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Abstract
Bounds for the bracketing entropy of the classes of bounded k-monotone functions on [0, A] are
obtained under both the Hellinger distance and the Lp(Q) distance, where 1 ≤ p < ∞ and Q is a
probability measure on [0, A]. The result is then applied to obtain the rate of convergence of the
maximum likelihood estimator of a k-monotone density.
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1 Introduction
A function on (0, ∞) is called k-monotone if (−1)jf(j)(x) is non-negative, non-increasing, and
convex for 0 ≤ j ≤ k−2 if k ≥ 2, and f is non-negative, non-increasing if k = 1. These functions
fill the gap between monotone functions and completely monotone functions. They appear
very commonly in nonparametric estimation, such as the Maximum Likelihood Estimator
(MLE) in statistics via renewal theory and mixing of uniform distributions. Indeed, k-monotone
functions have been studied since at least the 1950s; for example, Williamson[1] gave a
characterization of m-monotone functions on (0, ∞) in 1956. In recent years, there has been
some interest in statistics regarding this class of functions. We refer to [2] and the references
therein for recent results and their statistical applications.

Note that a k-monotone function may not be bounded near t = 0. In order to study the metric
entropy, we restrict ourselves to the subclass that consists of only the functions that are
continuous at t = 0. We refer to this subclass as the class of k-monotone functions on [0, ∞).
We denote by  the class of k-monotone functions on I, and by  the class of
probability densities on I that are k-monotone.

For statistical applications, we wish to estimate the bracketing entropy of  and
 under all Lp(Q) distances, where 1 ≤ p < ∞ and Q is any probability measure on ,

and under the Hellinger distance h which is defined by
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(1)

Recall that the bracketing metric entropy of a function class  under distance ρ is defined as
, where  is defined by

where

It is easy to see that both  and  are bounded under the Hellinger distance.
However, they are not compact. Indeed, for any , we can find infinitely many functions
in  with mutual Hellinger distance at least δ. In fact, for any α > 0, the functions pn(t)
= 2nαe−2nαt are clearly in . For m > n,

for

Note that the sequence {pn(t)}n≥1 is unbounded near the origin. This suggests us that for the
Hellinger distance, we need to restrict ourselves to k-monotone functions whose values are
bounded near the origin. However, the sequence {pn(t)}n<0 is uniformly bounded by 1. Thus,
this example also indicates that the non-compactness of  under the Hellinger distance
is partly due to the fact that the interval is unbounded. Hence, we should also restrict ourselves
to bounded intervals. Therefore, in what follows, we consider the subclasses  and

 instead, where  and  denote the classes of functions that are bounded
by B and belong to  and  respectively.

By changing variables, it is easy to see that

Hence, we only need to consider the case A = 1.
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Let us remark that when k = 1, the problem has been studied by Van de Geer[3] based on an
earlier work of Birman and Solomjak[4]. For example, it was proved that (see also [5]; Theorem
2.7.5)

(2)

for some absolute constant C > 0, and

(3)

for some positive constant Cp depending only on p, where 1 ≤ p < ∞, and Q is any probability
measure on . For simpler proofs, see also [6,7]. In particular, the iteration method used in
[6] is useful in our argument in this paper.

For k > 1, Gao[8] also established the following metric entropy bound for :

(4)

The method revealed a nice connection between the metric entropy of these function classes
and the small ball probability of k-times integrated Brownian motions. However, because for
k > 1 the square root of a k-monotone function may not be k-monotone, the metric entropy
estimate under L2 distance does not yield an estimate under the Hellinger distance.
Furthermore, that method cannot produce any result on bracketing metric entropy. Thus, it
cannot be readily used to determine the convergence rate of the MLE of a k-monotone density.

In this paper, we directly estimate the bracketing metric entropy of these function classes under
the Hellinger distance and under all Lp(Q) distances, where 1 ≤ p < ∞, and apply these estimates
to statistical settings.

Our main tool is the following lemma, which provides a useful method to estimate bracketing
entropy. An extension to more general integral operators will appear elsewhere.

Lemma 1. Let  be a class of functions on [0, 1], and  be the class of function on [0, 1]

defined by , where 0 ≤ α(x) ≤ 1 is any increasing function on [0, 1].
If , where ∥ · ∥1 stands for the L1 distance under the Lebesgue measure
on [0, 1], then

i. There exists a constant C depending only on p, such that for any probability measure
Q on [0, 1]

where ∥ · ∥p,Q is defined by
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ii. If we further assume that for all functions in , g(x) ≥ δ, then there exists a constant
C, such that

where h(f, g) is defined by (1).

