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The ternary complex of cadherin, β-catenin, and α-catenin regulates
actin-dependent cell–cell adhesion. α-Catenin can bind β-catenin
and F-actin, but in mammals α-catenin either binds β-catenin as a
monomer or F-actin as a homodimer. It is not known if this confor-
mational regulation of α-catenin is evolutionarily conserved. The
Caenorhabditis elegans α-catenin homolog HMP-1 is essential for
actin-dependent epidermal enclosure and embryo elongation. Here
we show that HMP-1 is a monomer with a functional C-terminal
F-actin binding domain. However, neither full-length HMP-1 nor a
ternary complexofHMP-1–HMP-2(β-catenin)–HMR-1(cadherin)bind
F-actin in vitro, suggesting that HMP-1 is auto-inhibited. Truncation
of either the F-actin or HMP-2 binding domain of HMP-1 disrupts C.
elegans development, indicating that HMP-1 must be able to bind
F-actin and HMP-2 to function in vivo. Our study defines evolutio-
narily conserved properties of α-catenin and suggests that multiple
mechanisms regulate α-catenin binding to F-actin.
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Cadherin-mediated cell–cell adhesion is critical for normal
development and tissue organization in metazoans (1). Cad-

herins bind cytoplasmic β-catenin and p120 directly, and strength-
ening of cell–cell adhesion involves local reorganization of the
actin cytoskeleton (2–4). α-Catenin binds β-catenin, can bundle
F-actin (5), and associates with actin-regulatory proteins (6, 7).
Thus, the classical model of the cadherin–catenin complex posits
that α-catenin forms a static bridge between the cadherin–catenin
complex and the actin cytoskeleton.

In vitro studies revealed a more complex regulation of these
protein interactions. Mammalian αE-catenin forms monomers
or homodimers (8–10). Association of αE-catenin monomer with
β-catenin significantly weakens the affinity of αE-catenin for F-
actin, whereas αE-catenin homodimer binds strongly to F-actin.
It is unknown if this conformational regulation is evolutionarily
conserved by other α-catenins.

The only α-catenin homolog in Caenorhabditis elegans is HMP-
1. Mutations in hmp-1 cause the detachment of circumferential
actin filament bundles from adherens junctions, which are re-
quired for embryo elongation during epidermal morphogenesis,
and results in dorsal folds in the epidermis (11). Nothing, how-
ever, is known about the molecular properties of HMP-1: Does
HMP-1 bind F-actin directly, does the ternary HMR-1–HMP-2–
HMP-1 (cadherin-β–catenin-αE—catenin) complex bind F-actin,
and is HMP-1 function regulated by homodimerization?

Here we show that HMP-1 is a monomer that does not bind
directly to F-actin in vitro despite a functional C-terminal F-actin
binding domain. However, both the HMP-2/β-catenin and F-actin
binding regions are necessary for HMP-1 function during embry-
ogenesis, suggesting additional factors regulate HMP-1 activity in
vivo. Our study is a detailed analysis of an invertebrate α-catenin
and provides unique insights into the molecular properties and
evolution of α-catenin.

Results and Discussion
HMP-1 Is a Bona Fide α-Catenin that Binds Directly to HMP-2. Crystal
structures of αE-catenin domains (12–14) and vinculin (15–17)
show that these proteins are a series of four-helix bundles
(Fig. 1A). The N-terminal domain of αE-catenin, comprising
two four-helix bundles, has overlapping sites for β-catenin binding
and homodimerization, making these interactions mutually exclu-
sive (5, 8, 9, 14). The middle (M) domain consists of two flexibly
linked four-helix bundles (12, 13). The C-terminal “tail” region
of both αE-catenin and vinculin is a five-helix bundle that binds
F-actin (17). Vinculin includes an additional pair of helical bun-
dles between the αE-catenin N-terminal and M domains (Fig. 1A,
orange boxes 2a and 2b). In vinculin, the N-terminal “head” re-
gion binds intramolecularly to the tail to inhibit actin binding.
This auto-inhibition is relieved upon binding to talin, and is con-
sidered critical for regulating vinculin function (18–20). Despite
the similarities between vinculin and α-catenin, there is no
evidence for a head to tail interaction in α-catenin (6, 21).

We compared the amino acid (aa) sequence ofC. elegansHMP-
1,Drosophila melanogaster α-catenin, mouse α-catenins (αE-, αN-,
and αT-catenin), and vinculin fromC. elegans (DEB-1) andmouse
(Fig. 1B). Based on sequence homology and domain organization,
HMP-1 is a bona fide member of the α-catenin family.

