the first time we see a type-1 cell with growth
rate b − O(1/t) will not occur until time  when the type-0 cells reach O(t/u1) and
so the first type-2 cell with growth rate 2b − O(1/t) will not be born until time

 when the descendants of the type-1 cells with growth rate
b − O(1/t) reach size O(t/u2). When u1 = u2 = 10−3, λ0 = .1, and b = .01, r ≈ 223. The mutations
created at this point will need some time to grow and become dominant in the population. It
would be interesting to compare simulations at time 300, but we have not been able to do this
due to the large number of different growth rates in generation 1.

1.2 Unbounded distributions
In this section, we consider situations in which the fitness distribution is unbounded. We will
suppose that the fitness distribution ν has tail

(1.3)

as x → ∞ for some α, γ, K > 0, and β ∈ ℝ. Our assumption (1.3) on the tail of ν is satisfied by
a number of natural distributions including the gamma(β +1, γ) distribution which has α = 1
(and includes the exponential distribution as the special case β = 0) and the normal distribution
which has α = 2, β = −1.

To analyze this situation, we will again take a Poisson process viewpoint and look at the
contribution from a mutation at time s with increased growth rate x. A mutation that increases
the growth rate by x at time s will, if it does not die out, grow to e(λ0 + x)(t − s) ζ at time t where
ζ has an exponential distribution. The growth rate (λ0 + x)(t − s) ≥ z when

Therefore,

where
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(1.4)

as x → ∞ and

(1.5)

The size of this integral can be found by maximizing the exponent φ over s for fixed z. Since

(1.6)

and

(1.7)

we can see that ∂2 φ/∂s2(s, z) < 0 when αz > λ0(t − s) so that for all z in this range, φ(s, z) is
concave as a function of s and achieves its maximum at a unique value sz.

When α = 1, it is easy to set (1.6) to 0 and solve for sz. This in turn leads to an asymptotic
formula for μ(z, ∞) and allows us to derive the following limit theorem for Z1(t).

Theorem 6—Suppose α = 1 and let c0 = λ0/4γ. Then t−2 log Z1(t) → c0 and

where y* is the rightmost point in the point process with intensity given by

(1.8)

When α ≠ 1, solving for sz becomes more difficult, but we are still able to prove the following
limit theorem for Z1(t).

Theorem 7—For any integer α > 1, there exist explicitly calculable constants ck = ck(α, γ),
0 ≤ k < α, and κ = κ(β, α, γ) so that t−(α+1)/α log Z1(t) → c0 and
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where y* is the rightmost particle in a point process with explicitly calculable intensity.

The complicated form of the result is due to the fact that the fluctuations are only of order
t1/α so we have to be very precise in locating the maximum. The explicit formulas for the
constants and the intensity of the point process are given in (5.11) and (5.12). With more work
this result could be proved for general α > 1, but we have not tried to do this or prove Conjecture
1 below because the super-exponential growth rates in the unbounded case are too fast to be
realistic.

We conclude this section with two comments. First, the proof of Theorem 7 shows that in
contrast to the bounded case, in the unbounded case, most type-1 individuals are descendants
of a single mutant. Second, the proof shows that the distribution of the mutant with the largest
growth rate is born at time s ~ t/(α + 1) (see Remark 1 at the end of Section 5) and has growth
rate z = O(t(α+1)/α). The intuition behind this is that since the type-0 cells have growth rate
eλ0s and the distribution of the increase in fitness has tail ≈ e−γxα, the largest advance x attained
by time t should occur when s = O(t) and satisfy

The growth rate of its family is then (λ0 + x)(t − s) = O(t(α+1)/α).

Since the type-1 cells grow at exponential rate c1t(α+1)/α, if we apply this same reasoning to
type-2 mutants, then the largest additional fitness advance x attained by type-2 individuals
should satisfy

and the growth rate of its family will be O(t1+1/α+1/α2). Extrapolating from the first two
generations, we make the following

Conjecture 1—Let . As t → ∞,

Note that in the case of the exponential distribution, q(k) = k + 1.