Proof. Let {fi}, 1 ≤ i ≤ eϕ(ε), be an ε-net for F in the L1 distance under the Lebesgue measure
on [0, 1]. For each i, and f ∈ F, we can write

Thus, if we define

we have

Note that  and  both consist of non-negative increasing functions bounded by ε. Thus, by
(3) we can find ecϕ(ε) many ε/ϕ(ε)-brackets (with respect to ∥ · ∥p,Q) that cover . Say

these brackets are , 1 ≤ j ≤ ecϕ(ε). Then clearly the brackets

cover G. Statement (i) follows by noticing that these are ε/ϕ(ε)-brackets under the ∥ · ∥p,Q
distance.

To prove Statement (ii), we notice that with the additional assumption g ≥ δ, we have for any
g1, g2 ∈ G,

Hence,
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Thus, Statement (ii) follows from Statement (i).

2 Under Hellinger distance
Note that by scaling arguments, we can easily show that

Hence, we only need to consider the classes  and .

Before we process with the detailed calculation, we make some observations that can simplify
the later arguments. Firstly, because k-monotone C∞ functions are dense in  (cf.
[8]), we can and will assume that all the densities in  are continuously k-times
differentiable. Secondly, if for I = [a, b] ⊂ [0, 1] we define

then for every ,

for all 0 ≤ j ≤ k, and for all u ∈ [0, 1]. For , we can write

(5)

All the terms on the right-hand side are non-negative. The sum of the first k – 1 terms is a
polynomial of u with degree k – 2, and non-negative coefficients.

2.1 Bounded k-monotone functions

For , because f(1) ≤ 1, we have

Denote

and denote by  the class of functions g on I ⊂ [0, 1] that satisfy 0 ≤ g ≤ 1 and are of the
form
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where f are non-negative increasing functions on I. By (5), we have

, and thus

(6)

Note that the set

forms a -net for  under the Hellinger distance. Indeed, for any
, choose

Then

which implies that . Note that there are no more than Nk–1 elements in this set.
By choosing N = ⌈4kε−2⌉, we obtain

(7)

Of course, because , we also have

(8)

Our next goal is to estimate . To this end, we first consider

For , we have
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Because g(1) is bounded by 1, and f is increasing, for all 0 ≤ u ≤ 1/2 we have

Define f1 = min{f, 2k–1(k – 1)!} and f2 = f – f1. Then, by the above argument we see that f2 is

non-negative and increasing, and is supported on [1/2, 1]. For  and 0 ≤ u ≤ 1,
we can write

We construct two function classes:

Then the decomposition above gives , and thus we have for any 0 < θ <
1,

(9)

We first claim that

(10)

for some constant C depending only on k. Indeed, the claim is clearly true for k = 1, because
in this case  consists of monotone functions that are bounded by 1. Thus, when k = 1, the
inequality (10) is the special case of (3).

Suppose that (10) is true for k = r. That is, . Because

by applying Lemma 1 for L2 norm under Lebesgue measure, we have
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(11)

which implies that  with a different constant C. Hence
(10) holds for all k ≥ 1. Therefore,

(12)

Next, we prove that

(13)

Indeed, if , 1 ≤ i ≤ N are  under the ∥ · ∥2 distance that cover , then the
brackets

1 ≤ i ≤ N, clearly cover . To see they are θε-brackets, we notice that

Applying (12) and (13) to (9), we obtain

Choosing  and by iteration, we obtain

(14)

for a different constant C depending only on k. Plugging (14) and (8) into (6), we obtain

(15)

If we let
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then because for all  we have , we obtain

(16)

Back to our goal of estimating . We define

Then

Therefore

(17)

(18)

Note that

Also note that

where the last inequality follows from (7). We choose θ and δ so that  and
, where L is a large number to be fixed later. Thus by plugging the two bounds above

into (17) we obtain

(19)
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for some constant C1.

On the other hand, by choosing η so that , we have

Recall that by (16) we have

with a constant C2 depending on L. Plugging into (??), we obtain

(20)

But , (19) and (20) imply that

Let . Then the inequality above implies that

for some constant C, which further implies that

By choosing L large so that 1.4−1/k + L−1/k < 1, we immediate obtain

(21)

for some constant C. Together with (7), we have

Summarizing, we obtain

Theorem 2. There exists a constant C depending only on k, such that

(22)
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2.2 Bounded k-monotone densities

Now we consider . Because , the result of
Theorem 2 applies to . Our goal is to improve the constant  by using the the

extra fact that  for . For convenience, we will actually relax the

condition  in the definition of  to the condition .

Assume B > 2. For 1/B < δ < 1, we define

Then, . For any , because f increases and ,
we have f(u) ≤ 2 for all u ∈ [0, 1/2]. Hence, we can decompose Xδ and Yδ into two classes of
functions with disjoint supports:

Therefore, we have

By iteration, we obtain

Let δ = 1/ log2 B and choose m = ⌈log2 B⌉, we have

We summarize this bound in the following theorem:

Theorem 3. Let  be the class of k-monotone densities on [0, A] that are bounded by
B. Then
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where C is a constant depending only on k.