We first tested whether recombinant full-length (FL) HMP-1
(Fig. 1C) binds HMP-2, a C. elegans β-catenin homolog (11).
HMP-1 bound to GST-HMP-2, but not GST, at a stoichiometry
of ∼1∶1 at saturating amounts of HMP-1 (Fig. 1D), similar to
the mammalian αE-catenin–β-catenin complex (9, 14). HMP-2
also interacted robustly with FL HMP-1 and HMP-1 aa 1–676
(head) in a yeast two-hybrid assay (Fig. S1). Saturated binding
of HMP-1 to HMP-2 was reached at approximately 200 nM
HMP-1, and the resulting binding curve (Fig. 1E) indicates the
affinity between HMP-1 and HMP-2 is comparable to the affinity
of αE-catenin for β-catenin (22).

HMP-1 Is a Compact Monomer. Homodimerization is an intrinsic
property of mammalian αE-catenin (9). However, HMP-1
migrated as a single band by native-PAGE, faster than either αE-
catenin monomer or homodimer (Fig. 2A), indicating that recom-
binant HMP-1 is a monomer in solution; neither temperature nor
protein concentration affected the monomeric state of HMP-1
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(Fig. 2B).HMP-1 aa 1–676 (head) alsomigrated as a single band by
native-PAGE, and no interaction between FLHMP-1 proteins was
observed in a yeast two-hybrid assay (Fig. S2 and Fig. S1),
indicating that the N-terminal region of HMP-1, unlike that of
αE-catenin, does not mediate homodimerization.

The difference in electrophoretic migration between HMP-1
and αE-catenin monomers was surprising given the similarities
in their molecular weights (104 kDa vs. 100 kDa) and overall
net charge (calculated pI 5.6 vs. 5.8). The faster migration of
HMP-1 suggests that it is more compact than αE-catenin mono-

mer. We compared the gel filtration elution profiles of HMP-1,
mouse αE-catenin and mouse vinculin. αE-catenin eluted in two
distinct peaks corresponding to a homodimer and monomer
(Fig. 2C) (9, 10). Vinculin, a compact, folded monomer in
solution (9, 23), eluted after αE-catenin monomer in a single
peak. HMP-1 eluted in a single peak after αE-catenin monomer,
consistent with its faster migration in native-PAGE.

Small-angle X-ray scattering (SAXS) provides information
about molecular dimensions of proteins in solution (a mass-
weighted average radius termed the radius of gyration Rg, and
the maximum interatomic distance, Dmax) that are independent
of hydrodynamic properties (Table 1). Vinculin has the smallest
Rg value as well as the shortest Dmax, which corresponds to its
highly compact structure in the auto-inhibited state. In contrast,
αE-catenin homodimer has much larger Rg and Dmax values.
αE-catenin monomer preparations always contain small amounts
of homodimer that contribute strongly to the X-ray scattering,
preventing accurate determination of SAXS parameters. The
β-αE-catenin chimera [α-catenin binding region of β-catenin
fused to αE-catenin to block homodimerization (9, 14)] is a sur-
rogate for monomeric αE-catenin and has Rg and Dmax values
that are considerably larger than those of vinculin despite having
fewer residues (891 vs. 1066, respectively), consistent with the
chimera having a more extended conformation than vinculin.
HMP-1 has Rg and Dmax values that are closest to, albeit slightly
larger than, vinculin. Given the larger number of residues in vin-
culin than HMP-1 (1066 vs. 926), these data indicate that HMP-1
adopts a relatively compact conformation in solution compared
to β-αE-catenin chimera. The compact nature of HMP-1 explains
the difference in electrophoretic migration between HMP-1 and
αE-catenin monomers (Fig. 2A).

To determine if HMP-1 adopts a conformation similar to α-ca-
tenin, we used limited proteolysis to probe for stable subdomains
of HMP-1 and compare them to αE-catenin and vinculin. Tryptic
digests of HMP-1 revealed four prominent fragments of 90, 50, 33,
and 20 kDa (Fig. 2D). Edman sequencing revealed that the 33 kDa
fragment is similar to the M domain in αE-catenin (aa 385–651),
and that the 50 and 20 kDa fragments are larger and smaller frag-
ments, respectively, of this region (Fig. 2E). Notably, a protease-
resistant dimerization domain was not found (aa 82–287), suggest-
ing the N-terminus of HMP-1 adopts a conformation different
from that of αE-catenin (14). The 90 kDa fragment may result
from loss of the C-terminal tail, and thus represents the head
region (Fig. 2E and Fig. S2). Importantly, the tryptic digest pattern
of vinculin was distinct from bothHMP-1 and αE-catenin (Fig. 2D,
right panel), reflecting intrinsic differences in the conformation of
these proteins.

