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Cell fate determination depends in part on the establishment of
specific transcriptional programs of gene expression. These pro-
grams result from the interpretation of the genomic cis-regulatory
information by sequence-specific factors. Decoding this informa-
tion in sequenced genomes is an important issue. Here, we
developed statistical analysis tools to computationally identify
the cis-regulatory elements that control gene expression in a set
of coregulated genes. Starting with a small number of validated
and/or predicted cis-regulatory modules (CRMs) in a reference spe-
cies as a training set, but with no a priori knowledge of the factors
acting in trans, we computationally predicted transcription factor
binding sites (TFBSs) and genomic CRMs underlying coregulation.
This method was applied to the gene expression program active in
Drosophila melanogaster sensory organ precursor cells (SOPs), a
specific type of neural progenitor cells. Mutational analysis showed
that four, including one newly characterized, out of the five top-
ranked families of predicted TFBSs were required for SOP-specific
gene expression. Additionaly, 19 out of the 29 top-ranked pre-
dicted CRMs directed gene expression in neural progenitor cells,
i.e., SOPs or larval brain neuroblasts, with a notable fraction active
in SOPs (11/29). We further identified the lola gene as the target
of two SOP-specific CRMs and found that the lola gene contributed
to SOP specification. The statistics and phylogeny-based tools
described here can be more generally applied to identify the cis-
regulatory elements of specific gene regulatory networks in any
family of related species with sequenced genomes.
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Transcriptional regulatory networks play a central role in many
developmental and physiological processes. Mapping the

cis-regulatory information underlying transcriptional regulation
is therefore of key importance. Experimental (1, 2) and compu-
tational methods (3, 4) provide complementary approaches to
address this problem. One primary goal is the determination
of cis-regulatory modules (CRMs) that often take the form of
500–1,000 nucleotides (nt) long sequences with multiple binding
sites for several transcription factors. This has been most success-
fully achieved when searching for experimentally well-character-
ized binding sites (5–11) for known transcription factors (TF)
usually under the form of position weight matrices (PWMs)
(12). CRM determination without prior knowledge of cis-binding
information is clearly a much more difficult problem. Several al-
gorithms have tried to differentiate CRMs from nonregulatory
sequences by analyzing the distributions of their entire content
in small word frequency (13–17). These approaches, however,
do not provide direct information on cis-binding motifs. With
the advent of multiple sequenced genomes, phylogenetic conser-
vation can also be used to identify regulatory motifs in a dataset
on the basis of numerous conserved instances across the genomes
(18–20). However, in the absence of expression and/or binding
data, the spatio-temporal pattern of activity of the predicted
CRMs cannot be inferred.

Here, we consider the specific task of determining the cis-reg-
ulatory motifs and associated CRMs that regulate gene expres-
sion in a cell-specific manner (21). A frequently encountered
instance of this problem is the prediction of novel CRMs based
on sequence information given by a small collection of putative
and/or validated CRMs in one species. Previous works that ad-
dressed this problem showed the usefulness of using conservation
between different genomes (9, 11, 22–25). We present an algo-
rithm that combines new statistical tools with phylogenetic infor-
mation to first discover short, i.e., ≃10 nt, conserved cis-
regulatory motifs within a training set of CRMs without prior
knowledge on the transcription factors acting via these CRMs
and, second, predict previously undescribed CRMs. We applied
this method to the discovery of previously undescribed cis-regu-
latory motifs and genomic CRMs that direct gene expression in
Drosophila melanogaster SOPs and neural progenitor cells.

Outline of the Algorithm
The goal of the algorithm described here is to identify TF PWMs
from a small number of CRMs that define a training set with no a
priori knowledge of the TFs acting via these CRMs. The key steps
of our method are summarized in Fig. 1A (see SI Appendix for a
complete description). The training set consists in sequences for a
given species (D. melanogaster in the present work). Conservation
with other species (the 11 other sequenced Drosophilae species
here) is used both to enrich the training set with orthologous
sequences and to focus on PWMs that have conserved binding
sites in different species. Once PWMs specific to the training
set are obtained, they are used to predict CRMs genome-wide.

