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Abstract
A wealth of empirical evidence has now accumulated concerning animals’ categorizing photographs
of real-world objects. Although these complex stimuli have the advantage of fostering rapid category
learning, they are difficult to manipulate experimentally and to represent in formal models of
behavior. We present a solution to the representation problem in modeling natural categorization by
adopting a common-elements approach. A common-elements stimulus representation, in conjunction
with an error-driven learning rule, can explain a wide range of experimental outcomes in animals’
categorization of naturalistic images. The model also generates novel predictions that can be
empirically tested. We report two experiments which show how entirely hypothetical
representational elements can nevertheless be subject to experimental manipulation. The results
represent the first evidence of error-driven learning in natural image categorization and they support
the idea that basic associative processes underlie this important form of animal cognition.
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In order to survive and to reproduce, all organisms must adapt to a complex and ever-changing
environment. Even the same object never provides the same information to the sensory organs
on two successive occasions, a problem which becomes particularly acute when the behavioral
task involves recognizing several different objects from the same class.

Despite this variability in stimulation, humans and animals alike learn to respond similarly to
nonidentical objects from the same category (categorization) as well as to respond differently
to individual objects from the same category (identification). Underlying such categorization
and identification behavior must be a psychological mechanism which detects and extracts
those aspects of individual objects and classes of objects that are invariant, in order to support
categorization, as well as those aspects that are specific to each stimulus, in order to support
identification (Ashby & Lee, 1993; Fetterman, 1996; Serre et al., 2005; Serre, Oliva, & Poggio,
2007).

It seems parsimonious to assume that similar mechanisms lie at the root of both human and
animal visual categorization. Even if a uniquely human ability to categorize stimuli using rules
and other “higher-level” cognitive processes is assumed (see Lea & Wills, 2008; Mackintosh,
1995), most researchers would agree that any “lower-level” mechanisms of categorization
which are present in animals are likely to be found in humans as well. If that is indeed the case,
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then animal research affords researchers a unique opportunity to study the psychological and
neural mechanisms of categorization in a setting where the influence of past experience, genetic
variability, language, and other higher-level forms of cognition can be controlled and
manipulated. On the other hand, if the principles guiding categorization in humans and
nonhuman animals prove to differ from one another, then it would still be particularly
informative to know how the same behavioral problem is solved in different ways by different
organisms as well as how evolution has shaped the strategies deployed by each.

Primates possess the most sophisticated visual system among mammals. The only other
animals that have evolved such highly advanced vision are birds (Husband & Shimizu, 2001;
Shimizu & Bowers, 1999). This fact helps to explain why the pigeon has been extensively used
as a model animal to study the behavioral mechanisms of natural image categorization and
object recognition (Wasserman, 1993). The visual capabilities of pigeons are indeed
impressive; they include the ability to detect and to classify many different classes of objects
as well as the ability to transfer this learning to novel exemplars from each class (Bhatt,
Wasserman, Reynolds, & Knauss, 1988; Herrnstein & Loveland, 1964; for reviews, see Cook,
2001; Kirkpatrick, 2001; Lazareva & Wasserman, 2008; Wasserman, 1993, 1995; Wasserman
& Bhatt, 1992; Zentall et al., 2008).

These forms of discrimination learning and stimulus generalization have now been studied for
several decades and an extensive body of empirical data has accumulated during that time.
Together with the many practical advantages of research using avian species instead of
nonhuman primates, this accumulated knowledge affords a unique opportunity for studying
the general mechanisms of visual categorization. Furthermore, this line of research in animal
cognition could soon become especially important and relevant, given the increasing attention
that is being paid to the study of vision using natural images (Felsen & Dan, 2005; Geisler,
2008; Simoncelli & Olshausen, 2001); such natural images more closely resemble the stimuli
that are encountered by biological systems in the real world than the more commonly used
artificial stimuli of the laboratory.

Surprisingly, empirical research in natural object categorization by pigeons and other animals
has not been accompanied by a concomitant effort to provide a coherent theoretical explanation
of this behavior, a fact which makes it difficult to draw connections between this realm of
research and explorations of human vision and other forms of animal learning. Questions about
the conditions that produce categorization learning, the contents of such learning, and the rules
that map learning onto performance (Rescorla, 1988) remain unanswered. Some work has tried
to identify the nature of the representation that pigeons store during categorization learning
(Huber, 2001) and the conditions that foster categorization learning over simple discrimination
learning (e.g., Wasserman & Bhatt, 1992; Wasserman, Kiedinger, & Bhatt, 1988). Yet, a full
theoretical account including the formalization of a quantitative model has proven to be elusive.

This state of affairs is particularly perplexing given the popularity of the view that simple
associative learning processes may be responsible for open-ended categorization in pigeons
and other animals (e.g., Huber, 2001; Mackintosh, 2000) and given the fact that contemporary
associative learning models offer a wide range of theoretical tools with which to model animal
cognition, all of them developed to a high degree of formalization (for a review, see Vogel,
Castro, & Saavedra, 2004). Indeed, the ability of quantitative models of Pavlovian conditioning
to predict and to explain a wide range of experimental observations has led to their successful
application to human cognition. The same principles that explain simple associative learning
may be the foundation for verbal learning, contingency judgment, transitive inference, and
important social and perceptual phenomena (for a review, see Siegel & Allan, 1996). What is
even more ironic is the fact that researchers of human categorization have been applying animal
learning theories to their data for nearly 20 years (Gluck & Bower, 1988; Kruschke, 2001;
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Shanks, 1991). We thus see that current theories of animal learning have been widely applied
to human categorization phenomena, but not so prominently to visual categorization in animals.

Perhaps one factor contributing to this odd state of affairs is the nature of the stimuli that have
commonly been used in studies of animal categorization. As noted earlier, many of these studies
trained pigeons to discriminate photographs of real-world objects, whereas artificial categories
are more commonly used in human categorization research. Research in Pavlovian
conditioning and artificial categorization share the advantage of using elemental stimuli that
can easily be controlled by the experimenter and that can straightforwardly be represented in
computational models. Natural categories have the advantages of being more readily learned
by pigeons (Lea, Wills, & Ryan, 2006) and better reflecting the complexity of the task faced
by animals in their natural environment, but natural categories have the disadvantage of
involving a large number of features which may act independently or in concert to control
behavior. Despite several efforts to isolate the relevant features for classification (e.g., Aust &
Huber, 2002; Lazareva, Freiburger, & Wasserman, 2006; Lubow, 1974), this task has proven
to be very difficult. Even for the cases in which such features have been isolated, the same
properties found to control behavior in one study may not control behavior in other studies
using different subjects and deploying different training methods.

Therefore, anyone wishing to apply quantitative models of associative learning to the
categorization of natural images is faced with a major problem: How to formalize a
representation of these complex stimuli and the similarities and differences among them. The
work that we present here represents a simple solution to the stimulus representation problem
which arises from the use of complex stimuli in natural categorization tasks. This solution is
implemented in a model which represents stimuli as overlapping collections of elements and
which modifies their association with an outcome according to an error-driven learning rule.

In the next section, we review the history of the common-elements approach and its use in the
explanation of discrimination and generalization phenomena in animal learning. Then, we
show how this framework can be used to explain natural image categorization in animals,
providing a much-needed link between research in this area and traditional animal learning
theory. We conclude by presenting empirical evidence which confirms two new predictions
from our model concerning the role of error-driven learning in visual categorization.

The Common Elements Approach
One of the best-known ways to represent stimuli and the similarity among them is through the
notion of common elements. According this idea, diagrammed in Figure 1, every stimulus is
processed as a set of representational elements. Two different stimuli can share representational
elements; the perceptual similarity between them is a direct function of the proportion of
elements that they share (black elements in Figure 1). Elements that are active only in the
presence of one stimulus, but not the other (grey elements in Figure 1) represent the
dissimilarity between them, thereby providing a basis for their discrimination.

Perhaps the first application of the common elements idea in animal learning theory was
Konorski’s (1948) explanation of the generalization of conditioned reflexes in terms of
overlapping “cortical centres,” which he proposed as an alternative to Pavlov’s interpretation
of generalization in terms of the irradiation of excitation from the center representing the
original conditioned stimulus. In Konorski’s words, “…the intimate nature of the phenomenon
of similarity between various stimuli consists in the partial overlapping of the corresponding
cortical centres. The more extensive the overlapping, the closer is the similarity […], and when
this overlapping is virtually complete the similarity passes into ‘identity’” (p. 129).
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Later, Estes and colleagues (Atkinson & Estes, 1963; Neimark & Estes, 1967) developed the
common elements hypothesis within the framework of Stimulus Sampling Theory (SST),
replacing Konorski’s neurophysiological language with a more abstract nomenclature. In SST,
a stimulus is represented as a population of independently variable elements. On any given
learning trial, each element may become active with a fixed probability and may be fully
connected to the response that is reinforced on that trial. Generalization depends on both the
proportion of elements connected to a response from the originally conditioned population and
on the proportion of elements shared between that population and the one representing the
novel test stimulus.

One problem with SST explanations of stimulus control is that the same common elements
that account for generalization prevent the model from learning to discriminate perfectly
between similar stimuli. Several contemporary theories of associative learning have
implemented a stimulus representation in terms of collections of elements (Blough, 1975;
Harris, 2006; McLaren & Mackintosh, 2000, 2002; Wagner, 1981), but they have solved the
discrimination problem by including an error-driven learning rule, like the one proposed in the
Rescorla-Wagner model (Rescorla & Wagner, 1972). The Rescorla-Wagner learning rule
states that the change in the associative strength between a stimulus (or element) i, and an
outcome j, on a particular trial, or ΔVij, is determined by the following equation:

(1)

, where αi and βj are learning rate parameters influenced by the salience of i and j, respectively,
λj is the maximum amount of associative strength supported by j, and ΣVij is the algebraic sum
of the associative strengths of all of the stimuli presented on that particular trial. The most
important feature of this and other error-driven learning rules (Pearce, 1987; Pearce & Hall,
1980; Wagner, 1981) is that the change in associative strength on each trial reduces a prediction
error, represented by the disparity between the associative strength that is supported by the
outcome, λj, and the associative strength of all of the stimuli that are presented on that trial,
ΣVij. If several different stimuli are simultaneously paired with the outcome during training,
then the Rescorla-Wagner learning rule will distribute associative strength among them
according to their relative informational value in predicting the outcome.

The interplay between a common elements representation and an error-driven learning rule has
proven to be extremely powerful in explaining stimulus control. Common representational
elements allow one to explain the generalization of responding among different stimuli,
whereas the error-driven learning rule allows one to explain why nearly perfect discrimination
can be achieved even with highly similar stimuli (Gluck, 1992). Furthermore, the interaction
between these factors leads to new predictions which are not explained by either factor alone.

For example, Blough (1975) proposed a model in which representational elements are
sequentially ordered along a continuum representing a particular stimulus dimension. If a
stimulus possesses the property represented by that dimension, then its presence will provoke
the differential activation of several representational elements along the continuum. Coupled
with an error-driven learning rule, this stimulus representation can account for contrast effects
which have consistently been observed in the study of stimulus generalization gradients and
which cannot be explained by traditional approaches (e.g., Spence, 1937).

Mackintosh and colleagues (Mackintosh, 1995; McLaren et al., 1995) have used a simpler
version of Blough’s model to account for prototype effects in artificial categorization by
pigeons and people. These authors proposed that the tendency to classify prototypes more
accurately as members of a category than other exemplars might arise because prototypes
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typically have fewer elements in common with members of the other category. This common-
elements account can explain several experimental results obtained by these authors and it is
closely related to the model that we will present here. We will see how useful it is to represent
complex naturalistic stimuli in terms of hypothetical elements, in the same way as Mackintosh
and colleagues have represented stimulus dimensions.

A study by Rescorla (1976) provides yet another example of the utility of coupling a common
elements representation with an error-driven learning rule; this example provides the
inspiration for the model presented here. Rescorla assumed that simple stimuli, such as tones
or lights, could be represented as compounds of both unique and shared elements (e.g., AX
and BX). This idea leads to the prediction that a target stimulus might be more strongly
associated with an outcome by training involving a different, similar stimulus than by training
with the target itself. The notion is that, if target stimulus AX is paired with an unconditioned
stimulus (US), both A and X should acquire associative strength until the two together perfectly
predict the US. Later training with AX will not increase its potential to evoke a response because
learning cannot occur if there is no error in predicting the US. But later training with a similar
stimulus, BX, should result in an increase in the associative strengths of both B and X—the
unique and common elements, respectively—because, in the absence of A, the US is no longer
perfectly predicted. The result should be a conditioned response to AX that is enhanced through
training with BX, but not through training with AX itself. Rescorla (1976) found evidence for
this prediction, which not only stands as impressive confirmation of a common elements theory
of stimulus generalization, but which also suggests that it may be possible to devise ingenious
ways to manipulate entirely hypothetical components of a stimulus representation, a point to
which we will later return.

The Model
Stimulus Representation

One of the goals of the present work is to show that the simple principles of the common
elements approach can also be used to represent even the complex multidimensional stimuli
that are used in natural image categorization research. The idea is the same: Two photographs
of natural objects can be represented as collections of elements: some unique to each particular
photograph and some shared by both.

The complexity in the representation of a whole category, instead of just two stimuli, arises
when we appreciate that perceptual categories have limitless members. With a larger number
of exemplars in a category, some elements could be common to all N members, whereas others
could be common to N–1, N–2, N–3… and to just one member. In this case, different elements
will be more or less representative and diagnostic of the category, depending on how many
exemplars possess any given element. The diagnosticity of a particular element for the category
will be a direct function of the number of exemplars that activate that element, given that
members of other categories do not produce the same level of activation.

In this way, the notion of common elements offers a straightforward means to represent
stimulus properties with different levels of specificity, ranging from stimulus-specific
properties, in the form of elements that are unique to only one member of the category, to
category-specific properties, in the form of elements that are common to most members of the
category. Elements near the category-specific side of the range can be used as the basis for
categorization. Elements that are peculiar to specific exemplars of a category can be used as
the basis for more fine-grained discriminations among the individual category members.

It might seem that this idea takes us back to the starting point: if we have no knowledge about
the similarity relations among the stimuli in a categorization experiment, then there is no way
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to specify representations of them in terms of shared and specific elements. What we will show
here is that, even if we assign relatively arbitrary representations to stimuli which do not capture
the specific similarity relations among them or among different categories, then it is still
possible to explain a great deal of what is known about animal categorization by having
representations that adhere to a simple principle: stimuli belonging to the same category should
have a higher likelihood of sharing elements than stimuli belonging to different categories.