Together, these results demonstrate that HMP-1 is a compact,
monomeric α-catenin. Whereas we cannot rule out the possibility
that HMP-1 homodimerizes in vivo, the absence of HMP-1 dimers
observed in vitro distinguishes it from mammalian αE-catenin
(9, 22) and suggests that homodimerization is not a property
common to all α-catenins.

FL HMP-1 Does Not Bind F-actin In Vitro. Mammalian αE-catenin
monomer binds weakly to F-actin, whereas αE-catenin homodi-
mers bind strongly (8, 9). HMP-1 monomer failed to bind F-actin
(Fig. 3A and Fig. 4C) above background (BSA) (Fig. 3B). The lack
of F-actin binding activity could be due to HMP-1 misfolding or
the absence of a functional F-actin-binding domain. The former
possibility is unlikely because HMP-1 bound to HMP-2 with high
affinity and stoichiometry, and the SAXS data indicates that it was
folded compactly with no aggregation. Therefore, we examined
whether HMP-1 has a functional F-actin binding domain.

The C-terminal domain of HMP-1 (aa 677–904) is 50% identi-
cal and 75% similar to the comparable domain of αE-catenin
(aa 671–906, Fig. S3). We expressed two C-terminal fragments
ofHMP-1: aa 677–904, which contains the putative F-actin binding
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domain, and aa 677–927, which has an additional 23 aa C-terminal
tail absent in vertebrate and Drosophila α-catenin (Fig. S3).
Both C-terminal HMP-1 proteins bound F-actin (Fig. 3A) at levels
similar to the correspondingC-terminal F-actin-binding domainof
mammalian αE-catenin (Fig. 3 A and B). Therefore, HMP-1 has a
functional F-actin binding domain that is masked in the FL
protein, indicating auto-inhibition.

The tail and head domains of vinculin bind in the auto-inhibited
state, preventing F-actin association (18). We tested whether the
tail (aa 677–927) and head (aa 1–676) domains ofHMP-1 bound to
each other. When the two domains were mixed before gel filtra-
tion, we detected a small amount of tail domain eluting with the
head domain (Fig. 3C), indicating a weak interaction between
these regions in trans. This interaction, however, was below the
threshold of detection by yeast two-hybrid analysis (Fig. S1). This
is consistent with a weak affinity (Kd > 1 μM) compared to vincu-
lin head to tail binding in trans (Kd < 50 nM) (19). Thus, the
mechanism of HMP-1 auto-inhibition may be distinct from that
of vinculin.

This analysis of HMP-1 is the first to examine F-actin binding
to a pure α-catenin monomer, because analysis of F-actin binding
tomammalian αE-cateninmonomers is complicated by their rapid
homodimerization. We note, however, when if homodimerization
is blocked by β-catenin binding, as in the β–αE-catenin chimera,
αE-catenin “monomer” binds weakly, if at all, to F-actin (9).

We speculate that auto-inhibition of F-actin binding is a feature
common to α-catenins.

The HMR-1/HMP-2/HMP-1 Ternary Complex Does Not Associate with
F-actin. We next examined whether binding of HMP-1 in the
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Table 1. SAXS parameters, Rg and Dmax of HMP-1, vinculin,
αE-catenin dimer and β-αE-catenin

Protein # aa Rg [Å] Dmax [Å]

HMP-1 932 37.2 123
Vinculin 1069 36.7 121
αE-catenin dimer 1820 59.6 193
β-αE-catenin 893 44.6 150

The Rg of vinculin calculated from the crystal structure (PDB ID 1ST6) using
Crysol (31) is 33.7 Å. The number of amino acids (# aa) includes residues left
after cleavage of the GST-tag (or His-tag in the case of vinculin). The
estimated uncertainty in Dmax is �5 Å.
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ternary complex of HMR-1 and HMP-2 relieved the apparent
auto-inhibition of HMP-1 binding to F-actin. First, we attempted
to form the HMR-1–HMP-2–HMP-1 ternary complex in vitro
using the C-terminal cytoplasmic domain of HMR-1 (HMR-1cyt).
To improve HMP-2 stability, we removed 35 aa from the N-termi-
nus of HMP-2 (HMP-2ΔN), which did not affect stoichiometric
binding of HMP-2 to HMP-1 or HMR-1cyt (Fig. 4C).