The rest of the paper is organized as follows. Sections 2–5 are devoted to proofs of our main
results. After some preliminary notation and definitions in Section 2, Theorems 1–3 are proved
in Section 3, Theorems 4–5 in Section 4, and Theorems 6–7 in Section 5. We conclude with a
discussion of our results in Section 6.
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2 Preliminaries
This section contains some preliminary notation and definitions which we will need for the
proofs of our main results. We denote by (t) the points in a two-dimensional Poisson process
on [0, t] × [0, ∞) with mean measure

where in Sections 3–4, ν(dx) = g(x)dx with g satisfying (*) and in Section 5, ν has tail satisfying
(1.3). In other words, we have a point at (s, x) if there was a mutant with birth rate a0 + x at
time s. Define a collection of independent birth/death branching processes  indexed by
(s, x) ∈ (t) with , individual birth rate a0 + x, and death rate b.  is the
contribution of the mutation at (s, x) and

It is well known that

where ζ ~ exp((λ0 + x)/(a0 + x)) (see, for example, equation (1) in Durrett and Moseley
(2009)). In several results, we shall make use of the three-dimensional Poisson process (t)
on [0, t] × [0, ∞) × (0, ∞) with intensity

In words, (s, x, v) ∈ (t) if there was a mutant with birth rate a0 + x at time s and the number
of its descendants at time t, , has . It is also convenient to define the
mapping z: [0, ∞) × [0, t] → [0, ∞) which maps a point (s, x) ∈ (t) to the growth rate of the
induced branching process if it survives: z(s, x) = (λ0 + x)(t − s) and let

for A ⊂ [0, ∞).

We shall use C to denote a generic constant whose value may change from line to line. We
write f(t) ~ g(t) if f(t)/g(t) → 1 as t → ∞ and f(t) = o(g(t)) is f(t)/g(t) → 0. f(t) ≫ (≪)g(t) means
that f(t)/g(t) → ∞ (resp. 0) as t → ∞ and f(t) = O(g(t)) means |f(t)| ≤ Cg(t) for all t > 0. We also
shall use the notation f(t) ≃ g(t) if f(t) − g(t) → 0 as t → ∞.
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3 Bounded distributions, Z1

In this section, we prove Theorems 1–3.

Proof of Theorem 1
Mutations to type-1 cells occur at rate V0u1eλ0s so

(3.1)

We begin by showing that the contribution from x ∈ [0, b − (1 + k) (log t)/t] can be ignored for
any k ∈ [0, ∞). The Mean Value theorem implies that

(3.2)

Using this and the fact that  for any c < d, we can see that

(3.3)

To handle the other piece of the integral, we take k = 1 and note that

After changing variables y = (b − x)t, dx = −dy/t, the last integral

which proves the result.

The above proof tells us that the dominant contribution to the type-1 cells comes from mutations
with fitness increase x ≥ bt = b − 2log t/t. To describe the times at which the dominant
contributions occur, let S(t) = (2/b) log log t. Then the contribution to the mean from x ∈ [bt,
b] and s ≥ S(t) is by (3.1)

Durrett et al. Page 11

Theor Popul Biol. Author manuscript; available in PMC 2011 August 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Since btS(t) ≥ (3/2) log log t for all t sufficiently large, this quantity is o(t−1e(λ0+b)t). In words,
the dominant contribution to the mean comes from points close to (0, b) or more precisely from
[0, (2/b) log log t] × [b − (2 log t)/t, b].