The first step of our algorithm is to infer PWMs (Fig. 1B). To
determine the ensemble S of PWMs specific to the training set,
we attribute to each possible PWM an a priori probability to be-
long to S solely based on its information content (see section 2.2
in SI Appendix). The information content of a PWM reflects its
binding specificity (12). We therefore require an a priori informa-
tion content of the PWMs of S, set as the threshold score Sth.
Namely, we choose the a priori probability for a PWM to belong
to S so that the average information content of a random PWMof
S is Sth. With Sth ≃ 13, a random PWM typically binds one site
every ≃10 kb.

The algorithm then proceeds as follows. Each n-mer (n ¼ 10 in
Fig. 1 B and C) present in the training set is considered as a
putative site for a PWM specific to the training set. The a priori
probabilities of all possible PWMs to belong to S are modified
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according to the probability that they recognize the considered
n-mer. These biased probabilities provide a first approximate
PWM specific to the considered n-mer that is obtained by aver-
aging all possible PWMs according to their probabilities. This
first approximate PWM is then used to identify similar n-mers
in the training set, i.e., with a score value above the a priori de-
fined Sth. For each n-mer found in the training set, n-mers

recognized by the first approximate PWM are then searched
in the orthologous set around the same position (a shift of
�20 nt is allowed to correct for possible alignment errors) with
a score value S0th inferior to Sth. At this stage, conservation is en-
forced by considering for PWM refinement only the sites that are
also detected in relatively distant species (Fig. 1B) (see section 2.4
in SI Appendix). Detected sites are then used to modify the prob-
abilities in the set of PWMs using a Bayesian approach as for the
initial n-mer. In order to properly combine sites in the training set
(reference species) and in the orthologous set (related species),
an explicit evolution model for TFBS should be used (9, 26, 27).
We chose to use here a simple previously proposed model (26).
The evolution model allows the algorithm to weigh sequence
differences in different species according to their evolutionary
distance and to construct the most likely PWM that binds the
set of obtained sites. This refined PWM is again used to search
for binding sites in the training set. The process is iterated until
convergence is reached. Combining PWMs with an evolution
model distinguishes the present algorithm from previous ones
that used less flexible binding requirements (11, 23, 25) or used
conservation but not phylogeny (22–24).

In our initial attempts to apply the above procedure to the sen-
sory organ precursor (SOP) training set (see below), PWMs
matching repeated sequences were produced. Masking the train-
ing set using repeat masker (28) did not solve this problem. This
led us to study the distribution of the sites identified by the PWMs
within the training set relative to a set of intergenic sequences
from the reference species (20 Mb background ofD. melanogaster
genomic DNA in the present work). This set is defined here as the
background set. For each PWM, all sites present in the back-
ground set are identified. PWMs corresponding to repeated
sequences are then discriminated and eliminated based on the
strong non-Poisson distribution of the sites that they recognize
(Fig. 1C) (see section 2.5 of SI Appendix). This filtering step based
on PWM binding statistics is the automatic repeat pruning step
(Fig. 1C). It produces a filtered list of PWMs that have approxi-
mately Poisson-distributed binding sites on the background
sequences.

The PWMs on this filtered list are then ranked according to
the deviation of their site distribution from this background
Poisson statistics, on the training set (Fig. 1C) (see section 2.5
of SI Appendix). A PWM is thus ranked high not only if corre-
sponding sites are overrepresented in the training set but also, for
instance, if its sites are less evenly distributed in the training set
than in the background set.

Finally, the ranked list of PWMs obtained from this procedure
contained several PWMs that appeared similar. Therefore, in the
last step of the algorithm, PWMs are tested for similarity based
on a proximity index defined here based on the overlap between
the sets of their binding sites (see section 2.5 of SI Appendix).
Duplicates of top-ranked matrices are then removed to even-
tually generate a list of nonredundant ranked PWMs (Fig. 1C).
These PWMs can then be used to predict CRMs genome-wide.
Additionally, as described below, CRM prediction can also be
used to optimize the parameters of this PWM identification
algorithm.