Gel filtration of a mixture of HMR-1cyt, HMP-2ΔN andHMP-1
resulted, surprisingly, in the elution of HMR-1cyt separately
from the HMP-2ΔN–HMP-1 complex (Fig. 4 A and B). Binding
between mammalian cadherin cytoplasmic domain and β-catenin
is increased by serine/threonine phosphorylation (24), and
HMR-1cyt contains consensus sites for casein kinase 1 (CK1)
phosphorylation.When phosphorylated by CK1 in vitro, phospho-
HMR-1cyt bound readily to HMP-2ΔN/HMP-1 (Fig. 4 A and B),
indicating CK1-dependent phosphorylation regulates formation
of the ternary complex from C. elegans. Significantly, neither
the HMP-2ΔN–HMP-1 complex nor phospho-HMR-1cyt–HMP-
2ΔN–HMP-1 ternary complex bound F-actin (Fig. 4C). Thus,
neither HMP-2 binding nor the formation of the ternary complex
increased HMP-1 binding to F-actin in vitro.

In summary, our in vitro studies demonstrateHMP-1 is amono-
mer that does not bind F-actin, even when bound to HMP-2 or in
the HMR-1cyt–HMP-2 complex. The C-terminus of HMP-1, like
that of other α-catenins, can bind F-actin, but this site is blocked
in the FL protein. F-actin binding by mammalian αE-catenin is
activated by homodimerization, although the molecular basis
for this change is not understood. Because HMP-1 does not

homodimerize by itself, its F-actin binding activity must be
activated by a different mechanism.

N- and C-Terminal Domains Are Required for HMP-1 Function In Vivo.
We tested in vivo requirements for selected molecular properties
of HMP-1 uncovered in our in vitro experiments. In elongating
wild-type embryos, actin accumulates at cell–cell junctions in
the epidermis, and a series of thick actin bundles (circumferential
filament bundles, or CFBs) form that insert orthogonally to the
junctional actin (Fig. 5 I and M). A putative null allele of hmp-1,
zu278, was identified in a screen for mutants defective in embryo-
nic elongation (11). Zygotic loss of wild-type HMP-1 in zu278
mutants results in two major defects to these actin structures: loss
of junctional proximal actin, and detachment of CFBs (Fig. 5 J
and N; for further details see ref. 11). We found, however, that
hmp-1(zu278) has a point mutation that creates a premature stop
codon (Q795Stop) in the F-actin-binding domain (Fig. 1A).
Using an antibody against FL HMP-1, we observed HMP-1
staining at cell–cell contacts in homozygous mutants similar to
wild-type (wt), although the amount appeared to be reduced
compared to controls (Fig. 5 E and F), indicating that the trun-
cated protein associates with junctions. Importantly, hmp-1
(zu278) homozygous mutants displayed a strong Humpback
phenotype (Fig. 5B, white arrow; compare to wt in Fig. 5A), de-
monstrating that F-actin binding is critical for HMP-1 function
during embryogenesis.

We determined if hmp-1(zu278) could be rescued by expres-
sion of FL HMP-1∷EGFP driven by its endogenous promoter.
HMP-1∷EGFP localized correctly to cell–cell junctions and,
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importantly, rescued the developmental defects in zu278 homo-
zygous mutant embryos to viability (Fig. 5 C, G, K and O).
Rescued adults exhibited a slightly uncoordinated (Unc) pheno-
type, but were otherwise indistinguishable from wt.

We next assessed the ability of a hmp-1 mutant lacking the
N-terminal HMP-2 binding site to rescue the hmp-1(zu278)muta-
tion. The predictedHMP-2 binding site—aa 13–185—was deleted
from HMP-1 (Fig. 1A). Though expressed at levels comparable to
HMP-1∷EGFP, HMP-1∷EGFP(Δ13–185) failed to localize to
cell–cell junctions in hmp-1(zu278) homozygous mutants (Fig. 5
H and I) anddid not rescue thehmp-1mutant phenotype (Fig. 5D).
Thus, HMP-2 binding is required to localize HMP-1 to cell–cell
junctions and to rescue the hmp-1(zu278) mutant phenotype.