Proof of Theorem 2
It suffices to prove (1.1). The computation in (3.3) with k = 2 + p implies that the contribution
from mutations with x ≤ bt = b − (3 + p)(log t)/t can be ignored. Therefore, we have

where At = {(s, x) ∈ (t): x > bt}. Lemma 2 of Durrett and Moseley (2009) implies that

where  and  is a birth/death branching process with birth rate a0 + x, death rate

b0, and initial population . Using

(3.4)

we have

Changing variables s = rx + r where  on the inside integral, y = (b − x)t, dy/t =
−dx on the outside, and continuing to write x as short hand for b − y/t, the above

(3.5)

Formula (20) in Durrett and Moseley (2009) implies that as u → ∞,

(3.6)

and therefore, letting t → ∞ and using (1 + p) λ0/(λ0 + b) = 1, we can see that the expression
in (3.5)
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Changing variables , dr = dq/(λ0 + b) gives

To simplify the first integral we note that

For the second integral, we prove

Lemma 1—If 0 < c < 1

(3.7)

Proof: We can rewrite the integral as

so that after interchanging the order of integration and changing variables w = e−qx, dw =
−dqe−qx so that w/x = e−q, dw/x = −dqe−q, we have

which is = Γ(c)Γ(1 − c).

Taking c = λ0/(λ0 + b) and letting

(3.8)

we have proved Theorem 2.
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Recall that we have assumed Z0(t) = V0eλ0t is deterministic. This assumption can be relaxed to
obtain the following generalization of Theorem 2 which is used in Section 4.

Lemma 2—Suppose that Z0(t) is a stochastic process with Z0(t) ~ eλ0tV0 for some constant
V0 as t → ∞. Then the conclusions of Theorem 2 remain valid.

To see why this is true, we can use a variant of Lemma 2 from Durrett and Moseley (2009) to
conclude that

where  is the σ-field generated by Z0(s) for s ≤ t. Therefore,

Given ε > 0, we can choose tε > 0 so that

for all t > tε. Since the contribution from t ≤ tε will not affect the limit and the term inside the
expectation is bounded, the rest of the proof can be completed in the same manner as the proof
of Theorem 2.

We conclude this section with the

Proof of Theorem 3
Let (t) be the three dimensional Poisson process defined in Section 2. Recall that

i.e. F maps a point in (t) to its contribution to the limit t1+pe−(λ0+b)tZ1(t). Using (3.4), we see
that in order to have F(s, x, v) > z we need

Therefore, the expected number of mutations that contribute more than z to the limit is
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The exponential term can be simplified by making the change of variables

ds = dr/r(λ0 + x) yielding the equivalent expression

where α(x, t) = zt−(1+p)e(b−x)t(λ0 + x)/(a0 + x) and β(x, t) = α(x, t) e(λ0+x)t. As in the previous
proof, the main contribution comes from x ∈ [bt, b] so when we change variables y = (b − x)t,
dx = −dy/t, replace the x’s by b’s and use 1 = (1 + p)λ0/(λ0 + b) we convert the above into

Performing the integrals gives the result with

(3.9)

4 Bounded distributions, Zk

We now move on to the proofs of Theorems 4 and 5. Recall that we have defined pk by the
relation

Proof of Theorem 4
Breaking things down according to the times and the sizes of the mutational changes we have

(4.1)

The first step is to show

Lemma 3—Let bt = b − (2k + 1)(log t)/t. The contribution to EZk(t) from points (x1,…xk)
with some xi ≤ bt is o(t−2ke(λ0+kb)t).
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Proof: (3.2) implies that

Applying this and working backwards in the above expression for EZk(t), we get

and the desired result follows.

With the Lemma established, when we work backwards

From this and induction, we see that the contribution from points {x1, … xk) with xi ∈ [bt, b]
for all i is

Changing variables yi = t(b − xi) the above

which proves the desired result.

In the proof of the last result, we showed that the dominant contribution comes from mutations
with xi > bt. To prove our limit theorem we will also need a result regarding the times at which
the mutations to the dominant types occur.

Lemma 4—Let . The contribution to EZk{t) from points with s1 ≥ αk log t is o
(t−2ke(λ0+kb)t).

Proof: Replace the Xi’s in the exponents by b’s, we can see from (4.1) that the expected
contribution from points with s1 ≥ αk log t is
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and the desired result follows.