Results and Discussion
A Training Set for CRMs Active in Neural Progenitor Cells of D. Mela-
nogaster. This method was applied to identify cis-regulatory mo-
tifs that regulate gene expression in neural progenitor cells of
D. melanogaster. Previous studies have used the formation of
adult sensory bristles in D. melanogaster as a model system for
neurogenesis (29). The transcriptional logic underlying the spe-
cification of SOPs from groups of neuroepthelial cells is relatively
well understood (30) (Fig. 2E). In brief, expression of the
proneural genes achaete (ac) and scute (sc) confer upon groups
of proneural cluster (PNC) cells the competence to become

A
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C

Fig. 1. Genome-wide, pattern-specific motif and CRM discovery approach.
(A) General outline. Training set definition (pink) precedes in silico analysis
(blue) and experimental validation (orange). (B) Identification of PWMs.
Starting from all D. melanogaster CRM sequences of the training set, a list
of nonranked motifs is generated in several steps. First, at each base position
in the training set, a 10-mer sequence is extracted and an initial approxima-
tive matrix is built using this unique sequence. The training set is then exhaus-
tively scanned for sites corresponding to this approximative matrix, i.e., for
sites that have a score higher than Sth. For each site of the training set that
has been detected, orthologous sites are searched in the 11 other sequenced
Drosophilae species. These orthologous sites are combined to obtain a
refined frequency matrix using phylogenetic information and a model of
transcription factor binding site evolution. The procedure is iterated to con-
verge on a final frequency matrix. (C) Selection and ranking of PWMs. Start-
ing from the set of PWMs generated in B, PWMs that correspond to repeated
sequences and redundant PWMs are removed. Remaining PWMs are ranked
to generate a list of predicted TFBSs.
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SOPs (29). Inhibitory cell–cell signaling mediated by Notch re-
stricts this competence to regularly spaced cells (31). Proneural
genes encode bHLH transcriptional activators that promote both
adoption of the SOP fate within each PNC cell and, at the same
time, inhibitory Notch signaling between PNC cells. Within each
PNC cell, proneural activity is antagonized by Notch via the E
(spl)-bHLH repressors. Thus, SOPs emerge as winners of this
competition for the SOP fate as PNC cells with both high
proneural and low Notch/E(spl)-bHLH activities. In contrast,
nonselected PNC cells have low proneural and high Notch/E
(spl)-bHLH activities. This suggests a model whereby SOP-
specific expression results from activation by proneural factors
in SOPs and repression by E(spl)-bHLH repressors in nonSOP
cells (Fig. 2E) (30, 32). This transcriptional logic is thought to
apply widely to sensory and neural cells from cnidarian to mam-
mals (33, 34).

The genetic program of SOPs is well-suited for our CRM dis-
covery approach. First, only a relatively small number of SOP-
specific genes, i.e., expressed in SOPs but not in other PNCs
of the pupal thorax, are known (35, 36). Thus, many SOP-specific
genes probably remain to be discovered. Second, several CRMs
active in SOPs, and not in other cells of the pupal neuroepithe-
lium, have been validated using stringent in vivo assay and can be

used as a training set (37–39) (Table S1 in SI Appendix). Several of
these SOP-specific CRMs also direct expression in other neural
progenitor cells, indicating that the genetic program active in
SOPs in part reflects a more general program active in neural
progenitor cells. Third, high-quality genomic sequence data are
available for 12 Drosophila species.

Our SOP training set consisted in eight CRMs that have pre-
viously been shown to be active in SOPs (Table S1 in SI Appendix
and references therein), six novel CRMs identified here based on
their proximity to SOP-specific genes and shown to direct repor-
ter gene expression in SOPs (Fig. S1 and Table S1 in SI Appendix)
as well as 31 other sequences that are positioned close to SOP-
specific genes but that did not direct reporter gene expression in
SOPs (Table S2 in SI Appendix). These validated and putative
CRMs ranged in size from 144 to 2398 nt (Table S1 in
SI Appendix). Eleven Drosophila genomes (40) were used to
assemble the orthologous set (see section 3.2 in SI Appendix).

Prediction and Validation of Cis-Regulatory Motifs. We applied the
algorithm to these training and orthologous sets to computation-
ally predict SOP-specific PWMs of width 10 using Sth ¼ 13.3 (see
Fig. 3A and Fig. S2 in SI Appendix for the choice of these para-
meters). The five top-ranked motifs are shown in Fig. 2A (see
Tables S4 and S5 in SI Appendix for additional PWMs; the five
top-ranked motifs corresponding to repeated sequences and that
were discarded are also shown in Table S4 in SI Appendix).

Motif 1 perfectly matched the site α2, previously shown to
regulate the SOP-specific expression of the proneural gene scute
(32). This motif might correspond to a Rel family factor (41).
Site-directed mutagenesis of this motif reduced the activity of
cpo CRM6 and neur CRM1 (Fig. 2B and B0 and Fig. S3 in
SI Appendix).