Because in vitro binding studies showed that HMP-1, either
alone or in a complex with HMR-1 and HMP-2, did not bind
F-actin, how is the C-terminal F-actin-binding domain required
for function in vivo? One possibility is that a yet unidentified
factor, such as another interacting protein or a posttranslational
modification of HMP-1, is required to relieve the auto-inhibited
state and activate HMP-1 binding to F-actin. Recently, it was
proposed that E-cadherin is a mechanosensor that transmits
force to the actin cytoskeleton, and that vinculin interacts with
the cadherin complex to potentiate this activity (25). Addition-
ally, a recent independent study suggested that αE-catenin is a
force transducer at adherens junctions, and recruits vinculin upon
mechanical strain to increase F-actin binding and adhesive
strength (26). However, it is unlikely that DEB-1/vinculin pro-
motes HMP-1 association with the actin cytoskeleton as DEB-1
is not expressed in C. elegans epithelia (27). A putative HMP-1
binding protein could induce HMP-1 homodimerization in vivo.
Alternatively HMP-1, like vinculin, may function exclusively as a
monomer. Because the N-terminal HMP-2 binding domain is also
required for HMP-1 function in vivo, HMP-1 may link the cad-
herin-catenin complex to the actin cytoskeleton upon activation
by an additional protein. Indeed, given that cadherin-complex
proteins are conserved from worms to mammals, a similar protein
could also regulate the F-actin binding activity of αE-catenin in

vertebrates. Further studies are required to identify this putative
α-catenin modulator.

Materials and Methods
Protein Expression and Purification. GST-tagged proteins were expressed in
BL21 (DE3) Codon Plus Escherichia coli cells and purified as described (14).
GST-tagged proteins bound to glutathione-agarose were equilibrated in
cleavage/elution buffer (20 mM Tris pH 8.0, 150 mM NaCl, 2 mM EDTA,
1 mM DTT and 10% glycerol) and then incubated with tobacco etch virus
(TEV) protease overnight at 4 °C to remove protein from GST tag. His-tagged
full-length vinculin was purified using Ni-NTA agarose beads (Qiagen). After
cleavage of his-tag by thrombin, the his-peptide was removed with Ni-NTA
agarose beads. All proteins were further purified by FPLC using an anion
exchange MonoQ column, and when necessary, a Superdex200 (S200)
preparative gel filtration column.When required, eluted protein was concen-
trated to 20–100 μM working concentrations using a Millipore column
concentrator. To analyze oligomerization, FPLC-purified proteins were run
over an analytical S200 column.

HMR-1cyt Phosphorylation. Bacterially expressed HMR-1cyt was phosphorylated
by recombinant CKI (New England Biolabs) using the manufacturer’s recom-
mended buffer. The reaction was carried out for 12 h at 30 °C, and stopped by
the addition of 4 mM EDTA. Phosphorylated and nonphosphorylated
HMR-1cyt were separated over a MonoQ column. Phosphorylation was
confirmed by mass spectrometry. HMR-1cyt molecules bearing 4 or 5 phos-
phate groups gave equivalent binding to HMP-2.

Native-PAGE. 1 μg of FPLC-purified protein was diluted into ice-cold CSK
buffer (10 mM Pipes, pH 6.8, 50 mM NaCl, 3 mM MgCl2, 300 mM sucrose)
plus 100 mM DTT and 0.02% bromophenol blue (for color) and immediately
loaded onto a 5% native gel (running gel: 0.4 M Tris pH 8.8, 5% acrylamide;
stacking gel: 0.1 M Tris pH 6.8, 5% acrylamide). Gels were run at 80 V for 4–5 h
at 4 °C, stained with Coomassie blue, destained and imaged on a LI-COR
scanner.

Actin Pelleting Assay. Chicken G-actin was incubated in polymerization buffer
(200 mM Imidazole pH 7, 1 M KCl, 20 mMMgCl2, 5 mMATP, 10 mM EGTA) for
1 h at room temperature (RT) to promote filament assembly. HMP-1 and
control proteins were diluted to 5 μM in reaction buffer (200 mM Imidazole
pH 7.0, 1.5 M NaCl, 20 mMMgCl2, 5 mM ATP, 10 mM EGTA) with and without
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5 μM F-actin and incubated for 30 min at RT. Samples were then centrifuged
at 100,000 rpm for 20 min in TLA-120.1 rotor. Supernatant and pellet samples
were diluted into equal volumes of Laemmli sample buffer, loaded onto
an SDS-PAGE gel and stained with Coomassie blue. Gels were imaged on a
LI-COR scanner and band intensity measured and quantified in ImageJ.