Recall that

For the induction used in the next proof, we will also need the corresponding quantity with
λ0 replaced by λ0 + x and k by k − 1

which means

The limit will depend on the mutation rates through

Again we will need the corresponding quantity with k − 1 terms

We shall write u2,k = u2,k(b) and note that

(4.2)

Proof of Theorem 5—We shall prove the result under the more general assumption that
Z0(t) ~ V0eλ0t for some constant V0. The result then holds for k = 1 by Lemma 2. We shall prove
the general result by induction on k. To this end, suppose the result holds for k −1. Let

 be the type-k descendants at time t of the 1 mutant at (s,x,v) ∈ (t). Since
 compared to Z0(t) ~ V0eλ0t, it follows from the induction hypothesis that
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(4.3)

Integrating over the contributions from the three-dimensional point process we have

where . To prove the desired result we need to replace θ by
θtk+pke−(λ0+kb)t. Doing this with (4.3) in mind we have

(4.4)

By Lemmas 3 and 4, we can restrict attention to x ∈ [bt, b] and s ≤ αk log t. The first restriction
implies that all of the x’s except the one in (b − x) can be set equal to b and the second that we
can replace t by t − s. Since (k + pk) −(k − 1 + pk−1 (b)) = (λ0 + kb)/λ0, the term in the exponential
on the righthand side of (4.4) is

Changing variables s = R(t) + r where R(t) = (1/λ0)(log t), and y = (b − x)t, dy = −tdx the above
becomes

Using (4.3) now we have that the 1 − φ term converges to

To simplify this expression, we let
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dr = dq/(λ0 + b). Plugging this into eλ0r results in

so we conclude that the term in the exponential on the righthand side of (4.4) converges to

(4.5)

To obtain a cleaner expression for the constants, we begin by noting that the change of variables
w = v (λ0 + b)/(a0 + b), dw = dv(λ0 + b)/(a0 + b) implies that

(4.6)

Furthermore, we also have

(4.7)

Finally, to evaluate the third integral in (4.5), we make the change of variables x = e−q, dx =
−e−q dq, or dq = −dx/x to show that it is

Integrating by parts f (x) = 1−e−x, g′(x) = x−1−λ0/(λ0+b), f′ (x) = e−x, g(x) = x−λ0/(λ0+b) (λ0+ b)/
λ0 shows that the previous expression is

(4.8)

Combining (4.6) – (4.8) and using (4.2), we conclude that the expression in (4.5) is
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(4.9)

Setting ck(λ0,b) equal to the quantity in (4.9) divided by V0u1,kθλ0/(λ0+kb) we have proved the
result.

To work out an explicit formula for the constant and to compare with Durrett and Moseley
(2009), it is useful to let λj = λ0 + jb, aj = a0 + jb and

From this we see that

and hence

In Durrett and Moseley (2009) if we let  be the σ-field generated by Zj(t) for j ≤ k and all
t ≥ 0 then

Iterating we have

and hence

where .
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5 Proofs for unbounded distributions
In this Section, we prove Theorems 6 and 7. The first step is to show that unlike in the case of
bounded mutational advances, for unbounded distributions, the main contribution to the limit
is given by the descendants of a single mutation. We will later show that the largest growth
rate will come from z = O(t(α+1)/α) so the next result is enough. Recall that z(s, x) = (λ0 + x)
(t − s) is the growth rate of the family descended from a mutant at (s, x).

Lemma 5
For any z ̄, t > 0, we have

Proof—z(s, y) ≤ z ̄ if and only if we have a mutation at time s which increases fitness by y ≤
z ̄/(t − s) − λ0 and hence, the expected number of individuals produced by mutations with growth
rates ≤ z ̄ is

since .

To motivate the proof of the general result, we begin with the case when α = 1. Recall that the
mean number of mutations with growth rate larger than z has

where q, φ are as in (1.4), (1.5).