Motifs 2 and 4 matched the binding site for proneural activa-
tors, or E-box (42–44). The high Sth value selected for our analysis
(see Fig. 3A) imposed that differences in the sequence flanking
the E-box were sufficient to prevent these PWMs from merging.
Indeed, for Sth ¼ 13.3, only 5% of the sites associated with motif
2 were also associated with motif 4. The overlap contains an
E-box of the SensCRM3 CRM that matched both motif 2 and
4 at Sth ¼ 13.3. This E-box binds in vitro the heterodimeric fac-
tors Achaete/Daughterless (Da), Scute/Da and Atonal/Da. More-
over, mutation of this E-box disrupted the SOP-specific activity of
this CRM (35). The identification of functional E-boxes is a good
measure of the effectiveness of our algorithm because the core
E-box contain relatively low information, and functional TFBSs
are notoriously difficult to predict. Here, the predicted E-boxes
are more specific and account for the information contained in
the flanking bases (45).

Motif 3 was related to the predicted binding site for the E(spl)-
bHLH repressors (20, 32) and matched the PWM for Hairy, a
related factor, on the Jaspar database (46). However, site-direc-
ted mutagenesis of motif 3 in sens CRM3, CG32150 CRM1 and
spdo CRM4 did not detectably affect the in vivo activity of these
CRMs (Fig. S3 in SI Appendix). Thus, the potential function of
this motif remains unknown. Nevertheless, our identification of
possible binding sites for proneural activators and E(spl)-bHLH
repressors within the training set is consistent with the notion that
expression of SOP-specific genes is postively regulated by
proneural factors in SOPs and repressed by E(spl)-bHLH factors
in non-SOP cells (Fig. 2E).

Motif 5 was not related to known binding sites. Site-directed
mutagenesis revealed that this motif was required for the SOP-
specific activity of spdo CRM4 (Fig. 2C and C0). Together, these
results indicate that our motif discovery algorithm identified
both known and novel cis-regulatory motifs required in vivo
for SOP-specific gene expression.

To further test our algorithm, we also applied the same motif
discovery approach to a distinct training set comprising eight
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Fig. 2. Motif analysis. (A) Top-rankedmotifs from the SOP training set. (B–C′)
Site-directed mutagenesis of motif 1 in cpoCRM6 (2xm1: two sites were mu-
tated in B′) and motif 5 in spdoCRM4 (2xm5: two sites were mutated in C′)
strongly reduced the regulatory activity of these CRMs in SOPs of the pupal
thorax. SOPs were marked by Cut (red). CRM activity was revealed by lacZ
expression (β-galactosidase, green). Note that some SOPs have divided (as in-
dicated by pairs of Cut-positive nuclei). (D) Top-ranked motifs from the PNC
training set. (E) Cis-regulatory logic for SOP-specific (red) and non-SOP (blue)
gene expression. Proneural factors positively regulate the expression of SOP
(red) and PNC (blue) genes in both SOP and non-SOP cells via E-boxes. Notch
activation specifically up-regulates the expression of PNC genes in non-SOP
cells. Expression of SOP-specific genes is inhibited in non-SOP cells by E(spl)-
bHLH repressors. Conversely, the expression of non-SOP genes is inhibited in
SOPs by Su(H).
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CRMs active in PNCs (Table S3 in SI Appendix) (38, 47). Inter-
estingly, the two best-ranked motifs matched the S-box, i.e., the
Suppressor of Hairless (Su(H)) binding site (48, 49) and the E-
box, respectively (Fig. 2D) (see Tables S6 and S7 in SI Appendix
for an extended list of PWMs). Noticeably, all instances of motifs
1 and 2 detected within our PNC training set were only a subset of
the previously identified S- and E-boxes (30, 31). This indicates
that the 13.3 Sth value chosen here confered high selectivity to our
motif prediction. As proposed earlier, the presence of E- and
S-boxes within PNC-specific CRMs supports a model whereby
expression of PNC genes in non-SOP cells is positively regulated
by proneural factors and activated Notch whereas Su(H) re-
presses the expression of PNC genes in the absence of Notch
activity in SOPs (Fig. 2E) (30).