To capture this basic idea, our model represents all stimuli in a categorization task through a
large pool of elements that can either be active or inactive when a stimulus is presented. Each
of the categories that are used in the task determines a different probability distribution over
the elements, so that the elements have a variable probability of being active when a particular
exemplar of the category is presented. Because we know nothing about the similarity relations
among the different categories involved in a simulation, these distributions are generated
through a completely random process. The only requirement is to assign different probability
distributions to different categories, capturing the principle of category representation
described in the prior paragraph.

Figure 2 presents a summary of the stimulus representation in our model, whose properties can
be described at three different levels. At the first level, we have the specific representations
that are assigned to each stimulus in a categorization experiment. As noted before, the
presentation of a stimulus is assumed to activate a small proportion of all of the elements in
the pool. The bottom part of Figure 2 shows five examples of stimulus representations created
from a pool of 10 elements. Common elements between representations at this level determine
the similarity between the stimuli that they represent.

Categories comprise a large number of individual representations, one for each exemplar. If
we had access to all of these representations for one specific category, then it would be possible
to calculate the relative frequency with which each element is sampled in that category,
resulting in an empirical probability distribution over the elements. This empirical distribution
would approach the actual distribution determined by the category, from which the observed
individual exemplars were sampled. Thus, we can think of different categories as represented
by different probability distributions over elements, with the overlap among distributions
representing the similarity relations among categories. This is the second level of description
in our stimulus representation, exemplified in the top portion of Figure 2 as the probability
distribution from which the stimulus representations at the bottom were generated.

For each category, an element in the pool can either be specific to a particular exemplar or to
the entire category. Whether an element is specific to a particular stimulus or to an entire
category depends on how many exemplars in the category share this element, which in turn
depends on the sampling probability that this element has in the category representation.
Elements which have a low, nonzero probability tend to be part of the representation of one or
only a few stimuli, carrying predominately stimulus-specific information; as the sampling
probability increases, the stimulus-specificity of the element decreases and its category-
specificity correspondingly increases.

Just as all of the stimuli are represented through the same pool of elements, any category is
also represented as a probability distribution over the elements. If we had access to all of these
probability distributions, then it would be possible to calculate the relative frequency with
which each sampling probability is used across categories. The final result would be the third
level of description in our stimulus representation: the distribution over the sampling
probabilities themselves, as exemplified in the top-left portion of Figure 2 (note that the
distribution shown here is rotated counterclockwise, with probability density placed along the
x-axis). Because each sampling probability determines the level of specificity-invariance for
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a particular element, we can think of this higher-order distribution as a specificity
distribution, which gives information not about specific stimuli or categories, but about the
general coding strategy used by the animal to represent the stimuli involved in the
categorization task. In the example shown in Figure 2, across categories, low sampling
probabilities are more frequent than high sampling probabilities, meaning that the system uses
representations with many stimulus-specific elements, but few category-specific elements.

As suggested earlier, our model focuses on the highest level description of the stimulus
representation, simply ignoring the similarity relations among categories and stimuli.
Describing how elements with varied levels of specificity gain control over behavior will later
be shown to be adequate to explain an impressive number of experimental results.

The only aspect of the stimulus representation that can be manipulated in our model is the
specificity distribution, which determines the proportion of elements in the representations that
are stimulus-specific, category-specific, or anywhere between these extremes. However,
specificity can only be determined in relation to a particular category and the number of
categories in which each individual stimulus can participate is enormous. A photograph of a
person might lead to the identification of a single individual or to its classification in the basic
category “people,” in the superordinate category “mammal,” or in the subordinate category
“female.” We wanted to give our model enough flexibility to permit the possibility that different
visual tasks might involve different distributions of specificity for the representational
elements. What we needed was a way to represent the specificity distribution via a function
which could assume many different shapes; here, the beta distribution represents a very good
choice (Grinstead & Snell, 1997). The beta density function is defined by the following
equation:

(2)

In the context of our model, the variable x in Equation 2 represents the sampling probability
or the specificity level. Equation 2 determines the likelihood with which this specificity level
is used in the category representations. The parameters a and b are positive numbers and B
(a,b) is the beta function given by:

(3)

The beta density function was useful for our purposes because it determines a family of
functions which can assume one of several possible shapes depending on the values of a and
b. When a = b = 1, the function takes the form of a uniform density, with the consequence that
all of the specificity levels are equally likely in the final representational scheme. This outcome
is shown in Panel A of Figure 3. When the values of the parameters differ from 1, the
representations start being “biased:” exhibiting more stimulus-specific than category-specific
elements, more category-specific than stimulus-specific elements, or anything between these
extremes.

For example, if a =1 and b > 1, as shown in Panel B of Figure 3, the distribution is monotonically
decreasing from 0 to 1; the consequence is that stimulus-specific elements (which are related
to a low sampling probability) are more frequent than category-specific elements (which are
related to a high sampling probability). The opposite trend is true when a > 1 and b = 1, as
shown in Panel C of Figure 3. The function has sufficient flexibility to exhibit almost any other
distribution in which we might be interested, including nonmonotonic distributions with a peak
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at a particular sampling probability (like the one shown in Panel D of Figure 3) or U-shaped
distributions (like the one shown in Panel E of Figure 3). Moreover, interpreting the shape
taken by the function in terms of category-specific and stimulus-specific elements is
straightforward.

The stimulus representations are generated from the model in three steps. In the first step, a
specificity function is chosen by assigning values to the parameters in the beta distribution as
explained earlier. In our simulations with the model, we have been successful in reproducing
the qualitative aspects of empirical data with many different shapes of the beta distribution,
but the particular form that has produced the most satisfactory results is similar to the one
presented in Panel B of Figure 3. Critically, this distribution produces a high number of
exemplar-specific elements and a low number of category-specific elements. Also important
is that the stimulus representations tend to be highly sparse; that is, each stimulus activates
only a small proportion of the elements in the pool. Similar results might be obtained with the
model if any other monotonically decreasing function were used (such as exponential or
Gaussian functions).

It is interesting to note that the kind of sparse coding that we have found to be more useful in
our simulations has been found in several visual areas of the primate brain in response to natural
images (e.g., Baddeley et al., 1997; Foldiak & Young, 2002; Olshausen & Field, 2004; Vine
& Gallant, 2000). Furthermore, hierarchical models of human object recognition which
incorporate properties of the primate visual cortex also represent stimuli through processing
units which vary in their level of specificity and invariance (Serre et al., 2005; Serre et al.,
2007).

In the second step, the representation of each category in the simulated experiment is generated
by independently assigning a random value between 0 and 1 to each element in the pool. The
process is “biased” by generating random numbers according to the specificity distribution that
is chosen in the first step; random numbers following the beta distribution can easily be obtained
from numerical computing software packages such as MATLAB. The specificity distribution
that we chose in our simulations generated category representations with many low sampling
probabilities and almost no high sampling probabilities. Beyond the constraints that are
imposed by the specificity distribution, the category representations are generated in a
completely random way and always using the same parameter values, reflecting the fact that
we make no assumptions about the similarity relations among categories.

In the third and final step, representations of all of the stimuli in the experiment are generated
from the distributions that were obtained in the previous step. Representations of all of the
stimuli belonging to the same perceptual category are generated using the same probability
distribution, but it is not important which particular probability distribution is assigned to which
particular category. A random process determines if each element is or is not activated by the
presentation of a stimulus. The random process is again “biased” by the sampling probability
of the element for a specific category by generating a random number from a Bernoulli
distribution with the probability of success equal to the sampling probability of the element.
The sampling process is independent for each individual element in the representation, with
the consequence that the number of active elements is not fixed across different stimuli.

The framework presented here is essentially an extension of the ideas of SST to the
representation of categories instead of individual stimuli. We have a pool of elements with an
assigned sampling probability, which in SST represented all possible instances of a particular
stimulus and in our model represents all possible exemplars from a category. The representation
of a particular experience with a stimulus was obtained in SST by randomly sampling elements
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from the pool; here, the same sampling process yields the representations of particular
exemplars of a category.

From our theoretical perspective, these similarities are not trivial; rather, they suggest that
basically the same principles of stimulus representation can be at work in learning situations
which are of apparently very different complexity. As recognized by SST, two instances of a
stimulus are probably never experienced in the same way by an organism. Whether the relevant
stimulus is a simple light or a whole category of objects, the task of the organism is to recognize
which properties are invariant across the different instances of a stimulus and which properties
are specific to each particular stimulus instance. The invariant properties help to generalize
knowledge across different environmental situations, whereas the specific properties help to
make important distinctions among similar situations that are linked to different consequences.

One important disparity between SST and our framework is that in the former the probability
of sampling an element given a stimulus was always set to either 0 or a fixed value, whereas
our model adds more flexibility by allowing this value to vary between 0 and 1. Another
disparity lies in the learning rule that is used to modify the association between each element
and an outcome, which is explained next.

Learning Rule
Following previous models in the common-elements tradition, we propose that the associations
between each element and an outcome are updated according to an error-driven learning rule.
Specifically, we apply the Rescorla-Wagner learning rule described in Equation 1, where Vij
represents the strength of the association between element i and response j.

Although the conceptualization of stimuli as collections of unique and shared elements is the
main contribution of our model—as it offers a solution to the representation problem in
modeling natural categorization—adopting an error-driven learning rule is not trivial, because
it radically changes the predictions of the model for most experimental tasks. This learning
algorithm permits us to explain how category-specific and stimulus-specific elements acquire
control over behavior in a discrimination task. Categorization learning happens when category-
specific elements acquire control over behavior, whereas identification learning happens when
stimulus-specific elements acquire control over behavior. More importantly, the rule is useful
in explaining the dynamics of categorization learning: that is, how the interplay between
learning and generalization determines which elements in the representation gain or lose
associative strength across training. In our upcoming simulations, this interactive aspect of the
learning rule helps to explain how performance in some categorization tasks is dominated by
categorization learning early in training, whereas identification learning dominates later in
training.

Adopting an error-driven learning rule is also important because this kind of rule captures, at
least partially, many of the principles guiding associative learning in Pavlovian conditioning
and other conditioning situations. If the algorithm proves to be useful in explaining natural
image categorization as well, then we would have important evidence concerning the generality
of associative learning principles.

Finally, we fully appreciate that there are several arguments against the adequacy of both an
elemental stimulus representation and an error-driven learning rule for explaning simple
associative learning. We address some of these arguments in the General Discussion section
of this article. We have nevertheless chosen to present a model with strong similarities to the
widely-known Rescorla-Wagner model because this theory has a long tradition of application
to areas of research outside of Pavlovian conditioning (Siegel & Allan, 1996) and because this
theory’s formal properties and relationship to models from other research areas and disciplines
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is widely known (Gluck & Bower, 1988; Sutton & Barto, 1981; Widrow & Hoff, 1960). One
of our goals is to show how a quantitative model—built using ideas from traditional animal
learning theory—can explain several phenomena in natural categorization with pigeons. We
think of this as an initial proving ground for the use of formal models in this area of research;
we thereby hope to highlight the key experimental questions that need to be answered in order
to gain a fuller understanding of the mechanisms underlying animal and human categorization.

Choice Rule
Most categorization tasks involve an animal’s sorting several different stimuli into two or more
separate categories, each represented by a distinctively different response. In such forced-
choice procedures, subjects are often asked to give a single discrete response to finalize the
trial. To predict categorization behavior in such situations, one needs to formalize a rule for
the selection of a response when a stimulus is presented, given the strength of the association
between that stimulus and all of the possible responses on a trial. Here, we assume that the
total associative strength between a stimulus S and a response j equals the sum of the associative
strengths between all of the elements activated by the stimulus and response j. That is:

(4)

VSj can also be interpreted as the expectation of reinforcement or incentive value of response
j given the presentation of stimulus S. After computing these incentive values for each response,
choice probabilities are obtained from them using a modification of Luce’s ratio rule (Luce,
1959), known as exponential ratio (Wills et al., 2000) or softmax rule (Bridle, 1990). The main
difference between Luce’s choice rule and softmax is that, in the latter, the associative strengths
are transformed according to an exponential function before computing the choice probability:

(5)

The probability of choosing response Rj given the presentation of stimulus S is computed by
taking a transformation of its incentive value and dividing it by the sum of the transformed
incentive values of each of the available responses. In this way, the rule reflects the relative
incentive value of response j given the presentation of stimulus S. The exponential
transformation constrains the result to positive values which can be interpreted as probabilities;
the parameter θ determines the decisiveness of the choice rule, with higher values leading to
stronger preferences for the choice with the larger incentive value.

Several empirical and theoretical reasons motivated the use of the softmax choice rule in our
model. First, a relation like the one proposed in Equation 5 holds between relative frequency
of choice and relative reinforcement value of each alternative in empirical studies of operant
behavior in the form of the matching law (Herrnstein, 1961). Second, the ratio rule is often
used in models of human categorization (see Kruschke, 2008), making future comparisons
between such models and the present one easier to perform, if they are adapted in the future to
the stimuli and procedures of natural image categorization experiments. Finally, softmax is
equivalent to the Boltzmann exploration strategy used in reinforcement learning models
(Kaelbling, Littman, & Moore, 1996), whose formal properties have been and continue to be
explored in Artificial Intelligence research.
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We do acknowledge that other choice rules might prove to be more useful to explain some data
patterns in the future. For example, some human data do suggest that the ratio rule may not
provide a good description of choice in categorization tasks involving more than two
alternatives (Wills et al., 2000). However, the version of the ratio rule that Wills et al. (2000)
tested was not the same choice rule that we present here (see Equation 8 below); direct
comparison between them has not yet been conducted.

Not all categorization experiments involve a selection among several available responses as
implied by Equation 5. In Go/No-go procedures, a single response is reinforced in the presence
of some stimuli (“Go” trials) and nonreinforced in their absence (“No-go” trials). Furthermore,
Go/No-go tasks are usually free-operant procedures, meaning that subjects are free to perform
a response at any time and reinforcement can be programmed to occur as a function of several
experimental variables, such as the number of responses or the time elapsed since a prior event.
This task contrasts with the discrete-trial procedures discussed before, in which a single
response determines the end of a trial and the delivery of reinforcement.

The choice rule described by Equation 5 can be extended to free-operant tasks following a line
of reasoning first advanced by Herrnstein (1970) to explain operant behavior as a function of
rate of reinforcement. In situations in which only one response is being measured, an animal
still faces a choice between performing this response or any of the other available responses
in the experimental environment, including simply doing nothing. If we express the unknown
incentive value of all such other responses as V0, then choice probability in Go/No-go tasks is
described by the following equation:

(6)

In this way, response probabilities in both choice and Go/No-go tasks can be seen to arise from
the same choice process in which the likelihood of a response equals its relative incentive value.
Because the value of V0 is unknown, it should be considered to be another free parameter used
by the model to simulate Go/No-go experiments. Nonetheless, the results of our simulations
of Go/No-go experiments are a direct consequence of the associative values that are predicted
by the Rescorla-Wagner learning algorithm; the new free parameter that is presented in
Equation 6 is not introduced here to provide a better fit of the model to the data, but simply to
follow the theoretical motivation of using the same choice mechanism for all of the
categorization tasks.