3 Under Lp(Q) Distances

In this section we will consider the bracketing entropy of  and  under
the Lp(Q) distance, where 1 ≤ p < ∞ and Q is any probability measure on [0, A]. We will prove
the following theorem:

Theorem 4. (i) There exists a constant C depending only on p and k, such that for any
probability measure Q on [0, A] that is absolutely continuous with respect to Lebesgue measure
with bounded density q,

(23)

(24)

(ii) Let  consist of k-monotone functions g on [0, A], such that g’(0) ≥ −B, and let
 consist of probability densities that belong to . Then there exists a

constant C depending only on p and k, such that for any probability measure Q on [0, A],

(25)

(26)

Remark 5. In view of the result proved in [8] the rate ε−1/k is sharp when p = 2.

Proof. The result is known for the case k = 1. Thus, we only need to consider the case k > 1.

To prove the first inequality in the statement (i), we note that

where ∥ · ∥p is the Lp distance under Lebesgue measure. Thus, it suffices to prove that for any

η > 0, . However, this follows from the same argument as
in the proof of Theorem 2. Indeed, the only change needed is to replace (11) by
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which leads to . The first inequality in the statement (i) then follows
by iteration. The proof of the second inequality is also similar to that of Theorem 3.

To prove the first inequality in the statement (ii), we note that by the change of variables x =
Au, we have

where P is the probability measure on [0, 1] defined by P([0, u]) = Q([0, Au]). Thus, it suffices
to consider the case ABp = 1. Furthermore, by approximation, we can assume that P is absolutely
continuously with respect to the Lebesgue measure on [0, 1]. Let α be the inverse function of
P([0, x]). By the change of variable u = P([0, x]), it is easy to see that

where

By (23) we have

Applying Lemma 1, we obtain

which leads the inequality (25). The proof of (26) follows the same argument as Theorem 3,
and is thus omitted.

4 Rates of convergence for the maximum likelihood estimator of a bounded
k-monotone density

Let  be the MLE of a k-monotone density p0 on [0, A] based on X1, … , Xn i.i.d. with density
 for some 0 < A, B < ∞. Thus p0 is bounded and concentrated on [0, A].

From [2] (see also [9]) we know that  is characterized by

(27)
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with equality in the inequality in (27) at points , where we may
assume that 0 < τ1 < … < τm (with m random) and where

Therefore

(28)

To apply our entropy bounds we need to show that  is bounded with (arbitrarily) high
probability when p0 is bounded. This is the content of the following proposition.

Proposition 6. Suppose that . Then the MLE  satisfies

Proof. The characterization of the MLE implies that

(29)

(30)

with equality at y = τ1:

(31)

Now note that the support of  is concentrated on y ≥ τ1, so x/y ≤ x/τ1, or (1 – x/y) ≥ (1 – x/
τ1) for y ≥ τ1 and 0 ≤ x ≤ τ1. Thus it follows that

Combining the last two displays we find that
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which yields

by Daniels’ inequality; see [10], Theorem 9.1.2, page 345.

Now suppose that  is a collection of densities with respect to a sigma-finite measure μ. The
following theorem is a simplified version of Theorem 3.4.4 of [5] page 327. Our rate theorem
for the MLE  over the class , the class of k-monotone densities on [0, A], will be
proved by combining the upper bound of this theorem with (an easy modification of) the rate
results given in [5], Theorem 3.2.5, page 289.

Theorem 7. Suppose that X1, … , Xn are i.i.d. P0 with density . Let h be the Hellinger
distance between densities, and mp be defined, for , by

Then

Furthermore, with , we also have

(32)

where

Here is our main result of this section:

Theorem 8. Suppose that  for some 0 < A, B < ∞. Then the
maximum likelihood estimator  of p0 in  satisfies

Remark 9. This generalizes the rate result of [3] (with resulting rate of convergence n−1/3) to
k > 1. For the case k = 1, closely related results with the Hellinger metric replaced by the L1
metric, were obtained by [11–13]. The rate established in Theorem 8 is apparently consistent
with the local rate result of n−k/(2k+1) established (up to an envelope conjecture) by [2].
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Proof. For simplicity, we write . Let M > 0 and K > 0. Then

where, by Proposition 6,

by Daniels’ inequality, and hence IIn can be made arbitrarily small (uniformly in n) by choosing
K large. Now we essentially follow the proof of Theorem 3.2.5 of [5] (with θ identified with
p), but exploit the fact that . Thus, letting  we have for any large
η > 0,

where the shells Sj,n are now defined with the additional restriction that p(0+) ≤ K:

Here the term IB,n can be made arbitrarily small for all large n by the consistency of 
established by [1]. Thus the same argument as in [9] yields, with  in (32), and

,

(33)

By (32)

A direct calculation using Theorem 3 gives

for the same constant C as in Theorem 3, where D ≡ ∣ log(AK)∣1/(2k). This implies,
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By taking

where , we have . Note that the functions δ ↦ ϕn(δ)/δ are
decreasing, therefore for any j > 0,

Hence, (33) can be estimated by
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