Genome-Wide Identification of CRMs. We next performed a gen-
ome-wide binding site search for the 12 top-ranked PWMs from
the SOP training set (Tables S4 and S5 in SI Appendix). To identify
conserved sites only, we used the same conservation requirements
as those used earlier to identify sites in the training set (see sec-
tion 2.4 of of SI Appendix). At Sth ¼ 13.3 (see below), 206, 2062,
469, 988, and 378 conserved sites were found for motifs 1–5,
respectively (sites that are recognized by motifs 2 and 4 are scored
as motif 2 sites here). Motif co-occurrence can efficiently predict
CRMs (5, 7, 8, 11, 24). Co-occurrence was first tested by studying
the genome-wide distribution of the top five motifs at Sth ¼ 13.3.
We found that motif 2 exhibited significative cross-correlation
with motif 1 (Fig. S4 in SI Appendix; randomized versions of
motifs 1 were used as negative controls). We therefore scored
genomic fragments by adding the scores of each conserved sites.

Overlapping 1,000 nt genomic fragments covering the whole non-
coding repeat-masked D. melanogaster genome were scored and
ranked based on occurrence of conserved motifs (see section 2.6
of SI Appendix). Four parameters of our algorithm, including the
Sth value and the number of motifs used for CRM ranking
(Fig. 3A), were varied. To select appropriate parameters, we
scored the overrepresentation, within top-ranked genomic frag-
ments, of the “sensory organ” and “sensory mother cell” terms in
the Flybase (50) “phenotype” annotations. To do so, each 1,000 nt
fragment was associated with the transcription start site, hence
the gene, located closest to the center of this fragment (Fig. 3B).
A very significant enrichment (p ¼ 3.2 × 10−7 for five motifs and
Sth ¼ 13.3) (Fig. 3B) was observed for a range of stringent Sth
values with a minimum number of two motifs (Fig. 3A). For these
results, the training set was masked before fragment ranking, so
as to avoid biasing the results. When it was reintroduced, at
Sth ¼ 13.3, nine of the 14 validated CRMs of the training set
ranked within the 100 first-ranked genomic fragments (Table S8
in SI Appendix).

We chose to use five motifs of width 10 and Sth ¼ 13.3, to pre-
dict novel SOP-specific CRMs of width 1,000 nt (see Fig. 3A and
Fig. S2 in SI Appendix). We assayed the regulatory activity of the
top-ranked genomic fragments, with a score >9.95 (Table S8 in
SI Appendix) using a transgenic reporter assay. Transgenic flies
were obtained for all of the newly predicted 29 top-ranked
CRMs. Immunostaining analysis indicated that 11 of these 29
predicted CRMs (38%) directed gene expression in SOPs of
the pupal notum, with three of these 11 CRMs being also
expressed in PNCs (Fig. 3 C–E′ and Fig. S5 and Table S8 in
SI Appendix). CRM activity was also observed in other neural pro-
genitor cells, including neuroblasts in larval brains (45%, n ¼ 29)
(Fig. 3C and Fig. S6 and Table S8 in SI Appendix) and chordo-
tonal SOPs in leg imaginal discs (24%, n ¼ 29) (Fig. 3C and
Fig. S7 and Table S8 in SI Appendix). These findings are entirely
consistent with the notion that neural progenitor cells, i.e., SOPs
and neuroblasts, are specified by a common genetic circuitry.

Finally, four additional fragments, ranked between positions
39 and 100 and chosen based on their proximity to genes puta-
tively involved in neural development, were found to direct SOP-
specific and/or neuroblast-specific expression (Fig. 3 E and E0,
Fig. 4 B and B0 and Fig. S5 and Table S8 in SI Appendix). In total,
15 novel SOP-specific CRMs were identified. Thus, our algorithm
has a high predictive value for CRMs active in SOPs and neural
progenitor cells.

Of note, our transgenic assay likely underestimates the real
predictive value of our algorithm. Indeed, CRM1 is included
within a larger genomic fragment defined as a Peripheral Nervous
System (PNS) CRM of the gene string (stg) (51). It is thus possible
that the 1,000 nt genomic fragment that corresponds to CRM1
contains some cis-regulatory information but that the latter is
not sufficient to direct reporter gene expression in our assay
(Table S8 in SI Appendix). Moreover, CRM22, that is also nega-
tive in our assay (Table S8 in SI Appendix), is included within a
2.1 kb fragment, CRM22”, that directs reporter gene expression
in SOPs and PNCs (Fig. S5 in SI Appendix). Additionally, our
algorithm predicted a CRM close to the SOP-specific gene
asense, raising the possibility that this predicted CRM, despite
being negative in our assay, may contribute to regulate the expres-
sion of asense in SOPs.