The performance measure that is commonly used in free-operant procedures is not response
probability, but response rate (number of responses per time unit). We assume that response
rates are directly proportional to the probabilities that are computed via Equation 6; thus, all
of the simulation results are presented in terms of response probabilities. However, if better
fits to actual data need to be obtained, then the following transformation can be used to compute
response rates:

(7)

where k representes the asymptotic rate of responding or the total number of responses that the
animal can produce per time unit.

In more general terms, Equations 5 and 6 can be seen as instantiations of the following response
rule:

Soto and Wasserman Page 11

Psychol Rev. Author manuscript; available in PMC 2011 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(8)

Note that V0 has no impact in a discrete-trial forced-choice procedure, because one of the
responses being measured must be produced in order to advance the trial. Under those
circumstances, Equation 8 is equal to Equation 5. However, V0 might play a role in free-operant
choice procedures, which to date have not been used in the study of categorization behavior.

Application to Previous Research in Natural Categorization by Pigeons
We now present the simulated results of several experiments, which represent a large sample
of the most important findings concerning the conditions that foster effective learning and
transfer of open-ended categories in pigeons. In these simulations, we did not attempt to fit the
free parameters of the model to the data or to perform a systematic search of the parameter
space to find those parameter values that would yield the most accurate predictions. Rather,
we performed an unsystematic search for the parameters that would give good results for one
particular experiment (Wasserman et al., 1988, Experiment 1) and we then used those
parameters in all of the other simulations. Our primary aim was to document the ability of the
model to reproduce the behavioral patterns that were observed in the experimental data, even
with the constraint of using the same parameters in every simulation.

The parameters a and b in the beta distribution were fixed to the values of 1.0 and 4.5,
respectively, which produced a function like that depicted in Panel B of Figure 3. The value
of learning rate parameter β was set to 0.02 for reinforced trials and to 0.01 for nonreinforced
trials. This disparity follows the original Rescorla-Wagner formulation and it is based on the
idea that the presentation of an outcome is more salient than is its absence. The value of learning
rate parameter α was set to 0.1; this value should not be deemed to be another free parameter
in the model, as it simply scales the result of Equation 1, something that could be obtained by
changing the β parameters. Finally, the value of parameter θ in Equation 8 was set to 3.0 and
the value of V0 was set to 0.0 in simulations of the choice experiments and to 0.5 in simulations
of the Go/No-go experiments.

All of the simulations were performed in an attempt to reproduce the training conditions in the
original studies as accurately as possible in terms of trial, block, and session structure as well
as trial randomization and other experimental procedures. A complication in simulating the
results of animal studies is that, in most, there is no direct feedback about the correct response
for a trial, as in the human counterpart. The only feedback given to pigeons is the presence or
absence of food reinforcement; this feedback provides complete information in case of a correct
trial, but it provides ambiguous information in the case of an incorrect trial if more than two
choices are available. Most experiments give unambiguous feedback to the pigeon by using
one or more correction trials after every incorrect response, which are repeated until the bird
makes the correct response and receives food reinforcement. We did not attempt to simulate
all of these procedural details; every trial simply included the presentation of a stimulus, the
prediction of the model, and feedback to the model regarding the correct response on that trial.

Because the stimulus representations in the model were generated randomly, for each
simulation, we present the average of 10 runs of the model, each using different probability
distributions over elements and different sampled representations for individual stimuli. Note
that this averaging process generates learning curves that are much smoother than the actual
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data, but the results of each individual simulation show a pattern of random variation which is
similar to that observed in the data from individual subjects.

Category Learning and Transfer to Novel Exemplars
The first phenomenon that must be explained by any model of categorization is the acquisition
of such behavior. In one experiment, Bhatt and colleagues (1988, Experiment 1) presented
pigeons with 10 photographs from each of four real-world categories: cats, flowers, cars, and
chairs. After an image was presented to the pigeon, a response to one of the four available
response keys was permitted. Each key was the correct response for one of the four categories.
Pigeons were reinforced with food when they chose the correct response key; they had to repeat
the trial if they chose an incorrect key. Figure 4 depicts the results of a simulation of this
experiment. Discrimination performance with the training exemplars increased monotonically
as a function of the number of training trials, showing the negatively accelerated form that is
typically produced by error-correcting models of associative learning and also found in studies
of categorization by pigeons (Bhatt et al., 1988).

A more interesting aspect of pigeon categorization performance is the transfer of discriminative
behavior to novel exemplars. This transfer is interesting because it is typically interpreted as
evidence of open-ended categorization (Herrnstein, 1990); thus, transfer represents a test for
the presence of a behavioral phenomenon that goes beyond mere identification. The typical
pattern of results in such generalization tests is reliable discrimination performance with novel
images, but at a lower level of accuracy than to the original training stimuli (Bhatt et al.,
1988). The same pattern can be observed in Figure 4, which shows simulated discrimination
performance with novel test stimuli.

The above-chance level of transfer to new exemplars is the result of the associative value that
is acquired by the category-specific elements. Recall that these elements are common to the
representation of several of the stimuli in a category; therefore, their association with the correct
response will frequently be strengthened during training. This frequent strengthening
counteracts the lower number of category-specific elements than stimulus-specific elements
in each of the hypothesized stimulus representations, thereby producing a higher rate of
acquisition of category-specific associative strength than stimulus-specific associative
strength. Nevertheless, stimulus-specific elements also acquire associative strength during
training, which have a lower likelihood of contributing to performance to the novel test
exemplars; in this way, the model produces the generalization decrement that is typically
observed in tests with novel exemplars.

Effects of Category Size
One of the most straightforward experimental manipulations that affects category learning and
generalization involves changes in the number of exemplars in each trained category. In one
experiment (Wasserman & Bhatt, 1992; also described in Wasserman, 1993), three groups of
pigeons were given 48 daily training trials on the 4-choice task. In Group 1, each of the four
categories was composed of only 1 exemplar, seen 12 times in each daily session. Group 4 was
given 4 different photographs from each category, each repeated 3 times in each daily session.
Group 12 was given 12 different photographs from each category, each shown only 1 time in
each daily session. There were two important results of this study.

First, the speed of learning was inversely related to category size. It took about 5 daily sessions
to reach a criterion of 70% correct for those pigeons trained with 1 exemplar, about 10 sessions
for those trained with 4 exemplars, and more than 20 sessions for those trained with 12
exemplars. The top panel of Figure 5 shows the predictions of the model for the three training
conditions in the Wasserman and Bhatt study, plotted as the probability of making a correct
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choice across trials. The original finding was correctly reproduced: learning speed decreased
with increases in category size.

The correct prediction of the model is the consequence of the benefit in learning from the
repetition of the same stimuli in tasks with lower category sizes. On the first trial of learning
with category Size 1, all of the elements in the representation acquire some associative strength.
On the second trial, when the same stimulus is presented, the response will be determined by
all of the associative strength previously acquired by these elements. When category size is
increased well beyond 1 item, a new exemplar is likely to be presented on the second trial with
a particular category; the response on this trial will be determined by the associative strength
acquired by the category-specific elements only, not by the stimulus-specific elements, which
are likely to be presented for the first time. The associative strength acquired by the stimulus-
specific elements will start to contribute to choice responding only when the individual
exemplars are repeated; at that point, a subject trained with a lower category size will show
the cumulative benefits of several previous training trials with the same exemplar.

The second relevant result observed by Wasserman and Bhatt was that the amount of
generalization to novel exemplars was a direct function of category size, an effect reported by
other authors using different procedures (Kendrick, Wright, & Cook, 1990). Pigeons trained
with only 1 exemplar exhibited generalization performance in the test only slightly above 25%
correct, those trained with 4 exemplars about 45% correct, and those trained with 12 exemplars
over 55% correct. The results of our simulation of testing performance are illustrated in the
bottom panel of Figure 5. Final discrimination performance with training exemplars proved to
be an inverse function of the number of exemplars in each category, a consequence of the
disparity in learning rate discussed above. More importantly, there was a direct relationship
between the number of exemplars in each category and the extent of generalization to new test
stimuli.

Remember that generalization is determined by the amount of associative strength that is
acquired by the category-specific elements, because the testing items are novel and the
stimulus-specific elements cannot contribute to performance. A larger category size increases
the likelihood of including the same category-specific element as part of the representation of
several training exemplars. If more training exemplars activate the same category-specific
element, then that element acquires associative strength at a higher rate, quickly blocking the
acquisition of associative strength by the stimulus-specific elements. Because generalization
of performance to novel exemplars depends on the category-specific elements, if they acquire
more of the available associative strength, then generalization will be higher. Moreover, a larger
category size also increases the likelihood of novel testing items activating the elements that
are associated with the correct response during training—that is, it increases the likelihood that
a test stimulus will have a representation that is similar to one or more of the training stimuli
—also contributing to higher generalization performance.

Effect of Stimulus Repetition
Bhatt et al. (1988, Experiment 3) found that pigeons can learn to categorize photographs of
natural stimuli even when the individual photographs are never repeated. According to the
model presented here, this learning is supported by the category-specific elements that are
repeated on every trial, even when the specific pictorial stimuli that are shown are different on
every trial.

Bhatt and colleagues (1988, Experiment 4) conducted a second experiment in the same study,
in which a single group of pigeons was trained to discriminate the same 10 photographs of
each category on odd-numbered days and to discriminate 10 novel exemplars of those
categories on even-numbered days. The result was higher accuracy in the classification of
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repeating stimuli across training. Performance with repeated stimuli rose from 29% correct in
the first 4 training sessions to 85% correct in the last 4 sessions; performance with non-repeated
stimuli rose from 26% correct in the first training sessions to 66% correct in the last sessions.

The results of our simulation are shown in Figure 6. The predictions of the model fit the
experimental results, properly reproducing the observed disparity in learning rate that develops
in training with repeating and with non-repeating sets of stimuli. This disparity reflects the fact
that only category-specific elements can support learning with non-repeating stimuli, whereas
both stimulus-specific elements and category-specific elements can jointly support learning
with repeating stimuli.

Pseudocategorization
A very important question regarding perceptual categorization concerns the possibility that
pigeons recognize the perceptual coherence among members of the same category even when
they are not required to do so by the training procedure. A second possibility is that pigeons
independently represent information about each exemplar and associate such information with
the correct response.

Evidence for the former notion comes from studies in which true category learning is compared
with pseudocategory learning, pseudocategories being arbitrary sets of stimuli with no
perceptual resemblance to each other. Most studies (Herrnstein & De Villiers, 1980;
Wasserman et al., 1988) have found that pigeons learn to sort photographs into
pseudocategories much more slowly than into true categories involving the same pictures (but
see Kendrick et al., 1990). Evidence for the latter notion comes from the fact that
pseudocategories are learned at all; such learning can only be achieved if pigeons are able to
perceive visual properties that are idiosyncratic to each stimulus and base their discriminative
responses on these properties.

Figure 7 depicts the results that are predicted by the model when it is trained under the
conditions arranged by Wasserman et al. (1988, Experiment 2). Both curves show
categorization learning with the same set of 20 stimuli in each of 4 categories; the only
procedural disparity is that in the pseudocategory group the stimuli were randomly assigned
to arbitrary groups sharing the same outcome (5 stimuli in each category were assigned to each
of the 4 pseudocategorization sets), whereas in the true category group the training categories
coincided with the 4 human language groupings.

In the original study, learning of the true categorization task was quick and reached an
asymptote of almost 80% correct, whereas learning of the pseudocategorization task was much
slower and reached only about 40% correct at the end of the experiment. The model correctly
predicts faster learning of the true categorization task; in this condition, the category-specific
elements are consistently associated with the same outcome. In the pseudocategorization task,
the category-specific elements have much lower informational value in predicting the outcome
of a trial, as they are equally likely to be associated with each of the 4 categories. Under these
conditions, performance does slowly improve with training, but this improvement is
presumably ascribable to the associative strength acquired by the stimulus-specific elements.

Feature-Positive and Feature-Negative Effects
Following the methods of the pioneering experiment by Herrnstein and Loveland (1964),
several studies in pigeon natural categorization have used a Go/No-go procedure, in which
responses to photographs containing an exemplar from the category are reinforced and
responses to photographs not containing an exemplar from the category are not reinforced. A
variation of this procedure involves presenting the same background information in both
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category/present and category/absent slides, in order to make it difficult for the pigeons to solve
the task by relying on background information alone. In this matched background task,
exemplars of the category become a “feature” in the images; this feature can signal the
availability of reinforcement after a response is performed, in a “feature-positive”
discrimination, or it can signal the absence of reinforcement after a response is performed, in
a “feature-negative” discrimination (Jenkins & Sainsbury, 1970; Sainsbury, 1971).

Some research has suggested that pigeons learn decidedly different things in the feature-
positive and feature-negative tasks (Aust & Huber, 2001; Edwards & Honig, 1987). Perhaps
the most basic disparity is that feature-positive discriminations are learned faster than feature-
negative discriminations (Edwards & Honig, 1987).

Consider the Edwards and Honig experiment. It included photographs of people on background
scenes as well as photographs of the same background scenes without people; as noted above,
this is a “matched” discrimination. One problem with simulating this kind of experiment
involves separating the portion of the stimulus representation that represents the “background”
from the portion of the stimulus representation that represents the “people.” This chore is
particularly difficult in our model, in which each fragment of a photograph cannot be directly
linked to a particular portion of the stimulus representation. So, it was necessary to take further
steps to simulate experiments involving photographs with matched backgrounds.

In order to do so, we assumed that information about the background of an image is coded
through the stimulus-specific elements in the stimulus representation, especially those with
very low sampling probabilities. The reason behind this assumption is that the background of
an image provides the most idiosyncratic information in any categorization task; thus, these
background features should be represented through the most stimulus-specific elements. On
the other hand, the objects that are presented over that background—the category exemplars
and their features—are more similar to each other across different images; thus, they should
be represented by more category-specific elements.

Figure 8 shows a diagram of the procedure that we used to create representations of the
photographs with a matched background. The left side of the diagram shows how we created
the representation for photographs of backgrounds without people. The first step was to create
a sampling distribution for “background” photographs by assigning a uniformly low sampling
probability to each of the elements in the pool. A uniform distribution was chosen under the
assumption that backgrounds do not convey any category information which is useful in the
tasks to be simulated in this section. Thus, all of the elements in the pool should have a similar
likelihood of being sampled to form the representation of a background photograph. The
sampling probability that was assigned to each element was set to the mean probability in the
“people” distribution over elements, which allowed us to obtain representations in which the
numbers of active elements were similar to those in the “people” category, but in which the
active elements were more randomly distributed across the pool. These representations (Step
2 in Figure 8) were used to directly simulate the presentation of the background alone during
training.