Proof of Theorem 6
Since

for any z > 0, we have
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as t → ∞. Lemma 5 tells us that if there is a mutation with growth rate z = O(t2), then the
contribution from mutations with growth rates smaller than z − ε can be ignored so it suffices
to describe the distribution of the largest growth rates. We will show that if

then

(5.1)

so that the largest growth rate is O(t2) and comes from the rightmost particle in the point process
with intensity given by (1.8).

To prove (5.1), we first need to locate the maximum of φ. Let z > λ0t so that there exists a
unique maximum sz. Solving φs(s, z) = 0 and using the expression for φs in (1.6) yields

where a0 = (γ/λ0)1/2 = (4c0)−1/2 which leads to the expression

(5.2)

If we take

in (5.2) and use (1 + y)1/2 = 1 + y/2 + O(y2), we obtain

(5.3)

as t → ∞. Furthermore, (1.7) implies that
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as t → ∞ with . Since φs(sz, z) = 0, taking a Taylor expansion around sz yields

(5.4)

where |g(s, z)| ≤ C|s − sz|3/t2 for all s. Also note that letting

and recalling (1.4), we have

where ct → 1 as t → ∞ so that

where |g2(s, z)||s − sz|−1t−β = o(1).

Write

where A = {s: |s − szt| ≤ C(t log t)1/2} ∩ [0, t]. Since concavity implies that for s ∈ Ac and C
sufficiently large, we have

the contribution of the second integral is negligible. After the change of variables s = szt + (t/
a)1/2r, when t is large, the first integral becomes
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and therefore since |g(s, zt)| ≤ C(t log t)3/2/t2 when s ∈ A, we have

(5.5)

where . Since

we can conclude that

which proves (5.1).

When α ≠ 1, we no longer have an explicit formula for the maximum value sz which complicates
the process of identifying the largest growth rate. We shall assume for convenience that α > 1
is an integer.

Proof of Theorem 7
As in the proof of Theorem 6, it suffices to describe the distribution for the largest growth rates.
Let z > λ0t so the maximum sz exists. To find a useful expression for the value of φ(sz, z), we
write

Using the definition of sz as the solution to φs(sz, z) = 0 yields the condition that

i.e.,
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If we substitute the right side of this equation back in for t − sz in the parenthesis, then writing
a0 = (αγ/λ0)1/(α+1) we have

Repeating this α times and then using the approximation (1 − x)n = 1 − nx + O(x2) with n =
(α − 1)/(α + 1) yields

(5.6)

where

for j ≥ 1. The error term is O(z−1) because

for all z > λ0t and s ≤ t. Factoring out a0 in (5.6) and using (1 + x)−1 = Σ(−x)j when |x| < 1, we
have that

(5.7)

for large z where the bj are given by
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and in general,

(5.7) implies that

and therefore,

(5.8)

where the dj can be calculated explicitly, for example:

To figure out the distribution of the growth rate for the largest mutant, we let c0 = (−λ0/
d0)(α+1)/α and then search for κj, j = 1, …, α − 1 and κ so that plugging
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into (5.8) yields

(5.9)

for some constants k1, k2, k3. Substituting zt into (5.8) and writing κ0 = 1, κα = x/c0 to ease the
notation we obtain

Since λ0t + d0(−λ0t/d0) = 0, the first order terms in this expansion is t(α−1)/α and after using the
Taylor series expansion

we obtain

(5.10)

where

and in general

j = 1, 1, …, α where for each i and k, in the inner product, i1, …, ik are always chosen to satisfy
i1 + i2 + ··· + ik = j − i. Since ρj depends only on κi, i ≤ j, then after noting that the coefficient
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of κj in ρj is −αλ0/(α + 1), we can use forward substitution to solve the system ρj = 0, j = 1, 2,
…, α − 1 for κj to obtain the recursive formulas

(5.11)

for i = 1, 2, …, α − 1. Setting ρ = −k3 yields

and for this choice of cj, κ, we obtain (5.9) with

and k1 = −(ρα − k2x). Since

choosing k3 = (2β/α + 1)/2 replaces (5.3) in the proof of Theorem 6.