A potential risk when trying to learn motifs from a small train-
ing set is to overfit it, i.e., to obtain PWMs that discriminate the
training set from the background by fitting nonrelevant sequence
particularities. Three lines of evidence indicate that overfitting
was not a major issue here. First, the top-ranked predicted CRMs
were associated with the sensory organ annotated genes (Fig. 3B).
Second, four of the five top-ranked motifs appeared to be
functional in vivo (Fig. 2 A–C′). And third, SOP-specific CRMs
were successfully predicted from a larger dataset, i.e., the
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top-ranked fragments; see section 3.3 of SI Appendix) was plotted as a func-
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to 13.6). Sth ¼ 13.3 and five motifs were chosen for all predictions reported
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shown in A and B, as described in the main text and the SI Appendix. (C) Venn
diagram showing the in vivo activity of the 29 newly predicted CRMs that
were tested for CRM activity in vivo. Thirteen and 11 CRMs were expressed
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CRM7 and CRM41 in SOPs of pupal thorax using a lacZ reporter gene.
β-galactosidase, green; Cut, red, as a SOP marker; DAPI, blue.
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D. melanogaster genome, using the obtained PWMs (Table S8 in
SI Appendix).

Identification and Functional Analysis of the Lola Gene. This ap-
proach should help identifying genes differentially expressed in
SOPs. To test this notion, we have studied the expression and
function of the gene located near CRM20 and CRM40 that
are both active in SOPs (Fig. 4 A–B′). These two CRMs are lo-
cated 5’ to transcription start sites of the lola gene (Fig. 4D). The
lola locus encodes a family of zinc finger DNA-binding proteins
that share a common BTB domain (52, 53). BTB domains have
been associated with transcriptional repression, and previous stu-
dies have shown that Lola acts as a transcriptional repressor (54).
While the Lola binding site(s) and target genes are not known,
lola is known to antagonize Notch during eye development (55).

Using in situ hybridization, anti-Lola antibodies as well as a GFP
protein-trap line, we showed that Lola gene products are present
in all cells of the pupal thorax and that the lola gene is specifi-
cally up-regulated in SOPs (Fig. 4 C–F′ and Fig. S8 A–E in
SI Appendix). This pattern of expression differed from the activity
patterns seen with CRM20 and CRM40 that were not active out-
side of SOPs. We interpret this difference to suggest that tran-
scription of the lola gene is regulated by two types of regu-
latory elements: ubiquituously active CRMs would direct lola
expression in all cells whereas CRM20 and CRM40 would
up-regulate lola expression in SOPs. We therefore suggest that
in silico approaches may perform better than expression-based
methods at identifying genes that are both broadly expressed and
up-regulated, via discrete cell-type specific CRMs, in a small po-
pulation of cells. Indeed, this cell-specific up-regulation might
easily be masked by uniform low-level expression.

The function of the lola gene was studied in clones using two
strong loss of function alleles. While the loss of lola activity did
not significantly perturb the specification of SOPs (Fig. 4G),
clone border analysis (56) indicated that lola mutant cells have
a reduced ability to adopt the SOP fate (Fig. 4I). This suggests
that Lola acts in SOPs to promote SOP specification, possibly
by repressing Notch target gene expression (54). Consistent with
this interpretation, lola genetically interacts with Hairless (Fig. S8
F–J in SI Appendix) and cells that are both mutant lola and
heterozygous for Hairless show a double socket and, occasionally,
a bristle loss phenotype (Fig. 4 H and I). Together, these results
led us to propose that Lola antagonizes Notch in SOPs.

Conclusion
The approach presented here successfully predicted genome-
wide TFBSs and CRMs regulating gene expression in D. melano-
gaster neural progenitor cells. Binding sites for transcription
factors known to be important for SOP-specific gene expression
were recovered. Six CRMs for genes known to be expressed in
SOPs were identified. One previously undescribed cis-regulatory
motif required for SOP-specific CRM activity was identified. Fif-
teen newly predicted CRMs were shown to be active in SOPs.
This approach also served to identify lola as a gene up-regulated
in SOPs. Future work will test whether large datasets originating
from binding (e.g., ChIP-seq) and/or expression data (e.g., RNA-
seq) can serve to define training sets and lead to the discovery of
new motifs (57). Most importantly, the statistical analysis tools
developed here are species-independent and may be applied
to the identification of cis-regulatory elements in any family of
related species with sequenced genomes including vertebrates.