The rest of the diagram in Figure 8 shows how we created representations of the photographs
that included people over a given background. To solve this problem, we generated
representations for images including “people” in the same way as in all of our other simulations.
Thus, the third step in the process was to create a sampling distribution for the category of
photographs including people. However, the representation of the category “people” was split
into two parts, depending on whether an element had a sampling probability below or above a
threshold value of 0.1. In Figure 8, this arbitrarily chosen threshold is represented by a dashed
line in the distribution for the category “people.” Elements with a sampling probability above
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the threshold are assumed to convey information about the presence of “people” in the images.
These elements are shown in black in the diagram. Elements with a sampling probability below
the threshold are assumed to be uninformative about the presence of “people” in the images;
that is, they include the “background” information in the representation. These elements are
shown in grey in the diagram; taking them out of the representation (assigning them a value
of zero) would be more or less equivalent to removing the background in an image including
people, thus generating a “people only” representation (Step 4 in the diagram of Figure 8).

The fifth and final step that is shown in Figure 8 involved adding up the “background only”
representation generated in Step 2 with the “people only” representation generated in Step 4.
This process would be analogous to superimposing the fragment of an image showing people
over a different background image. This representation, together with the “background only”
representation that was generated in Step 2, were used to represent photographs with matched
backgrounds.

Of course, the representations that were generated this way can only be thought as
approximations to the representations that would be used in a matched discrimination, but they
do have a theoretical foundation within our framework. The only arbitrary aspect in this process
is the threshold that is chosen to classify elements as informative or uninformative about the
presence of a category member. We found that the results of our simulations are robust across
variations of this threshold value.

Figure 9 plots the learning curves that were obtained from our model when it was exposed to
training conditions similar to those that were described by Edwards and Honig in their
experiment involving matched feature-positive and feature-negative discriminations (1987,
Experiment 1). The original experiment also included a pseudocategorization condition, which
provided a benchmark for how fast the pigeons could learn the task if they were simply
memorizing each slide and its relation with reinforcement. The feature-positive discrimination
was learned faster than the other two tasks, but the feature-negative discrimination was not
learned faster than the pseudocategorization task. Depending on the stimuli used, performance
on the feature-positive discrimination reached a discrimination ratio of from .65 to .77;
performance on the feature-negative and pseudocategorization tasks were barely above .50
across training. Figure 9 shows that the model correctly predicts the qualitative pattern of
results, although it performs a bit better than the pigeons on the feature-negative and
pseudocategorization tasks.

In the feature-positive condition, the category-specific elements are presented often and they
very quickly acquire associative strength (on reinforced “people plus background” trials). The
discrimination is complete when the associative strength that is acquired by the stimulus-
specific background elements is extinguished (on nonreinforced “background alone” trials);
this latter process proceeds more slowly, because these stimulus-specific background elements
are occasionally reinforced.

In the feature-negative discrimination, the reinforced background stimuli are slower to acquire
excitatory associative strength. Recall that the background stimuli do not share any category-
specific elements; they involve only stimulus-specific elements. Therefore, the acquisition of
excitatory associative strength here occurs more slowly than when such category-specific
elements are presented and reinforced frequently, as in the feature-positive discrimination.
Moreover, the elements representing backgrounds are also nonreinforced on some trials, further
slowing learning.

In Experiment 4, Edwards and Honig (1987) studied the effect of using the same or different
backgrounds for slides that did or did not include category information. The procedure involved
a between-groups comparison of a feature-positive discrimination, a feature-negative
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discrimination, and a pseudocategorization control for memorization. More importantly,
Edwards and Honig exposed each pigeon to slides that were both matched and nonmatched in
their background information, alternating both sets in consecutive sessions.

The top section of Figure 10 shows the complete pattern of results for our simulation of this
experiment. In order to more easily explain the successes and shortcomings of our simulation,
the same results are also grouped according to the types of stimuli that were used during training
(matched vs. nonmatched, see middle panel of Figure 10) and the discrimination to which each
group was exposed (feature-positive, feature-negative and pseudocategorization; see bottom
panel of Figure 10).

As to the comparison between matched and nonmatched stimuli, in the original experiment,
the nonmatched procedure led to an attenuation of the feature-positive effect that was
previously observed with the matched procedure. This result is observed in the simulated results
that are presented in the middle panel of Figure 10, where the disparity between the feature-
positive and the feature-negative learning curves is larger in the matched than in the
nonmatched procedure. This disparity arises because partial reinforcement of the common
backgrounds in the matched tasks slows learning in the feature-negative discrimination more
than in the feature-positive discrimination.

To understand this result, note that mastery of any of these discriminations requires the
acquisition of excitatory associative strength by the elements that get consistently reinforced
and the acquisition of inhibitory associative strength by the elements that get consistently
nonreinforced. More importantly, excitatory learning has to occur earlier than inhibitory
learning because, according to the Rescorla-Wagner learning rule, inhibitory learning only
happens in an excitatory context (only when there is “something to inhibit”). With all of this
in mind, note that in a feature-positive discrimination, whether matched or nonmatched,
excitatory learning occurs quickly from the beginning of training because of the consistent and
repetitive reinforcement of category-specific elements. The main effect of partial
reinforcement of the backgrounds in the matched condition is to slow inhibitory learning late
in training. In a feature-negative discrimination, the acquisition of excitatory strength depends
on the background elements, which are the only ones that are present on reinforced trials. Partial
reinforcement of the backgrounds in the matched condition has the effect of slowing excitatory
learning at the outset of training and, as a consequence, inhibitory learning later in training.

The empirical data also showed that, for the nonmatched stimuli, performance on both feature-
positive and feature-negative discriminations was similar and higher than performance on the
pseudocategorization task, with an advantage of the feature-positive discrimination over the
feature-negative discrimination early in training, a relation that was later reversed. All of these
results are also observed in the simulated results (see the middle panel of Figure 10). On the
contrary, for the matched stimuli, performance on the feature-negative discrimination and the
pseudocategorization task was lower than on the feature-positive discrimination, a pattern that
was also observed in the early stages of our simulation. Note that our simulation shows an
advantage of the feature-negative discrimination over the pseudocategorization in later stages
of training, which was not observed in the experiment. This result is difficult to interpret in
light of the available data, in which all of the matched tasks supported rather low levels of
performance like those observed only early in training in our simulation.

As to the comparison between matched and nonmatched tasks within each type of
discrimination, Edwards and Honig observed that all of the discriminations were acquired more
rapidly with nonmatched stimuli than with matched stimuli. These authors also highlight the
fact that the feature-negative discrimination group showed the greatest disparity in performance
between problems. The graphs in the bottom section of Figure 10 illustrates that our model
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correctly predicts faster acquisition of all of the nonmatched discriminations than the matched
discriminations. This disparity arises because in matched discriminations the same background
is presented in both “people present” and “people absent” photographs, leading to partial
reinforcement of the elements representing the background; this process slows learning in the
matched condition, but it is absent in the nonmatched condition.

The main aspect of the experimental data that is not reproduced by our simulation is that
performance in all of the nonmatched conditions exceeded that in all of the matched conditions
throughout training. It can easily be observed in the top panel of Figure 10 that our simulation
does not capture this aspect of the data: not all of the nonmatched conditions, represented by
open shapes, are above the matched conditions, represented by solid shapes. Only the feature-
positive and feature-negative discriminations differ in this way late in training.

We suspect that this failure to account for this aspect of the data is due in part to our inability
to more reliably reproduce the disparities between the matched and nonmatched stimuli. The
method used here to represent stimuli sharing a background (see Figure 8) takes stimulus-
specific elements out of one representation with the goal of extracting its “background”
information. Such a procedure does not make a distinction between the stimulus-specific
elements actually representing the background of a photograph and those representing specific
properties of a category exemplar; thus, our simulation should be considered only a rough
approximation to the way animals actually represent matched stimuli. Despite this limitation,
our model is still able to reproduce several of the most salient disparities between conditions
found in the original experiment by Edwards and Honig.

As well, nonsystematic explorations of the parameter space of our model suggest that it is
possible to reproduce the ordinal arrangement of conditions found by Edwards and Honig in
the later stages of training, which is are data used by these authors in their statistical analyses.
Specifically, higher values for α (0.60) and the cutoff parameter used to build matched
representations (0.35) yield such results. An even more systematic exploration of the parameter
space is necessary to determine whether it is possible to offer a better fit of the model to the
data.

In a more recent study, Aust and Huber (2001, Experiment 3) reported evidence that feature-
positive and feature-negative discriminations also differ in the degree to which discriminative
behavior generalizes to untrained stimuli. In this experiment, after nonmatched feature-positive
and feature-negative training, pigeons were given several combinations of trained and novel
category exemplars placed on trained and novel backgrounds, with the goal of pitting category
information against background information. The more interesting testing stimuli involved
combinations of category exemplars and backgrounds that involved conflicting information.
These combinations included familiar exemplars on a familiar background (which involved
contradictory information acquired through training) and novel exemplars on a familiar
background (which put into conflict information acquired in training about the backgrounds
and any general learning about the category). Familiar exemplars on a novel background were
included as a control, because they did not present conflicting information.

The key result was that, for pigeons trained on the feature-positive procedure, responding to
all of the testing stimuli was generally similar to responding to the training exemplars of the
relevant category. Because the testing stimuli included information about both the trained
category and various backgrounds, this result suggests that discriminative performance was
controlled mainly by categorical information in the images, with lesser behavioral control
exerted by background information. On the other hand, pigeons trained on the feature-negative
procedure did not show such robust generalization; rather, their responding was intermediate
to that between the positive and negative training stimuli.
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Figure 11 shows the simulated results for both the trained stimuli and the untrained (testing)
stimuli. The y-axis represents the standardized response level, computed as the mean response
probability acquired by stimuli in that testing condition over the mean response probability for
the trained stimuli. A standardized response level equal to 1.00 indicates no preference to
classify a stimulus either as a member or a non-member of the category. The standardization
process was used to make the simulated results more readily comparable to the data published
by Aust and Huber (2001). In the feature-positive condition, a value higher than 1.00 indicates
a tendency to classify the stimulus as a member of the category, whereas a value lower than
1.00 indicates a tendency to classify the stimulus as a non-member of the category. The reverse
is true for the feature-negative condition.

The general pattern of results is very similar to the empirical data. For the simulated feature-
positive condition, the standardized response level of the testing stimuli is always higher than
1.00, indicating that these testing stimuli are classified as category members. In the original
data, this measure of performance was between 1.5 and 2.0 for all stimulus types. The same
level of categorical control was not found in the feature-negative condition, in which the testing
stimuli showed a more intermediate level of standardized response level. In the original data,
the standardized response rate was between 0.75 and 1.25 for all stimulus types in the feature-
negative condition.

In the feature-positive discrimination, a high level of excitatory associative strength is acquired
by the category-specific elements, which are presented and reinforced very often (on feature
plus background trials). The background representations presented on nonreinforced trials have
their active elements more uniformly distributed in the pool, so the likelihood of sampling a
category-specific element is not very high (on background only trials). When one of the
category-specific elements is activated on these trials, all of the other elements in the
representation acquire inhibitory associative strength in equal amounts. The final result is that
excitatory associative strength converges mostly on a small group of category-specific
elements, whereas some small amount of inhibitory associative strength is spread among all
of the other stimulus-specific elements. This distribution of excitation and inhibition is
transferred to the test stimuli, so that when an exemplar of a person is presented on a novel or
a familiar background, the presence of highly excitatory category-specific elements produces
standardized associative strength scores that are higher than 1.0.

The learning process in the feature-negative discrimination is different, because here the more
distributed stimulus-specific background representations are reinforced, which allocates
excitatory associative strength more or less equally among all of the elements in the pool. When
the more localized representations of category exemplars are presented, only a subgroup of
these excitatory elements in the pool is sampled and a small amount of inhibition is allocated,
mostly to the category-specific elements. This inhibition does generalize to the test stimuli, but
so too does the excitation that is widely spread across the pool of elements as a consequence
of the reinforcement of stimulus-specific background representations. The net result is a level
of performance that is generally intermediate between those shown to the reinforced and the
nonreinforced training stimuli.

One aspect of the data that were reported by Aust and Huber (2001) that is not captured by the
simulation is that pigeons’ performance with test stimuli in the feature-positive condition did
not differ significantly from performance with stimuli reinforced during training. Our
simulation predicts a generalization decrement for all test stimuli. This prediction reflects the
stimulus representation of our model and is consistent with the results of numerous reports of
this effect in the literature (e.g., Bhatt et al., 1988; Kendrick & Wright, 1990; Wasserman,
1993). We suggest that it would be hasty to conclude that Aust and Huber’s results constitute
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an exception to this empirical finding, especially because that conclusion would be based on
a null result obtained with only two pigeons.

As to specific disparities in performance among the test stimuli, our simulation reproduces the
ordinal relations found in the feature-positive condition, but the magnitude of one difference
is exaggerated. Specifically, the model predicts a substantially lower level of responding for
Novel Exemplar–Familiar Background stimuli that was not observed in the empirical data. In
the feature-negative condition, the ordinal relations among the test stimuli are not reproduced
by our simulation, mainly because performance with Trained Exemplar–Novel Background
stimuli is predicted to be slightly below 1.0, whereas in the empirical data it is slightly above
1.0.

Aust and Huber report no consistent disparities in performance to these various test stimuli;
thus, the disparities that are predicted by our model are again compared to a null result obtained
with a very small number of pigeons. Furthermore, Aust and Huber did not test whether
performance with their stimuli was significantly above or below 1.0.

In conclusion, our model is able to reproduce the most important results in Aust and Huber’s
experiment: generalization of categorization learning in a feature-positive discrimination and
the absence of such generalization in a feature-negative discrimination. The model predicts
some disparities among test stimuli that were not found in the data, but it is difficult to draw a
conclusion based on null results from a test entailing low statistical power.

Within-Category Stimulus Generalization
Some researchers have proposed that animals’ categorization behavior is the direct result of
perceptual mechanisms (Astley & Wasserman, 1992; Herrnstein & De Villiers, 1980).
Members of the same class of objects are directly perceived to be more similar to each other
than to members of other classes of objects, which in turn is the basis for the stronger
generalization of responding within the category than across categories.

To test this hypothesis, Astley and Wasserman (1992, Experiments 1 and 2) conducted a study
in which pigeons were first trained to receive food reinforcement for pecking several different
photographs from each of four categories. In their first experiment (Condition 1S+), pigeons
during discrimination training kept receiving food for pecking one of the photographs, but not
for pecking any of the other photographs. These nonreinforced photographs were composed
of a set of 12 images from the same category as the reinforced stimulus plus 12 images from
each of 3 other categories. Extinction of responding should have been slower for negative
stimuli from the same category as the positive stimulus if these stimuli were directly perceived
to be more similar to each other than to members of the other 3 categories. In a second
experiment (Condition 12S+), 12 different exemplars of the target category were reinforced
during discrimination training instead of only 1 exemplar.