Tryptic Digest and Edman Sequencing. FL HMP-1 (12 μM), murine αE-catenin
monomer (12 μm) and chicken vinculin (8 μM) were incubated in
0.05 mg∕mL sequence-grade trypsin (Roche) in 20 mM Tris pH 8.0, 150 mM
NaCl and 1 mM DTT. Reactions were stopped with 2X Laemmli buffer at
the indicated times and samples analyzed by SDS-PAGE. For Edman degrada-
tion sequencing, digested peptides were blotted onto PVDF membrane,
stained with 0.1% Coomassie R-250∕40%methanol/1% acetic acid, destained
and dried. Individual bands were excised and sequenced.

Strains and Alleles. C. elegans strains were cultured using standard protocols
(28). Bristol strain N2 was used as wild type. The putative null allele hmp-1
(zu278) was originally isolated from an ethane methyl sulfonate (EMS)
mutagenesis screen (11). To sequence the allele, homozygous hmp-1
(zu278) embryos were isolated based on phenotype and treated briefly with
a 1% chitinase solution before lysis with standard single worm lysis buffer.
Embryonic lysate was used to PCR amplify hmp-1 and the product was cloned
using the TOPO-TA kit (Invitrogen). Subsequent sequencing revealed a non-
sense mutation, Gln795Ochre. SU307 (skn-1(zu67)/nT1[qIsI] IV; +/nT1[qIsI] V)
males were mated to SU290 (hmp-1(zu278)/lon-3(e2175) V) hermaphrodites
to obtain SU370 (+/nT1[qIsI] IV; hmp-1(zu278)/nT1[qIsI] V).

For the in vivo functional analysis, hmp-1:egfp constructs were microin-
jected (29) at 1 ng∕μL along with rol-6(su1006) (79 ng∕μL) and noncoding
DNA (F35D3, 20 ng∕μL) into the gonads of either N2 or SU370 hermaphro-
dites. A targeted in-frame deletion of the N-terminus was created in the
hmp-1:egfp construct by site-directed mutagenesis using the following pri-
mers: hmp-1:egfpΔ13-185 (pSM21), SM23REV (5′-GTT GAA ATA CGC ATG
AGA ATT GCC-3′) and SM6 (5′-GTT CGA CGA CGA GCC ATT GAT TTG-3′).
Extrachromosomal arrays maintained in N2 were subsequently crossed into
SU370 hermaphrodites later. Homozygous hmp-1(zu278) embryos rescued to

viability were maintained as a separate line. The following strains were
created: SU401 (+/nT1(qIsI) IV; hmp-1(zu278)/nT1(qIsI) V; jcEx110 (pJS434
(hmp-1:egfp), pRF4(rol-6(su1006)))), SU402 (hmp-1(zu278)/hmp-1(zu278) V;
jcEx110), SU419 (jcEx123 (pSM21(hmp-1:egfpΔ13-185), pRF4(rol-6(su1006))),
SU446 (+/nT1(qIsI) IV; hmp-1(zu278)/nT1(qIsI) V; jcEx123), SU449 (+/nT1(qIsI)
IV; hmp-1(zu278)/nT1(qIsI) V; jcEx124.

Phalloidin and Antibody Staining. Transgenic embryos were isolated from
gravid hermaphrodites with 0.5%NaOCl in 250mMNaOH for 5min followed
by three washes in M9 buffer. Embryos were aged in M9 for 5 h at RT, washed
three times with water, and mounted on poly-L-lysine coated ring slides. For
phalloidin staining, embryos were fixed with 4% paraformaldehyde,
0.1 mg∕mL lysolecithin, 48 mM Pipes pH 6.8, 25 mM Hepes pH 6.8, 2 mM
MgCl2, and 10 mM EGTA for 20 min then washed three times with PBS.
Embryos were incubated in the dark with 1∶20 Alexa 455 phalloidin over-
night at 4 °C then washed three times with PBS before being covered with
SlowFade antifade reagent (Invitrogen) and a coverslip. For antibody stain-
ing, embryos were freeze-cracked as described previously (30) and incubated
with a rabbit α-HMP-1 polyclonal antibody (1∶4000) overnight at 4 °C,
washed 3 times in PBST, then incubated at room temperature with an α-rab-
bit FITC antibody (1∶50). Slides were washed three times with PBST before
being covered in SlowFade and a coverslip.
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