Materials and Methods
Genome and Statistical Analysis. Genome sequences were processed through
a custom C++ program (see SI Appendix). All statistical operations were per-
formed within the R software environment (ref. (58); www.R-project.org).
Genome views were obtained from Flybase (50).

Transgenes. Wild-type genomic DNA was PCR amplified to generate all DNA
fragments tested for CRM activity. PCR products were cloned as EcoRII-NotI or
EcorRI-XbaI fragments into pCaSpeR-hs43-lacZ (https://dgrc.cgb.indiana.edu)
or pCaSpeRattP-hs43-lacZ (same vector but with an attP site cloned at the NsiI
site; cloning details available upon request). QuickChange site-directed
mutagenesis was used to mutate the sequence of motifs 1, 3, and 5. The
following mutations were introduced: motif 1: CCCC was changed into
AAAC; motif 3: CGCG was changed into CTAT; motif 5: GCTGC was changed
into GATTA.

Flies. P-element transformation and phiC31-mediated integration at the attP
site located at 68D2 were performed by BestGene (http://www.thebestgene
.com). Insertion of the empty integration vector at this location did not result
in lacZ expression in the larval and pupal tissues examined in this study.
RNAi-mediated inactivation of the lola gene was performed at 29 °C using
the VDRC lines ID12573 and ID12574 (http://www.vdrc.at/). P[GAL4-
Hsp70.PB]l(3)Eq1 (Eq-GAL4) was used as a driver in combination with a
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Fig. 4. Functional analysis of the lola gene. (A and B0) Regulatory activity of
CRM20 (A and A0) and CRM40 (B and B′) in SOPs. β-galactosidase, green; Cut,
red, as a SOP marker; DAPI, blue. (C) Expression of a Lola-GFP protein trap
(green) in living 16 hours APF pupae. Higher levels of Lola-GFP were seen
in SOPs, identified based on their division pattern, than in non-SOP cells.
(D) Genome view showing the lola locus. CRM20 and CRM40 are indicated
by blue boxes. (E and F) Immunodetection of endogenous Lola (green): High-
er nuclear levels were observed in SOPs (Sens, red, marked SOPs; DAPI in
blue). (G) SOP specification (Sens, red) was largely unaffected in lola5D2 mu-
tant clones (marked by loss of nuclear GFP, green). (H and I) lola5D2 mutant
clones (marked by loss of nuclear GFP, green) generated in HE31 heterozygous
flies resulted in double socket and bristle loss phenotypes, two phenotypes
associated with increased Notch activity and/or loss of Hairless activity. These
phenotypes were not observed at microchaete position in HE31 heterozygous
flies, indicating that loss of lola activity enhanced the Hairless phenotype.
(J) Clone border analysis showed that only 29% (n ¼ 117 and n ¼ 121) of
the SOPs located along clone borders were lola mutant [red bar; control
wild-type clones were equally, 52% (n ¼ 289), found on either side of the
border]. This bias was observed for two strong loss of function alleles
(p < 0.001 relative to wild-type control clones). Thus, lolamutant cells are less
likely to become SOPs than wild-type cells.
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pTub-GAL80ts transgene. Two lola loss of function alleles, 5D2 and e76, were
used for clone analysis. The lola protein trap was lola½CB02888� Mitotic clones
were induced by a 45 min heat shock at 36.5 °C in hs-flp ; FRT42D ubi-nlsGFP/
FRT42D lola first and second instar larvae.

Immunostaining. Pupal nota and larval tissues were dissected and immunos-
tained using standard protocols. Notum stainings were performed at 17 h
after puparium formation (APF). When transgenesis involved P-element,
3-5 independent lines per transgene were analyzed. The following primary
antibodies were used: rabbit anti-Lola (1∶200; purified polyclonal antibodies
from E. Giniger), rabbit anti-βgalactosidase (1∶1;000; Cappel), mouse anti-Cut
(1∶500; 2B10, DHSB), and guinea-pig anti-Sensless (1∶2;000; from H. Bellen).
Cy2, Cy3, and Cy5-coupled secondary antibodies were from Jackson’s

Immunoresearch. In situ hybridization was performed as described in (38).
Images were acquired on Leica SPE confocal microscope. Images were
processed using ImageJ and Photoshop.
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