The results were presented in terms of two behavioral measures: the Overall Discrimination
Ratio (ODR) and the Categorical Error Ratio (CER). The ODR is a measure of the level to
which response rate to the reinforced stimuli was higher than response rate to all of the negative
stimuli; it showed that discrimination learning was faster for pigeons trained with only 1
photograph as the positive stimulus than for pigeons trained with 12 photographs as the positive
stimuli, with both groups reaching comparably high levels of performance at the end of training
(ODR higher than 0.9). The CER is a measure of the level to which the response rate to the
negative stimuli from the same category as the reinforced pictures exceeds the response rate
to the negative stimuli from the 3 different categories. The CER approaches 1.00 if all of the
responses to the negative stimuli are allocated to the reinforced category and it approaches .25
if responses are evenly distributed across the 4 categories. This CER measure rose slightly and
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irregularly over .25 for pigeons trained with only 1 reinforced exemplar, whereas there was a
more marked increase for pigeons trained with 12 different reinforced exemplars. The measure
seemed to reach an asymptotic level in both groups between 6 and 10 sessions of training,
reaching a value higher than 0.5 for pigeons trained with 12 exemplars and about 0.4 for pigeons
trained with 1 exemplar. With further training, the CER fell slightly in both cases.

Astley and Wasserman (1992) interpreted this pattern of results as evidence of greater
generalization of responding to members of the same category, consistent with the proposal
that perceptual mechanisms underlie the categorization of photographs by pigeons. The low
level of within-category generalization observed in the 1S+ condition was explained as the
result of perceptual disparities among members of the same category. With only 1 reinforced
stimulus, the chance of that 1 stimulus resembling the 12 negative stimuli from the same
category would be much lower than the chance that 1 or more of 12 reinforced stimuli would
resemble the 12 negative stimuli from the same category.

Perceptual coherence among members of the same category is the most important principle
underlying our model’s stimulus representation; therefore, it has no problem reproducing the
data reported by Astley and Wasserman (1992). We ran a simulation of the two previously
described experiments and computed the two behavioral measures reported in the original study
directly from the associative strength acquired by each stimulus. The results are portrayed in
Figure 12, with ODR plotted in the top panel and CER plotted in the lower panel. The model
reproduced the key experimental results: (a) there was faster discrimination learning in the 1S
+ condition than in the 12S+ condition according to the ODR and (b) the CER rose more
markedly in the 12S+ condition than in the 1S+ condition. Although not shown in Figure 12,
the model also predicts that with enough training the ODR for both groups should reach similar
asymptotic levels and that the CER in both groups should quickly reach its highest point (higher
for the 12S+ condition) and fall slowly with further training. Thus, the model captures the full
pattern of data observed by Astley and Wasserman at a learning rate comparable to that shown
by the pigeons.

The mechanisms underlying the effect of category size on the rate of discrimination learning
have already been explained; therefore, we focus on the CER effect. During baseline training,
all of the stimuli are reinforced and associative strength is allocated to each of the presented
elements. In discrimination training, the elements representing the S+ retained most of their
associative strength due to continuing reinforcement, whereas the associative strengths of all
of the other elements was extinguished. Thus, disparities in response rate among the
nonreinforced stimuli were due to differences in the proportion of elements that they shared
with the reinforced stimuli. Because stimuli belonging to the same category have a higher
likelihood of sharing elements than do stimuli belonging to different categories, response rate
was higher to the negative stimuli belonging to the same category as the positive stimuli. This
effect is clearly evident in the 12S+ condition, where larger category size provides a greater
opportunity to sample and reinforce category-specific elements supporting generalization to
other exemplars of the same category. The same is not true in the 1S+ condition, where the
same small group of elements is repeatedly presented and reinforced. Just as proposed by
Astley and Wasserman (1992), the results of their experiments should be the direct consequence
of the principle of perceptual coherence in natural categories that we formalized in the model.

Sutton and Roberts (2002) proposed a different interpretation for the results of Astley and
Wasserman. Sutton and Roberts suggested that pigeons do not immediately perceive objects
in the same category to be more similar to one another than to members of other categories;
rather, the process of differential reinforcement leads them to direct their attention to disparities
among the pictures.
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To test this hypothesis, Sutton and Roberts (2002, Experiment 2) trained pigeons to peck 20
exemplars in one category to obtain reinforcement, but without any other training trials
involving nonreinforcement of another category. Without the requirement of discrimination
performance, the pigeons did generalize their pecking behavior to novel exemplars from the
same category that was previously reinforced; however, the pigeons also generalized their
pecking behavior to novel exemplars from a different category that was never previously
reinforced. Specifically, novel stimuli from both the trained and unseen category supported
similarly high levels of responding in the first 2 sessions of training; afterward, responding to
stimuli in the unseen category dropped, whereas responding to novel stimuli in the reinforced
category stayed at a high level, slightly below responding to the training stimuli. The authors
contended that these results “appear to challenge the conclusions … that perceptual constraints
lead pigeons to detect within-category similarity immediately upon the perception of pictures
in the same category” (Sutton & Roberts, 2002, p. 342).

Although the model that we have formalized includes perceptual coherence as an important
principle underlying categorization, generalization among stimuli is not simply the result of
perceptual similarity, because the elements that support generalization can acquire different
amounts of associative strength depending on their associative histories with the relevant
categories. This way, a category-specific element that has been repeatedly paired with the same
outcome, if it is not presented together with any other elements that are also good competitors
to acquire associative strength, will support high levels of generalization to new members of
the category. However, if the category-specific element is presented together with good
competitors which can prevent it from acquiring associative strength, then the amount of
categorical generalization that it can support will be substantially lower.

Our model can explain the results reported by Sutton and Roberts if a seemingly small detail
of their experimental procedure is taken into account: as is customary in categorization
experiments, pigeons were given a pretraining phase in which they learned to peck a white
screen to obtain food. Learning in the pretraining phase has to proceed effectively in order for
pigeons to sustain high and stable rates of responding to the white screen; more importantly,
whatever properties of the white screen control behavior, they must also be present in any new
training stimuli in order to foster high generalized pecking to them. In most cases, later training
with discrimination tasks renders these properties uninformative as to the occurrence or
nonoccurrence reinforcement; so, their control over responding is gradually decreased, passing
to the more relevant properties in the training stimuli. Sutton and Robert’s study did not involve
a phase of discrimination training; thus, the influence of properties that are common to all of
the stimuli could have prevailed during testing.

Our model can explain the results of the Sutton and Roberts experiment by representing the
properties that acquire control over behavior during pretraining through a small set of elements,
which acquire associative strength due to repeated pairing with reinforcement. This associative
strength is then generalized to the training stimuli, which share these elements with the stimulus
presented during pretraining. The fast and high transfer of responding that is usually observed
between pretraining and discrimination training in pigeon experiments like those reviewed
above lends support for this assumption.

The high generalization that is controlled by the white screen elements effectively limits the
amount of associative strength that is available during the training phase, thereby blocking
acquisition of the association between all of the other elements and the reinforcer. At the
beginning of the subsequent testing phase, there is high generalization of responding to new
exemplars from both the same category and from a different category, because of the
associative strength that is acquired by these pretrained elements.
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We performed a simulation involving a pretraining phase, in which a set of only five elements
was presented and reinforced. This set of elements represented the aspects of the training
situation and the white pretraining screen that are shared with all of the other stimuli in this
experiment. Therefore, the same five elements were included in the representation of all of the
other stimuli throughout the simulation. The results are shown in Figure 13. The pattern of
results is similar to that found by Sutton and Roberts. At the beginning of testing, associative
strength generalizes to exemplars of both the reinforced and novel categories; however, in later
sessions, associative strength drops precipitously only for the novel category exemplars. Other
simulations have confirmed that the model can still nicely reproduce the results of Astley and
Wasserman (1992) if the pretraining phase is included in the simulation as well. The disparity
between the 1S+ and 12S+ conditions is reduced in comparison to the previously reported
simulations, but the general pattern is the same as that illustrated in Figure 12.

To summarize the results and analysis so far, our account of the discrimination and
generalization of natural categories importantly depends on the notion of perceptual
resemblance among members of the same category. Nonetheless, our account is not purely a
result of stimulus generalization based on perceptual similarity. Instead, this account places
special emphasis on the interaction between perceptual similarity and error-driven learning.
Together, these two processes allow us to explain the results of Sutton and Roberts (2002)
without abandoning the principle of perceptual coherence that is basic to the stimulus
representation in the model.

A final study examining the issue of within-category similarity was conducted by Wasserman,
Kiedinger, and Bhatt (1988, Experiment 1). This study is particularly important because it
sought evidence of both the ability of pigeons to discriminate the exemplars within a natural
category and their ability to perceive these exemplars as more similar to each other than to
exemplars from other natural categories.

In this experiment, Wasserman and colleagues used 20 exemplars from each of 4 natural
categories (cats, flowers, cars, and chairs) and assigned them to 2 subcategories composed of
10 exemplars each. In any given session, the pigeons were presented with photographs from
2 of the 4 categories, which had to be sorted into 4 subcategories, each associated with an
individual response key. This design allowed the experimenters to evaluate the ability of
pigeons to discriminate among members of the categories, because only by identifying the
individual members of each subcategory could the birds raise their choice accuracy above 50%.

The study also allowed the experimenters to examine the types of errors that pigeons make
when they are learning the subcategorization problem. If the pigeons did not perceive the
members of one category to be more similar to each other than to members of the other
categories, then the pigeons’ errors should have been evenly distributed across the choice
responses. But, if the pigeons did perceive the visual coherence of the 4 natural categories,
then they should have made a disproportionate number of errors to the response key that was
associated with the same category as the correct choice.

The pigeons were indeed able to learn this subcategorization task and to discriminate among
members of the same natural class at high levels of accuracy (about 70% on average in the last
8 daily sessions). As well, the percentage of categorical errors that were committed by the
pigeons rose monotonically as a function of the amount of training, from the chance level of
33% to a final level near 55%. The latter result can be construed as support for a perceptual
mechanism underlying natural categorization in pigeons.

The results of a simulation of this experiment are shown in the top and bottom panels of Figure
14. The model faithfully reproduces both pigeons’ ability to discriminate among stimuli within
the same category (top) and the initial increment in their commission of categorical errors
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(bottom). Discriminative performance (top) is possible because of the presence of exemplar-
specific elements to support it. Categorical errors (bottom) are the outcome of a rapid increase
in the association between category-specific elements and reinforced responses. Although
category-specific elements are not good predictors of the correct response, they are active any
time an exemplar of a particular category is presented. The fact that category-specific elements
occur much more often than stimulus-specific elements puts the latter elements at a decided
disadvantage to compete for the acquisition of behavioral control. Thus, category-specific
elements rapidly get associated with the two choice keys that are assigned to exemplars of a
particular category, thereby supporting high error rates to those choice keys whenever members
of that category are presented.

One point of divergence between our simulation and the experimental data is that the latter
does not show a decline in the percentage of categorical errors late in training. In our simulation,
the probability of categorical error rises to a ceiling of 0.54 and then slowly decreases to reach
0.51 at the end of the experiment. It is possible that an effect of only 4 percentage points was
simply obscured by random variability in the original experiment. However, the model predicts
that categorical errors should steadily decline with further training. Therefore, a replication of
the original experiment by Wasserman and colleagues with a larger number of training sessions
should lead to a detectable decrement in the proportion of categorical errors. This prediction
remains to be tested.

Precedence of Categorization Learning over Identification Learning
The two most influential approaches to explaining human categorization are prototype theories
(Posner & Keele, 1968; Reed, 1972) and exemplar theories (Kruschke, 1992; Nosofsky,
1986; Medin & Schaffer, 1978). These theories differ in the role that each proposes for the
abstraction of category information from experience with exemplars of the category.

Prototype theories propose that, in categorization tasks, humans store a unique representation
summarizing their experience with all of the exemplars of the category. This prototype
represents an abstraction of the central tendency in the experienced distribution of exemplars
insofar as their perceptual properties are concerned. Classification of a new stimulus as a
member of a category will depend on its similarity to the stored category prototype.

Exemplar theories propose that humans store representations of the individual instances of a
category that are experienced; therefore, no process of abstraction intervenes between the
perceived exemplars and their representation and storage. Classification of a new stimulus as
a member of a category depends on its similarity to all of the exemplars that have been stored
as members of that category.

The category-specific elements in the stimulus representation of our model play the role of a
summary representation of the experiences that organisms have had with several category
members, in a process akin to prototype abstraction. But, our model also includes stimulus-
specific elements, which convey more particular information about previous experience with
the exemplar(s) that activate(s) them. What is more important, the part that is played by either
kind of information in stimulus classification is completely constrained by learning from
exposure to the experienced environmental conditions. This aspect of the model allows it to
faithfully reproduce several interesting aspects of the interplay between categorization and
identification.

The subcategorization experiment of Wasserman et al. (1988), discussed in the prior section,
allowed these authors to indirectly evaluate the relative roles of these processes in the
discrimination behavior of their pigeons. Wasserman et al. re-analyzed their data according to
the following logic: when a pigeon makes a choice, it might be (a) correctly identifying the
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stimulus and making the correct response, (b) correctly categorizing the stimulus and evenly
distributing its pecks to the 2 responses that are associated with the correct category, or (c)
guessing, leading to evenly distributed choices of all 4 responses. Their re-analyzed results
revealed that, as training advanced, guessing progressively fell, identification progressively
rose, and categorization initially increased, but later decreased. Even more interestingly,
pigeons were initially inclined to process the stimuli at the categorical level, but this inclination
shifted in favor of processing the stimuli at the identification level in later stages of training.

The results of our simulation of this experiment were analyzed according to the same logic that
was originally applied by Wasserman et al. to their pigeon data. The results are shown in Figure
15. The model was able to reproduce each of the aforementioned aspects of the original data.
The results of this simulation are mainly due to the different rates of presentation of the
category-specific and stimulus-specific elements. As explained in the previous section, at the
beginning of training, category-specific elements strengthen their associations with the two
responses with which the category is paired, producing above chance accuracy; but these
category-specific elements also engender a large proportion of categorical errors due to within-
category generalization. These category-specific elements acquire most of the associative
strength because they are presented more often than the exemplar-specific elements on trials
involving the category in question. To reduce such categorical errors, inhibitory associations
grow between the stimulus-specific elements and the incorrect categorical response. Inhibitory
learning is rather slow due to the relatively low rate of presentation of stimulus-specific
elements; but such inhibitory learning eventually leads to better discrimination performance
at the end of training by canceling generalized excitation from one subcategory to the other.