Now substituting (5.6) and (5.7) in (1.7) yields

where in the second to last line we have used the fact that . When z = zt, this becomes
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where

Since φs(sz, z) = 0 and a calculation similar to the one above shows that φsss(szt, zt) = O(t−2),
we have

where |g(s,z)| ≤ C|s − sz|3/t2 for all s. This replaces (5.4) from the α = 1 proof and the rest of
the proof is the same. Note that the intensity for the limiting point process is given by

(5.12)

Remark 1—From (5.6), we have

which tells us that the time at which the mutant with largest growth rate is born is ~ t/(α + 1).

6 Discussion
In this paper, we have analyzed a multi-type branching process model of tumor progression in
which mutations increase the birth rates of cells by a random amount. We studied both bounded
and unbounded distributions for the random fitness advances and calculated the asymptotic
rate of expansion for the kth generation of mutants.

In the bounded setting, we found that there are only two parameters of the distribution that
affect the limiting growth rate of the kth generation (see Theorems 1, 2, 4, and 5): the upper
bound for the support of the distribution and the value of its density at the upper bound. This
is a rather intuitive result since one would expect that in the long run, the kth generation will
be dominated by mutants with the maximum possible fitness. In addition, we found that there
is a polynomial correction to the exponential growth of the kth generation. This correction is
not present in the case where the fitness advances are deterministic. We have discussed this
point in further detail in Section 1.1 and after the proof of Theorem 5 in Section 4. Finally, we
showed that the limiting population is descended from several different mutations (see
Theorem 3).
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In the unbounded setting, we assumed that the distribution of the fitness advance has tail

(6.1)

where α, β, γ, and K are parameters. We found that the population of cells with a single mutation
grows asymptotically at a super-exponential rate exp(t(α+1)/α) (see Theorems 6 and 7) and at
large times, most of the first generation is derived from a single mutation (see Lemma 5 and
the preceding paragraph). The super-exponential growth rate suggests that distributions of the
form (6.1), which includes the exponential distribution that is often used to model fitness
advances of organisms under selective pressure, is not a good choice for modeling the
mutational advances in the progression to cancer where there is very little evidence for
populations growing at a super-exponential rate.

These conclusions provide several interesting contributions to the existing literature on
evolutionary models of cancer progression. First, our model generalizes previous multi-type
branching models of tumor progression by allowing for random fitness advances as mutations
are accumulated and provides a mathematical framework for further investigations into the
role played by the fitness distribution of mutational advances in driving tumorigenesis. Second,
we have discovered that bounded distributions lead to exponential growth whereas unbounded
distributions lead to super-exponential growth. This dichotomy might provide a new method
for testing whether a tumor population has evolved with an unbounded distribution of
mutational advances. Third, we observe that in the case of bounded distributions, the growth
rate of the tumor is somewhat ‘robust’ with respect to the mutational fitness distribution and
depends only on its upper endpoint. Finally, our calculations of the growth rates for the kth
generation of mutants serve as a groundwork for studying the evolution and role of
heterogeneity in tumorigenesis. These implications will be explored further in future work.
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Figure 1.
Plot of the exact Laplace transform (LT) for t(1+p) e−(λ0+b)t Z1 (t) at times t = 60, 80,100,120,
the approximations from Monte Carlo (MC) simulations at the corresponding times, and the
asymptotic Laplace transform from Theorem 2. Parameter values: a0 = 0.2, b0 = 0.1, b = 0.01,
and u1 = 10−3. g is uniform on [0, .01].
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Figure 2.
Plot of the approximations to the Laplace transform of t2+p2e−(λ0+2b)t Z2(t) from Monte Carlo
(MC) simulations at times t = 80,100,120 along with the asymptotic Laplace transform from
Theorem 5. Parameter values: a0 = 0.2, b0 = 0.1, b = 0.01, and u1 = u2 = 10−3. g is uniform on
[0, 0.01].
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