The previous simulation nicely illustrates the way in which some patterns of behavior in animal
categorization tasks can arise as a consequence of the interaction between stimulus
generalization and error-driven learning. An interactive learning model can account for the
dynamics of learning in this kind of situation better than a purely similarity-based model. A
more recent experiment by Cook and Smith (2006) also addressed the interplay between
identification and categorization, but in a more direct way.

Cook and Smith constructed two artificial categories comprising stimuli which varied in 6
binary dimensions. Each category contained 1 prototype, 5 typical exemplars that shared 5
features in common with the prototype, and 1 exception that shared 5 features in common with
the prototype of the other category. Because of the category structure that was arranged by
Cook and Smith, their subjects were required to rely at least in part on the particular
configuration of features of the exception items in order to reach perfect discrimination
performance.

The results of this “rule-exception” task were analogous to those observed for the
subcategorization task: both pigeons and humans learned to classify the prototypes and the
typical exemplars faster than the exceptions. More importantly for the present discussion, when
prototype and exemplar models of categorization were fitted to the data, the former performed
better during the early stages of training, whereas the latter performed better during the final
stages of training. Thus, neither of the two accounts alone could explain the entire pattern of
data across training. This observation led Cook and Smith to conclude that their results, “show
the value of a mixed theoretical perspective that permits behavior to be determined by different
categorization systems operating at different times” (p. 1065). The problem with such a “mixed
model” approach is that it does not give a principled explanation of how experience with the
categorization task would lead pigeons to shift from one strategy to the other.

Our explanation in terms of stimulus elements and error-driven learning does specify why
learning occurs the way it does and it is far more parsimonious than proposing a shift between
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altogether different categorization systems. In fact, we have found that a simulation of the Cook
and Smith experiment using the “unique cue” model—first proposed by Wagner and Rescorla
(1972) as an extension of the Rescorla-Wagner model and more recently deployed by Gluck
(1991) to explain human categorization—can reproduce all of the important aspects of its
results. The unique cue model proposes that each stimulus feature is processed independently
and forges its own association with the outcome, but that every particular configuration of
features also activates a configural unit which represents that unique combination.

The results of our simulation are shown in Figure 16. The parameter values for learning rate
and the choice process in this simulation were the same as in our own model. Although the
unique cue model learns the task faster than the pigeons with the parameter values used in this
simulation, it can reproduce the faster learning of the prototypes and the typical exemplars, as
well as the slower learning of exception stimuli, shown in the experimental data. Just as our
model of natural image categorization can explain the results of Wasserman et al. (1988), the
unique-cue model, also based on the error-driven learning rule of Rescorla and Wagner, can
account for the results reported by Cook and Smith (2006) in artificial categorization by
pigeons.

Retroactive Interference Between Categorization and Identification
Another interesting interplay between categorization and identification is the possible
retrospective interference that one strategy might exert over the other. The idea here is that
discriminative behavior in categorization tasks can either be controlled by stimulus-specific
properties or by category-specific properties which are shared by most of the exemplars in the
category. Control by one of these two kinds of properties may depend on the demands of the
task and, what may be even more important, on prior control by the other (Restle, 1957).

Loidolt, Aust, Meran, and Huber (2003, Experiment 1) tested this idea in a study which took
advantage of the different demands that are posed by categorization and subcategorization
tasks. In a subcategorization task, exemplars of the same category must be sorted into two or
more different groups, so that categorical information should interfere with the required
discrimination; here, subjects must rely on exemplar-specific information to increase their
discrimination accuracy. In a categorization task, on the other hand, accurate performance can
be achieved by using either of these sources of information; nevertheless, learning should
proceed faster if it is based on categorical information because what is learned about one
stimulus can be easily transferred to several other exemplars of the category.

Loidolt and colleagues investigated retrospective interference of category learning over
identification learning with a 3-phase experimental design. In Phase 1, pigeons received
training on a Go/No-go subcategorization task involving 20 human faces of the same sex: 10
reinforced and 10 nonreinforced. Separate groups received training with male and female faces.
Phase 2 involved training on a categorization task with 100 stimuli: half of them male human
faces and the other half female human faces. In Phase 3 testing, the pigeons were presented
with completely novel stimuli from the categories that were used in Phase 2 as well as with
the same 20 stimuli that were used during the subcategorization task in Phase 1.

The most important result was that pigeons in Phase 3 classified all of the items included in
the subcategorization task—both reinforced and nonreinforced—in accord with the category
rule that was learned in Phase 2 categorization and regardless of the subcategorization
experience that each bird had gained with each exemplar in Phase 1. For example, those pigeons
that received subcategorization training with male faces (both reinforced and nonreinforced)
in Phase 1, followed in Phase 2 by categorization training with male faces reinforced, showed
high rates of responding in Phase 3 to all of the stimuli from the subcategorization phase,
including those that were nonreinforced and that had produced low rates of response in Phase
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1. Furthermore, this retrospective interference effect was virtually complete; the response rate
was almost identical to all of the subcategorization stimuli and comparable to that shown to
novel stimuli from the same category.

The predictions of the model for this experiment, plotted as mean response probability of the
relevant training and testing stimuli, are presented in Figure 17. The top panel presents the
results of a simulation in which the category that was used during subcategorization training
was reinforced during categorization training; the bottom panel represents the condition in
which this category was nonreinforced during categorization training. The model accurately
reproduces the observed pattern of data, particularly the radical change in response rate to those
stimuli from the subcategorization task that were exposed to the conflicting contingencies of
reinforcement. In both the original data and in the simulations presented here, these stimuli
show a change in their associative value toward the value that was acquired by the category
during the immediately prior training.

During categorization training in this simulation, 50 exemplars from the relevant category were
consistently reinforced or nonreinforced. Each of these exemplars was represented by some of
the same elements that were used to represent the stimuli that were involved in the previous
subcategorization task, with the consequence that their change in associative strength was
transferred to those stimuli as well. Because of the large number of exemplars involved in
categorization training, most of the elements representing the stimuli in the subcategorization
task (both category-specific and stimulus-specific elements) were presented, resulting in a very
strong retrospective interference effect.

New Predictions: Manipulating the Representational Elements
The simulation work that was presented in the previous sections documents how a substantial
number of experimental outcomes can be explained by simply assuming that animals represent
natural images as collections of common and unique elements. The representation that is chosen
for the stimuli might be deemed to be nothing more than an arbitrary or expedient selection in
order to make quantitative modeling easier, but we believe that thinking about natural image
classification in terms of category-specific and stimulus-specific elements also provides fresh
insights and suggests new ways of studying this interesting form of animal learning. Although
these elements are completely hypothetical, unobservable entities, the role that they might play
in learning different discriminations gives hints about how to manipulate their association with
an outcome. In the words of Rescorla (1976, p. 96): “Our inability to separately present the
shared and unique elements of a set of stimuli does not prevent them from being manipulated
to make differential predictions.”

For example, we know that, in order to master a pseudocategorization task, animals must rely
on the information that is provided by stimulus-specific elements, whereas category-specific
elements are completely uninformative as to the correct responses. We also know that
increasing category size enhances the control over behavior that is acquired by category-
specific elements. Thus, these and other experimental manipulations can be used to partially
isolate the control over behavior by a particular kind of element as well as to test our predictions
about their role in category learning.

We next present two new predictions of our model and we report experimental evidence
supporting both of them. We hope, in the process, to demonstrate the heuristic value of our
theory as well as to test the novel notion that error-driven learning plays an important part in
natural image categorization. We focus on the predictions of the model concerning competition
between stimulus-specific and category-specific elements for the control of behavior in
situations which produce blocking (Kamin, 1969) and relative validity (Wagner, Logan,
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Haberlandt, & Price, 1968) effects in Pavlovian conditioning: two key effects in the
development of modern associative learning theory.

Experiment 1: Blocking of categorical control by prior individual exemplar learning
As we have already seen, our model predicts that, for a pseudocategorization task to be learned,
pigeons must rely on stimulus-specific elements. Because of the error-driven nature of the
Rescorla-Wagner learning rule, further training with some of the stimulus-response pairs from
the original discrimination, which together create a true categorization task, should not foster
any category learning. Because the pigeons have already learned the first discrimination
through “rote memorization,” they should not be able to learn the systematic mapping between
categories and responses in the second discrimination or to generalize this learning when novel
exemplars of the categories are presented. Thus, the model predicts a “blocking” effect (Kamin,
1969), in which learning a discrimination by allocating associative strength to stimulus-specific
elements interferes with further allocating associative strength to category-specific elements,
under conditions that normally would produce such categorical learning.

The design of our experiment which tested this prediction is depicted in Table 1. The
experiment is divided into two training phases and a testing phase. In Phase 1, for the
Blocking condition, pigeons learned a pseudocategorization task in which 10 stimuli from each
of two categories were paired with one choice key and 10 different stimuli from each of the
same two categories were paired with a second choice key. In Phase 2, half of the trials in the
pseudocategorization task were dropped, transforming it into a true categorization task, in
which all 10 stimuli from one category were assigned to one choice key and all 10 stimuli from
the other category were assigned to a second choice key. Simultaneously, the subjects began
training on an additional categorization task involving two completely novel categories, which
served as a Control condition. This control condition provided a benchmark for the proper
amount of training that is needed to achieve robust category learning for each pigeon and it
also provided a control for the amount of generalization to novel stimuli that is fostered by this
training. Note that, because this was a within-subjects design, each pigeon received the same
amount of training in both of the categorization tasks during Phase 2; so, any disparity in the
amount of generalization to novel exemplars would have to be due to the prior
pseudocategorization training in the Blocking condition. Such stimulus generalization was
assessed in a final Testing phase, in which novel stimuli from each of the trained categories
were presented to the pigeons.

The left panel of Figure 18 shows the predictions of the model for this experimental design.
As we suspected, the model predicts lower generalization of categorization performance in the
Blocking condition than in the Control condition. In the Blocking condition, the pigeons should
not learn about the consistent assignment of responses to categories in Phase 2, because they
should already have learned the assignment of each individual stimulus in the task to its correct
response in Phase 1. In other words, the category-specific elements should not acquire
associative strength in Phase 2 because they are redundant; all of the information about the
correct response is already given by the stimulus-specific elements that were trained in Phase
1.

Method
Subjects and apparatus: The subjects were eight feral pigeons (Columba livia) kept at 85%
of their free-feeding weights. The apparatus entailed eight operant conditioning chambers
(Gibson, Wasserman, Frei, & Miller, 2004) that were located in a dark room with continuous
white noise.
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Procedure: The stimuli were 30 color photographs showing exemplars from each of four
categories (cars, chairs, flowers, and people) in varied backgrounds. Each pigeon was
concurrently trained on both conditions shown in Table 1, with each condition trained using a
different pair of response keys in a two-alternative forced-choice task. The assignment of
specific categories and response keys to the conditions shown in Table 1 was counterbalanced.

The stimuli were shown on a 107.0 × 70.5 cm rectangular screen positioned in the middle of
a computer monitor; the four response keys were illuminated by square black-and white icons,
positioned near the four corners of the display screen. A trial began with the pigeon being
shown a black cross in the center of a white screen. Following one peck anywhere on the
display, a training photograph appeared and the bird had to complete an observing response
requirement to the stimulus (from 5 to 45 pecks for different birds as was necessary to promote
learning); then a pair of response keys was shown (either left-top and bottom-right or right-top
and bottom left) and the pigeon had to peck one in order to advance the trial. If the pigeon’s
choice was correct, then food was delivered and an intertrial interval ensued. If the pigeon’s
choice was incorrect, then the house light and the monitor screen darkened and a correction
trial was given after a timeout of from 5 to 30 s. Correction trials continued to be given until
the correct response was made. All of the report responses were recorded, but only the first
report response of each trial was scored in data analysis. Reinforcement consisted of 1 to 3
food pellets.

In Phase 1, a session consisted of four blocks of 40 trials, arranging the Pseudocategorization
discrimination that is detailed in Table 1. Training continued until the pigeon met a criterion
of 85% accuracy on each of the four response keys; then, Phase 2 started. Phase 2 sessions
consisted of four blocks of 40 trials, as shown in Table 1. When the pigeons met the criterion
of 85% accuracy for each response key, stimulus generalization testing began.

Test sessions involved one block of 16 warm-up training trials that were randomly selected
from the Phase 2 contingencies plus one testing block. The testing block included 10 novel
stimuli from each category and three repetitions of every Phase 2 trial, totaling 176 trials. All
of the trials involving novel test stimuli were nondifferentially reinforced. A test session was
followed immediately by at least one session of Phase 2 training; pigeons were subsequently
tested only if they met criterion. Data for three test sessions were collected and analyzed for
each pigeon. Across the entire experiment, trials within each session were randomized in
blocks.

Results and discussion—The right panel of Figure 18 shows the mean proportion of
correct choices during generalization test trials for each of the two conditions. As expected,
generalization performance was lower in the Blocking condition (M = .57, SD = .07) than in
the Control condition (M = .69, SD = .12). This disparity was statistically significant by a one-
tailed paired-samples t test, t(7) = 1.91, p < 0.05. [A one-tail test was appropriate given the
directionality of our experimental hypothesis; we predicted the outcome of this experiment to
be lower generalization in the Blocking condition.] Furthermore, the outcome of this
experiment cannot be explained by better performance of the categorization itself in the Control
condition, because both discrimination tasks were trained to the same high criterion of 85%
accuracy and performance during the Test phase was actually slightly higher for the Blocking
condition (M = .94, SD = .03) than for the Control condition (M = .92, SD = .03).

These results closely accord with the predictions that are shown in the left panel of Figure 18;
to the best of our knowledge, this is the first reported evidence documenting competition for
behavioral control between stimulus-specific and category-specific elements in natural image
categorization. Perhaps even more interestingly, we obtained this blocking effect without any
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direct manipulation of these stimulus elements, only through the use of tasks which, according
to our model, should affect learning with completely hypothetical stimulus elements.

In our second experiment, we wanted to confirm the role that is played by error-driven learning
in natural image classification by exploring an analog of the relative validity experiment
conducted by Wagner et al. (1968). If the predictions of the model were again confirmed, then
we could make an even stronger case for its utility in explaining natural image categorization
and object recognition in animals.

Experiment 2: Predictive validity of exemplar-specific properties affects categorical control
The relative validity design (Wagner et al., 1968; Wasserman, 1974) involves two conditions.
In the Uncorrelated condition, subjects are presented with two compound stimuli, AX and BX,
each paired with reinforcement 50% of the time. In the Correlated condition, the same two
compound stimuli are presented, but now AX is reinforced 100% of the time, whereas BX is
never reinforced. Even though, in both conditions, X is reinforced 50% of the time—and hence
its absolute predictive value is always the same—animals in the Uncorrelated condition show
more responding to this stimulus than do animals in the Correlated condition. Thus, instead
of depending on its own informative value alone, conditioning to X depends on the informative
value of the other stimuli that are presented in compound with it. When A and B are good
predictors of the outcome, X does not acquire much associative strength despite its being paired
with reinforcement 50% of the time.

The main goal of the present experiment was to investigate an analog of the relative validity
design in natural image categorization, in which the roles of Stimuli A, B, and X were replaced
by hypothetical stimulus-specific and category-specific elements. The design of the experiment
is shown in Table 2. The Uncorrelated condition involved training with 20 exemplars from
one category; pecks to any of them yielded reinforcement 50% of the time. The Correlated
condition involved training with 20 exemplars from a second category; pecks to half of them
were continuously reinforced, whereas pecks to the other half were never reinforced. In both
cases, the category itself was reinforced and nonreinforced the same number of times. In the
Correlated condition, reinforcement was assigned to particular stimuli, which should
encourage stimulus-specific elements gaining control over behavior. However, in the
Uncorrelated condition, stimulus-specific learning should not be encouraged, because none of
these elements in the representation is informative as to whether or not reinforcement will
occur. The result should be that category-specific elements acquire robust associative strength
in the Uncorrelated condition, fostering generalization to new exemplars of the category,
whereas in the Correlated condition, categorical generalization should be weakened because
of the greater control gained by the more predictive stimulus-specific elements. The Test phase,
in which 10 new exemplars from each category were presented, was included to evaluate this
prediction.

The predictions of the model are depicted in the left panel of Figure 19, which shows the
percentage of generalized associative strength to the novel stimuli during the test, computed
by taking the ratio of the associative strength of the test stimuli over the associative strength
of the reinforced stimuli (consistently reinforced in the Correlated condition and partially
reinforced in the Uncorrelated condition). The model does indeed predict a disparity between
the conditions, with higher category generalization in the Uncorrelated than in the
Correlated condition.

This experiment also allowed us to explore a second prediction of our model, related to the
phenomenon of discriminative conditioning in Pavlovian learning (Pavlov, 1927). In
discriminative conditioning, two similar stimuli are presented separately and one of them is
reinforced (CS+), whereas the second is not (CS−). In initial training, a CR arises to both the
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reinforced and nonreinforced stimuli; but, with further training, the response to the CS−
gradually falls. Rescorla and Wagner (1972; Wagner & Rescorla, 1972) explained this pattern
of results by assuming that CS+ and CS− were composed of common and unique elements.
Common elements acquire associative strength on CS+ trials, which then generalizes to the
CS−. This generalized associative strength produces a CR to the CS− at the beginning of
training; but later, the unique elements of the CS− become inhibitory, leading to a reduction
in responding to this stimulus.

In the present experiment, the task that was presented to the pigeons in the Correlated condition
is analogous to Pavlovian discriminative conditioning. In this pseudocategorization task,
responses to one group of category exemplars are reinforced and responses to a second group
of exemplars from the same category are nonreinforced. In the context of a Go/No-go procedure
like the one used here, the Rescorla-Wagner model again predicts strong acquisition of
associative strength by the elements that are common to both groups of stimuli—the category-
specific elements. This acquisition translates into an initial increment in response rate to all of
the stimuli in the discrimination followed by a gradual decrement in responding to the
nonreinforced stimuli due to inhibitory learning involving the pictures’ stimulus-specific
elements. The predictions of the model for the learning curves of the reinforced and
nonreinforced stimuli in the Correlated condition are shown in the top panel of Figure 20. It
can be seen that the curve for the reinforced stimuli increases monotonically with training
sessions, whereas the curve for the nonreinforced stimuli follows a nonmonotonic function
with increments in associative strength early in training and decrements later.

To summarize, the key predictions of our model for the present experiment are: (a) greater
generalization to novel category exemplars in the Uncorrelated condition than in the
Correlated condition (left panel of Figure 19) and (b) a nonmonotonic learning curve for the
nonreinforced stimuli in the Correlated condition (top panel of Figure 20).

Method
Subjects and apparatus: The subjects were four pigeons kept at 85% of their free-feeding
weights. The apparatus involved the same four operant chambers as Experiment 1.

Procedure: The stimuli were some of those that were described in Experiment 1 (categories:
people and flowers). Each pigeon was concurrently trained on the two conditions shown in
Table 2, using a Go/No-go procedure. The assignment of categories to each condition was
counterbalanced.

All of the trials began with the presentation of a white rectangle in the center display area of
the screen. A single peck anywhere within the rectangle led to the presentation of the stimulus.
On a reinforced trial, the stimulus was presented and remained on for 15 s; the first response
after this interval turned the display area black and led to the delivery of food. On a
nonreinforced trial, the stimulus was presented and remained on for 15 s, after which the display
area automatically darkened and the intertrial interval began. On both reinforced and
nonreinforced trials, scored responses were recorded only during the first 15 s of stimulus
presentation. The intertrial interval randomly ranged from 6 to 10 s. Reinforcement consisted
of 1 to 3 food pellets.

In training, each session consisted of four blocks with the 40 trials described in Table 2. In the
Correlated condition 10 stimuli from one category were reinforced and 10 other stimuli from
the same category were nonreinforced, whereas in the Uncorrelated condition all of the stimuli
in the category were equally often reinforced and nonreinforced. To evaluate performance, a
Discrimination Ratio (DR) was computed for the stimuli in the Correlated condition by taking
the mean response rate to the reinforced stimuli and dividing it by the sum of the mean response

Soto and Wasserman Page 32

Psychol Rev. Author manuscript; available in PMC 2011 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



rate to the reinforced stimuli plus the mean response rate to the nonreinforced stimuli. Training
continued until the bird achieved a DR higher than 0.85 for 2 consecutive sessions; then, testing
followed.

In each testing session, one training block was followed by two testing blocks. Each testing
block included one nonreinforced presentation of each of 10 novel stimuli from the two
categories, randomly interspersed in a block of training trials. The total number of trials in each
test session was 160. Testing continued until the DR for the training stimuli in the Correlated
condition and the DR for the test stimuli in both conditions were above 0.85 for two consecutive
sessions. This criterion guaranteed that testing data were collected up to the point where
responding to the test stimuli was almost completely extinguished. Across the entire
experiment, trials within each session were randomized in blocks.

Results and discussion—We computed a generalization ratio for the novel stimuli during
testing by taking the mean rate of response to these stimuli and dividing it by the mean rate of
response to the reinforced stimuli in each condition. We computed this measure because the
level of responding to the reinforced training stimuli differed in both conditions, as expected
from the different frequencies of reinforcement in each case (continuous reinforcement in the
Correlated condition; partial reinforcement in the Uncorrelated condition). We wanted to
compare between the conditions the proportion of responding to the reinforced stimuli that
generalized to the new exemplars of the category, which is exactly what this measure of
generalization represents.

The mean generalization ratio for each of the two conditions is shown in the right panel of
Figure 19. As predicted by the model (left panel of Figure 19), stimulus generalization was
higher in the Uncorrelated condition (M = .41, SD = .02) than in the Correlated condition
(M = .26, SD = .08); the disparity was statistically significant according to a paired-samples t
test, t(3) = 4.92, p < 0.01. These data thus show that the learning of open-ended visual categories
does not depend simply on the informative value of the category to predict reinforcement, but
also on the predictive value of each individual stimulus in the categorization task. Information
carried by stimuli at these two levels—represented by stimulus-specific and category-specific
elements—competes for control of behavior in natural image categorization. This result is
analogous to the relative validity effect observed in Pavlovian conditioning preparations, but
at the level of whole categories instead of individual stimuli.

The bottom panel of Figure 20 shows mean response rates across blocks of training for both
reinforced (solid circles) and nonreinforced (open circles) stimuli in the Correlated condition.
Because the speed of mastering the discrimination varied among pigeons, the data are presented
up to the block in which the fastest pigeon met criterion (Block 28). The mean response rate
in the last training block across all of the pigeons is also included as a point of reference. As
predicted by the model, response rate to the nonreinforced stimuli rises at the beginning of
training along with response rate to the reinforced stimuli; after about seven training blocks,
response rate to the nonreinforced stimuli starts falling. This initial rise and later fall in mean
response rate was exhibited by all four pigeons.

The data shown in Figure 20 were entered in a 2 (Reinforcement) × 28 (Training Block)
ANOVA, which revealed a significant interaction of Reinforcement and Training Block, F
(27, 81) = 5.26, p < .001), but no main effect of either Reinforcement, F(1, 3) = 5.31, p > .10),
or Training Block, F(27, 81) = 1.17, p > .10). These results suggest that the changes in mean
response rate across training differed significantly for the reinforced and nonreinforced stimuli.

The present results, together with those of Experiment 1, clearly illustrate three important
contributions of our model. First, they show how our model can generate new predictions about
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the conditions that foster categorization learning, which can be empirically tested. Second, they
serve as concrete examples of how the theoretical elements that we have proposed as the basis
for categorization can be effectively manipulated in categorization experiments. Third, they
serve as evidence that the same stimulus competition principles that account for simple
associative learning are also involved in pigeons’ categorization of natural images, yielding
strong empirical support for the incorporation of an error-driven learning rule into our model.

General Discussion
The present paper represents a focused effort to apply the principles of associative learning
theory to explain perceptual categorization phenomena in animals. The resulting model proved
to effectively explain a wide array of empirical data on natural categorization behavior in
pigeons, despite the simplicity of its assumptions about stimulus representation and associative
learning, and despite the fact that all of the simulations used the same set of parameter values.
Furthermore, the model was able to generate testable predictions about the conditions that
foster categorization learning with naturalistic stimuli and these predictions were clearly
confirmed in two new experiments. Because these experiments involved the manipulation of
completely hypothetical elements and their association with behavior, it would have been
difficult even to envision them without a theoretical framework like the one that we proposed
here.

The success of our model suggests that the formalization and application of associative theories
in the tradition of animal learning research is possible even to explain the results of experiments
using complex and uncontrolled stimuli, like the photographs that have often been used to
study natural categorization behavior. The model permits us to build a bridge between very
different traditions in animal learning research. As such, we hope that it represents a step
forward in the development of a general theory of animal learning, one that explains both simple
associative learning and more complex learning situations according to the same basic
principles.

Despite the evident popularity of this “general principles” idea among many animal learning
researchers (Huber, 2001; Mackintosh, 1995, 2000) and the fact that this idea has been used
to explain studies of artificial stimulus categorization (Gluck & Bower, 1988; Mackintosh,
1995; Shanks, 1991), to the best of our knowledge, ours is the first attempt to formalize a model
of natural categorization in the tradition of error-driven learning theories and to assiduously
assess the predictions of the model against empirical data that have been collected in a long
line of programmatic experiments. The notion that associative learning principles may underlie
natural image categorization in animals had remained untested until now; we have presented
here the first computational and empirical evidence favoring this possibility.

Do note that the distinction between category learning investigations involving natural images
and artificial images is far from trivial, given that they differ both in the physical attributes of
the stimuli (Simoncelli & Olshausen, 2001) and in the difficulty that different categorization
problems pose for nonhuman animals (Lea et al., 2006). Our conceptualization of complex
stimuli in natural categorization studies in terms of shared and unique representational elements
suggests that, despite the disparities between artificial and natural categorization tasks, both
can be explained using the same general principles of elemental stimulus representation and
error-driven learning.

In the remainder of this article, we discuss the relation between our model and alternative
schemes for categorization learning. First, we consider the possibility of developing models
using alternative learning algorithms from those available in the animal learning literature.
Second, we comment on the relation between our model and some of the most popular models
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in the human categorization literature. Finally, we propose how our model might be extended
to accommodate some remaining challenges in the explanation of animal visual categorization.

Alternatives to the Rescorla-Wagner model
Attempting to explain perceptual categorization by elaboration of the Rescorla-Wagner model
entails all of the strengths and weaknesses of this particular theory. Despite its many celebrated
successes, there is a long list of empirical data that the Rescorla-Wagner model cannot explain
(Miller, Barnet, & Grahame, 1995); it can be expected that our model will similarly fail to
explain analogous results in categorization studies (Aitken, Bennett, McLaren, & Mackintosh,
1996; Aydin & Pearce, 1994). It is also clear to us that our model is still in its infancy; with
time, it will be necessary to modify it or to replace it in order to give an even more complete
account of natural categorization in animals. Other aspects of categorization, based on
nonassociative processes like perceptual learning and attention (Goldstone, 1998; Kruschke,
2003), might force such changes.

It should be noted here that evidence suggesting the participation of such processes does exist
in the avian categorization literature, coming from experiments that have used artificial stimuli
(Aitken et al., 1996). Thus, we do not deny that there is a good chance that these processes,
which are not captured by our model, might play an important role in the categorization of
objects in natural scenes. However, until now there has not been a systematic research agenda
directed to determine the impact of perceptual and attentional learning in the study of animals’
categorization of natural images. One reason for the absence of this agenda might be that clear
evidence of such processes is difficult to gather without the use of stimuli that can be easily
manipulated; we hope that the framework presented here will provide hints about how to tackle
such difficult empirical questions. If, as we suspect, perceptual and attentional learning do have
an important impact on avian natural image categorization, then our model should be modified
or replaced by a theory incorporating these mechanisms.

Another interesting possibility is to implement our model using a common-elements
representation together with Pearce’s highly successful theory of associative learning (Pearce,
1987, 1994, 2002). This theory involves an error-driven learning rule like the one that we used
here; but, instead of proposing that the associative strength of a stimulus configuration is the
simple sum of the associative strengths of each of its elements (as in Equation 4 and the
summation term in Equation 1), Pearce’s theory proposes a more complex combination
principle based on a configural representation of stimuli. Simulations with this configural
version of our model (based on Pearce, 1994) have shown that, in order to reproduce the results
of most of the experiments discussed here, all that is needed is to adjust the learning rate
parameters. Thus, the data that we have considered here do not allow us to distinguish these
two of associative learning models. We believe that many other models which treat associative
learning as an error correction process may also effectively reproduce the results that we have
reviewed above.

However, we do not believe that comparing these two models, or any other models of
associative learning, ought to be the primary research objective in the study of natural image
categorization. These models were developed to explain simple associative learning;
experiments using Pavlovian preparations and easily manipulable stimulus compounds are
more likely to be informative about their relative utility. We believe that a much more
interesting line of research should focus on those aspects of natural image categorization that
are not shared with associative learning processes, as we discuss below.

Also, not all theories of Pavlovian conditioning are straightforwardly applicable to the stimulus
representation in our model. Some “classic” theories of compound generalization (e.g., Pearce,
1987; Rescorla & Wagner, 1972) explain how much associative strength is generalized from
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one stimulus compound to another as a function of the components that are shared between
them. That is, each discrete stimulus that is given to an animal in a Pavlovian preparation is
represented through a single, discrete unit in these models. Because of this feature, the
generalization and learning rules in those theories can be straightforwardly applied within the
framework of our model—if it is assumed that the elements in our representations take the
place of stimulus components, which is exactly what was done here with the Rescorla-Wagner
model.

More recent elemental theories of associative learning use componential representations,
meaning that they represent each individual stimulus through a number of representational
elements. Our model is itself a componential model, in which a single image is represented by
a number of elements varying in their level of category specificity. Contemporary
componential models of Pavlovian conditioning include Wagner’s (2003) replaced elements
model, Harris’ (2006) “attentional buffer” model, and McLaren and Mackintosh’s (2000)
elemental model. Whereas classic models take discrete stimuli to be their elements,
componential models add a new representational layer by treating each stimulus as composed
of sub-elements. Furthermore, these elements interact in a nonlinear fashion, with each of them
increasing or decreasing the activation of the others depending on factors such as the similarity
relations between the stimuli that they represent. This feature allows these models to represent
the same stimulus in different ways depending on the context in which it is presented or to
solve discriminations which are not linearly separable without proposing a configural stimulus
coding. However, the generalization rules that are included in these models are built on the
sub-elements in their representation; they do not offer any straightforward way to compute
generalization across compounds as a function of their components, as in classic models.

If a researcher wanted to apply these componential models to our stimulus representation, then
one of two strategies could be taken, each leading to an underspecified model. First, it is
possible to imagine that the elements in our representations are analogous to the elements in
componential models of conditioning. In this case, in order to specify stimulus generalization
principles it would be necessary to group the elements into components representing “discrete
stimuli” and then to determine how these grouped representations should interact with each
other (for example, by determining how similar one group of elements is to another). It is
obvious that this solution leaves us facing the same problem that we have tried to solve in this
paper: we do not know how to parse natural photographs into components and we know even
less about the similarity relations between such components in each photograph.

A second possibility would be to imagine that our elements are analogous to the discrete stimuli
in these models, as in classic models of associative learning. In this case, each of the elements
in our representation would itself be represented through a pool of sub-elements and again the
interactions among the elements themselves must be determined. In sum, we cannot apply
componential models to our stimulus representation, which is itself componential, without
making assumptions about how natural images are parsed into components and how these
components interact with each other. Even if this task were possible, then we believe that
pursuing it would be ill-advised; the final result would be a considerably more complex model
than what we currently have and it would entail a step that is not called for by the available
data in the area of research that is our focus in this paper.

Our conclusion is that it is unclear whether componential models of associative learning can
explain natural image categorization phenomena at all. Although those models are similar to
the present theory in that they use elements to represent different stimuli, that similarity is only
superficial because none of these models includes a way to represent the variability in category
specificity across elements that is essential to explain stimulus categorization. As we noted
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earlier, in this respect, our model is more closely related to the original ideas of stimulus
sampling theory than to contemporary elemental theories of associative learning.

Relation to models of human categorization
One of the main goals of our work is to build a bridge between traditional animal learning
theory and natural image categorization research. With this aim, we focused on learning rules
which were taken from the animal learning literature, although we are well aware that the
literature in human categorization contains an even larger number of models that we have not
taken into account. Without actually testing modifications of these models against the data, it
is impossible for us to assess their value in describing the principles of animal visual
categorization. Nevertheless, we suspect that at least some of those models of human
categorization are not well suited to explain the learning dynamics seen in many animal studies.

Our model can explain these results because it uses an interactive learning rule (Nosofsky,
Kruschke, & McKinley, 1992), in which generalization and learning interact with each other
during training, explaining the dynamics of category learning as a function of the competition
among elements to become associated with a response. Some of the most popular models of
human categorization (Ashby, 1992; Estes, 1986; Medin & Schaffer, 1978; Nosofsky, 1984;
Reed, 1972) simplify the category learning process by just counting co-occurrences of
exemplars (or their features) and responses. Classification is then treated as a decision process
based on similarity and frequency information. We believe that this kind of model would have
considerable difficulty explaining, for example, the precedence of categorization learning over
identification learning that was found by Wasserman et al. (1988), just as they have difficulty
explaining analogous training effects in artificial categorization with humans (Smith & Minda,
1998) and animals (Cook & Smith, 2006). The learning data that were presented in Experiment
2 (see Figure 20) would also be difficult to explain using traditional categorization models or
any other model which does not include an interactive learning rule.

Connectionist models of human categorization, which do include interactive, error-correction
learning rules, are more likely to provide a good account of the results discussed here. Some
of these models (Gluck & Bower, 1988) have been found to be equivalent to the Rescorla-
Wagner model under special circumstances. Others, like ALCOVE (Kruschke, 1992), are more
similar to Pearce’s model, in that they involve a configural stimulus representation combined
with an error-driven learning rule.

Although we grant that models like ALCOVE capture some of the learning principles that are
involved in our model, we also consider that this and other theories of human category learning
are unnecessarily complex and flexible in comparison with models of animal learning that can
account for the data reviewed here. Also, ALCOVE and other models of human categorization
learning do not use a common-elements approach to explain generalization among category
exemplars; instead, they use a “distinctive-elements” rule in which generalization is an inverse
function of the mismatch between stimuli (Sattath & Tversky, 1987). Because both rules
compute similarity in fundamentally different ways (Young & Wasserman, 2002), we are
uncertain whether a model involving a distinctive-elements generalization rule can explain the
results that are accounted for by our common-elements model.

Remaining questions and extensions of the model
As we noted earlier, there are important aspects of natural image classification that our model
leaves unexplained. One of them is the tendency for animals to group together stimuli that are
not perceptually similar (e.g., chairs and people) after training involving associations with a
common response (Wasserman, DeVolder, & Coppage, 1992) or reinforcer (Astley &
Wasserman, 1999), a phenomenon that is called learned stimulus equivalence. A simple
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modification of our model which could account for this kind of behavior involves adding a
layer of hidden units between stimulus and response representations and modifying the
connection weights in the final network according to the backpropagation learning algorithm
(Rumelhart, Hinton, & Williams, 1986). This error-correcting learning rule has the convenient
property of assigning similar representations in the hidden layer to stimuli that have been paired
with similar outcomes, which accounts for several aspects of learned stimulus equivalence
according to our own modeling work.

Another challenge for the future is finding a way to build common-elements representations
that better reflect the similarity relations between stimuli in a categorization task. Currently,
the model shows considerable explanatory power by simply assuming that stimuli in the same
category share common representational elements. If we were able to build representations that
more precisely captured the similarity between stimuli, then the explanatory power of the model
would be even greater. One approach that could be taken in this direction involves the use of
additive clustering techniques (Navarro & Griffiths, 2008; Shepard & Arabie, 1979) to infer,
from measures of stimulus generalization, the common-elements representations that animals
use to compute the similarity between natural images. These representations could be deployed
to predict performance in categorization tasks, an approach that has been very useful in human
categorization research (Nosofsky, 1986).

One of the most important aspects of natural image classification that is left unexplained by
our model is how a representation which is composed of stimulus-specific and category-
specific elements can be abstracted from natural images by the visual system. It seems clear
to us that, in order for animals to exhibit categorization performance which is invariant across
different members of a category, some more or less invariant aspect(s) of the stimulus should
be extracted from the images to control behavior; but, the question as to exactly how this process
occurs is still open. Theories of human object recognition could be very useful to guide research
along this line. These theories focus mainly on describing the format of the representations that
are stored to achieve invariant recognition and how they are extracted from the visual input
(Palmeri & Gauthier, 2004), precisely the kind of processing that is not addressed by our model.

For example, according to the theory of Recognition-by-Components (RBC; Biederman,
1987), we might expect members of a category to share a high percentage of perceptual units,
or “geons,” and for those geons to be spatially arranged in similar ways, despite possible
disparities in other stimulus-specific geons or surface properties. Support for RBC has been
reported for pigeons (for a review, see Kirkpatrick, 2001), which makes this and similar
structural-description theories particularly promising for future research and theoretical
development. As mentioned before, there are also important links between the representation
that is implemented in our model and the one that is proposed by hierarchical models of object
recognition based on properties of the primate visual cortex (Serre et al., 2005, 2007); such
hierarchical models directly extract from natural images a representation that is composed of
units with varying levels of specificity and invariance.

It is an open question whether the process of extracting invariant information from natural
images is the same in different species, although there is growing evidence that humans and
pigeons use similar features in at least some object recognition tasks (Gibson, Lazareva,
Gosselin, Schyns, & Wasserman, 2007; Gibson, Wasserman, Gosselin, & Schyns, 2005;
Lazareva, Wasserman, & Biederman, 2008). On the other hand, theories of object recognition
and natural image classification are relatively silent as to the mechanisms by which different
properties of a stimulus gain control over performance in an identification task as a function
of the demands that such task impose (Palmeri & Gauthier, 2004).
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Error-driven learning is a natural candidate for such a mechanism and we have shown how our
model suggests ways to empirically test for the presence of this form of learning in natural
image categorization. The experimental designs that we used in the two experiments reported
here could be easily adapted to the study of natural image categorization in humans.

In fact, we have done some preliminary work with humans using a blocking design like the
one that was described here for our first experiment. To our surprise, the results have been very
similar to those found with pigeons. Thus, we have encouraging evidence which suggests that
the same associative learning principles may underlie natural image categorization in animals
and people. More generally, our model provides a fresh way of thinking about visual
categorization that may prove useful in designing experimental tests for the applicability of
different learning rules to this behavioral phenomenon in any species.

In sum, although it is not altogether clear whether the mechanisms that are involved in natural
image classification are the same across different species, growing evidence suggests that
common principles underlie the visual categorization behaviors of birds and primates, both in
the extraction of invariant and specific information from natural images and in the associative
processes that determine which of these two types of information is more useful in solving a
specific behavioral task. Our model represents a step forward toward better understanding the
latter process by proposing that associative learning principles can explain the way in which
different stimulus properties acquire control over behavior in natural image categorization.

We have presented a theoretical framework which: (a) offers a much-needed organization and
interpretation of established empirical findings in the animal literature on natural image
categorization, (b) makes strong links to other important areas of animal learning theory, (c)
paves the way for future theoretical development, and (d) has true heuristic value by stimulating
new behavioral tests like those reported in this paper. There is still much work to be done in
order to gain a full understanding of natural image categorization in different species; but, it
is clear that theoretical efforts like the one we have offered here are necessary to attain this
goal.
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Figure 1.
A common-elements representation of the similarity between stimuli.
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Figure 2.
A schematic representation of the common-elements model of natural image classification that
is described in this article.
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Figure 3.
Some examples of the shape that the beta density function acquires with different values of
parameters a and b.
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Figure 4.
Simulated results of Bhatt and colleagues’ (1988) experiment in categorization learning and
transfer to novel exemplars of the trained categories.
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Figure 5.
Simulated results of Wasserman and Bhatt’s (1992) experiment assessing the effect of category
size on category learning. The top panel shows the probability of correct choice across training
and allows the comparison of learning rates for different category sizes. The bottom panel
compares final performance to the training stimuli (black columns) and to the novel test stimuli
(grey columns).
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Figure 6.
Simulated results of Bhatt and colleagues’ (1988) experiment on the effect of stimulus
repetition on categorization learning.
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Figure 7.
Simulated results of Wasserman and colleagues’ (1988) experiment comparing learning rates
for categorization and pseudocategorization tasks.
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Figure 8.
Diagrammatic description of the procedure that was used to create representations of the stimuli
that involved matching backgrounds. The main disparity between the matched representations
is in the presence or absence of information about a category exemplar (see text for details).
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Figure 9.
Simulated results of Edwards and Honig’s (1987) Experiment 1, which compared learning
rates of feature-positive and feature-negative categorization tasks with images using matched
backgrounds (see text for details).
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Figure 10.
Simulation of Edwards and Honig’s (1987) Experiment 4, which involved a factorial design
with feature-positive and feature-negative discriminations using both matched and nonmatched
backgrounds (see text for details).
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Figure 11.
Simulated results of Aust and Huber’s (2001) categorization study of feature-positive effects
on generalization performance to novel exemplars of the trained category.
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Figure 12.
Simulated results of Astley and Wasserman’s (1992) experiment comparing generalization of
responding to members of a reinforced category and to exemplars from different categories.
ODR and CER measures (see text for details) are reported in the top and bottom panels,
respectively.
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Figure 13.
Simulated results of Sutton and Roberts’ (2002) experiment comparing generalization of
responding to members of a reinforced category (the only one that was presented during
training) and exemplars from a different category.
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Figure 14.
Simulated results of Wasserman and colleagues’ (1988) experiment assessing pigeons’
performance in a subcategorization task. The top panel shows the probability of correct choice
as a function of training. The bottom panel shows the proportion of categorical errors across
training.
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Figure 15.
Results of a simulation of Wasserman and colleagues’ (1988) experiment, after a reanalysis of
the data aimed at elucidating the relative contributions of categorization performance,
identification performance, and guessing to the pigeon’s choices in a subcategorization task.
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Figure 16.
Simulated results of Cook and Smith’s (2006) experiment using the configural cue model of
associative learning.
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Figure 17.
Simulated results of Loidolt and colleagues’ (2003) experiment which reported retroactive
interference of identification learning by categorization learning.
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Figure 18.
Model predictions (left panel) and experimental results (right panel) of an experiment into
blocking of categorization learning by previous identification learning of individual exemplars.
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Figure 19.
Model predictions (left panel) and experimental results (right panel) of an experiment
investigating the effect of the predictive validity of stimulus-specific elements on
categorization learning.
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Figure 20.
Learning curves for reinforced and nonreinforced stimuli in the Correlated condition of
Experiment 2. The top panel shows the functions that were predicted by the model and the
bottom panel shows the experimental results.
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Table 1

Design of Experiment 1

Phase 1: Pseudocategorization Phase 2: Categorization Generalization Test

Blocking Condition 10 images from Category 1
/ Response 1

10 images from Category 1
/ Response 1

Phase 2 training trials +

10 new images from Category 1

10 images from Category 2
/ Response 2

10 images from Category 2
/ Response 2

10 new images from Category 2

10 images from Category 1
/ Response 2

10 images from Category 2
/ Response 1

Control Condition --- 10 images from Category 3
/ Response 3

Phase 2 training trials +

10 new images from Category 3

--- 10 images from Category 4
/ Response 4

10 new images from Category 4
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Table 2

Design of Experiment 2

Training Generalization Test

Uncorrelated 20 images from Category 1
/ 50% reinforcement

Training trials +

10 novel images from Category 1
/ No reinforcement

Correlated 10 images from Category 2
/ 100% reinforcement

Training trials +

10 novel images from Category 2

10 images from Category 2
/ 0% reinforcement

/ No reinforcement
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